BTATE/FEDERAT HATYRAT RPBOURCE DAMAGE A88E8BMENT

DRAFT PRETIMIMARY BTATUS REPORT

Project Title:	INJURY TO PINK SAIMON SPANNING AREAS WITHIN THE KODIAK AND CHIGNIK MANAGEMENT UNITS
Study ID Number: Fish/Shellfish Study Number $7 b$	
Lead Agency:	State of Alaska, ADF\&G OSIAR Division

Cooperating Agency(ies): Federal: USFWS State: None

Principal Investigators: Charles Swanton, Fishery Biologist Bruce Barrett, Fishery Biologist

Date Submitted: November 30, 1990

This is an interim and not a final Report. It miay not have been subjected to scientific peer review or if it has been subjected to scientific peer review it may not have been rewritten or otherwise edited to reflect that peer reviev. The conclusions and other statements in the report should be viewed as the interim conclusions of the author(s) at the time the report is written. THE CONCLUSIONS IN THIS REPORT MAY HAVE CHANGED SINCE THE REPORT WAS WRITTEN, either as a result of the insight from peer review or because of subsequent data.

ATTORNEY WORK PRODUCT

TABLE OF COMMENME

Page

LIST OF TABLES ii
LIST OF FIGURES iii
EXECUTIVE SUMPARY 1
OBJECTIVES 1
INTRODUCTION 2
METHODS 4
Aerial Surveys 4
Weir Stations 4
Spawning Habitat Surveys. 4
RESULTS 5
STATUS OF INJURY ASSESSMENT 9
LITERATURE CITED 13

This is an interim or draft document Duts presentation, anglysis, imerpretation ane comenaiors are subject to cbange. Keaders re:e ene araged to contact the Earmatants Bertion, Alasiz Eeprormen of law tefore stigg.

Page

1. Estimated average pink salmon stream life by method for selected Kodiak Management Area streams, 1990......... 6
2. Estimated pink salmon average stream life based on tagged fish carcass recoveries for four color coded tag groups, consisting of about 150 fish per code per week, for selected Kodiak Management Area streams, 1990... . . . 7
3. Estimated pink salmon average stream life based on live fish foot surveys of four color coded tag groups, consisting of about 150 fish per code per week, for selected Kodiak Management Area streams, 1990. 8
4. Kodiak Management Area pink salmon preemergent fry index stream estimated escapements, total available spawning habitat, desired escapement goals and theoretical optimum and observed spawner densities, 198910
5. Chignik Management Area total pink salmon spawning, habitat estimated 1989 total escapements, and observed spawner density by preemergent fry index stream.......... 12

This is an iniovim or draft
document. Dats presentation, englysis, intruptation and Corchasions are subject to stange. Resders are eacomaged to contact
the Enviromeestal the Enviromecala, Section Alast?
Deparment of hiow Pefore mitiog

LIBT OF FIGURES

EiguresPage1. Map showing the locations of the Kodiak and Chignik Management Areas.. 3

This is an interim or draft document. This presencation, enetusis, interpretation and conchusions ark subject to change. Readers are anemrajed to contact the Envmonnert: Serion Astasta Dantwem oi fav beter stig
attorney mork phoduct
attorney work product
iii

ACE 30091615

EXECOTIVE BURMARY

Because normal commercial salmon fisheries were not prosecuted in 1989, due to the Exxon Valdez oil spill, target escapement goals were exceeded by a factor of 4.3 within the Kodiak Management Area (KMA), and by a factor of 2.1 for the Chignik Management Area (CMA). The estimated 1989 total pink salmon escapement for the KMA was 20,280,991 (Barrett et. al. 1990), while the CMA estimated total was 1,434,798 (Barrett 1990). Total escapement estimation using area under a spawner abundance curve provided by the Johnson and Barrett (1988) model relies upon a valid stream life parameter. In 1989 total pink salmon escapement for the Afognak District of the KMA utilized an average stream life value of 8.44 days derived from studies conducted at Afognak River and East Paramanof Creek.
Escapements for the remainder of the KMA and CMA were calculated using a 15 day stream life (grounded upon professional judgement of regional ADF\&G staff). During the 1990 field season stream life values were obtained from six pink salmon spawning streams within the Kodiak Archipelago. Several approaches were used (pink salmon live and carcasses foot survey escapement counts of both tagged and untagged adults) in conjunction with the Johnson and Barrett (1988) model. Average stream life values derived in 1990 (grand mean 11.0 days; Range 7.4-14.6 days) conformed well with values reported within the literature (Perrin and Irvine 1990) as well as the 8.44d and 15d stream life values relied upon in 1989.

Estimates of total available pink salmon spawning habitat were derived for 43 Kodiak and 14 Chignik Preemergent fry index streams, and when incorporated with stream specific total escapement estimates, provide observed spawner densities ranging from . 01 to 163 fish / M^2 (mean=11.8 fish/M^2) for KMA streams, and 0.1 to 4 fish / M^2 (mean=0.8 fish/M^2) for CMA streams. Spawning habitat estimates for selected sites within preemergent fry index streams were sampled but estimates of spawning area have not been calculated.

OBJECTIVES

A. Determine total pink salmon escapements for streams where historic preemergent sac fry density data exist for 1989. This includes 44 Kodiak and 18 Chignik Management Area streams.

1. Periodically count the number of live pink salmon by aerial and foot survey methods, 1990.
2. Determine average pink salmon stream life using weir and foot survey counts of live fish for selected streams, 1990.

This is an iaterids or draft documens Duts prosenations analysis, inderpetation and ATTORNEY WORK PRODUCT conclasions are subject to chane. Readers are enconrajed to contact
B. Define the distribution of spawning pink salmon for index streams within the Kodiak and Chignik Management Areas. This entails mapping and photographing of spawner distribution, 1989.
C. Estimate total available spawning habitat for preemergent fry index streams within the Kodiak and Chignik Management Areas.

1. Measure the amount of spawning habitat using habitat suitability indices and historic spawner distribution information.
2. Measure the amount of spawning habitat within areas sampled by the preemergent fry program (Fish/Shellfish Study 8b).

INTRODOCTION

In 1989, oil emanating from the Exxon Valdez spill caused contamination of marine waters and tidally influenced nearshore environments within the Kodiak and Chignik Management Areas. Documented presence of petroleum based products in these areas was cause for the Alaska Department of Fish and Game (Commercial Fisheries Division) to severely limit commercial salmon fishing opportunities due to the threat of contaminated fishing gear and fish product. The Kodiak Management Area encompasses 451 anadromous salmonid streams within the Kodiak Archipelago and Alaska Peninsula area from Rilokak Rocks at the southern boundary, to Cape Douglas (Figure 1). In 1989, at least one aerial and or foot survey was completed on 334 of the 451 anadromous streams (Barrett et. al. 1990). The Chignik Management Area (CMA) has 107 recognized anadromous salmon streams and is delineated by Kilokak Rocks to the north with the southern boundary being Kupreanof Point (Figure 1). All 107 CMA salmon streams were surveyed in 1989.

In 1989 the estimated total pink salmon escapement for the KMA was 20,280,991 fish which exceeded the odd year target escapement goal of 4.7 million fish by a factor of 4.3 , while the CMA escapement of $1,434,798$ fish exceeded the escapement goal of 0.7 million fish by a factor of 2.1 .

Contemporary commercial salmon management is grounded upon the convention that if escapement goals are met, subsequent production will provide for a maximum sustained yield. To determine if the total estimated escapements observed in 1989 will result in lower production, had there not been an oil spill, a life history analysis is being conducted. This approach is superior to evaluation of production trends or spawner-recruit analyses due to
This is an inteim of draft donment Mots prosentation, anelysis, inictotedation and conchasions ate subet io change. Westers are comarazed wo comact the Envinonvonta semoz Alaste Depetrient ri i fow twtore ithe

Figure 1. Map showing the location of the Kodiak and Chignik Management Areas.

This is an interim of data
 andixis, intirpotation and conchasions are subject to ctange.
the ability to evaluate events occurring at each successive stage and not requiring returns from the 1989 brood year being present. Within this study, escapement and spawner dinsity parameters surrounding the first life history stage are estimated. Successive life history stage analyses will rely upon these parameters for impact assessment (Fish/Shellfish Study 8b).

METHODS

Aerial Surveys

Aerial surveys were conducted using fixed wing aircraft and trained fisheries biologists on all Rodiak and Chignik escapement index streams in 1989 and 1990. Surveys were conducted weekly (weather permitting) and observers recorded: 1) Stream name and statistical number;2) Date, weather conditions, survey visibility and time;3) Numbers of live and dead fish by species;4) Observer, pilot, aircraft type and general comments. Data were recorded on standard forms and entered into the regional stream survey database.

Weir Stations

In 1990 weirs were located on five systems within the Kodiak Archipelago (East Paramanof Ck., Afognak R., Saltery Ck., Barling Ck. and Akalura Ck.) to count daily pink salmon escapements. In addition, 150 pink salmon were tagged with color coded 30 cm floy tags on a weekly basis (over a 4 week period with each tag color representing a specific week). As part of the program every three days foot surveys were conducted upstream of the weir to enumerate tagged and untagged live and dead fish. During each survey dead pink salmon were removed from the effective counting area to prevent recounting on subsequent foot surveys. Aerial surveys were made on the weired systems on a time available basis in an attempt to calibrate aerial counts with total escapement.

Pink salmon stream life was estimated using weir and foot survey counts of escapement in 1990, in conjunction with the Johnson and Barrett (1988) model. Four distinct methods were used in calculating stream life:1) total live fish days (derived using live fish foot survey counts and the JB model, divided by the known cumulative pink salmon weir counti2) Total live fish days (determined using live fish foot survey counts and the JB model, divided by the cumulative dead fish count;3) Total number of live fish days per color code derived from foot survey counts divided by total number of fish tagged of that color code with and without adjustment for fish observibility; 4) Total number of fish days from time of tagging until recovery of tagged carcasses based upon foot surveys and weir tag recoveries, divided by total number of tagged carcasses. Aerial survey calibration was investigated using a portion of the above data and instantaneous live fish population estimates. Instantaneous live fish population estimates were

This is an iatevins or draft documer: Wht: pieventation anelysiz intarotetiation and 4 concliaions are sutbect to change. Readers are enerirased to cortact
derived using cumulative live pink salmon counts through the weir, less cumulative carcasses counted by date.

Spawning Habitat Surveys
Total available spawning habitat estimates were derived using a two stage sampling design (5-300m primary units and 60 secondary units per stream) with variance estimates derived using equation 11.24 of Cochran(1977) with modification by Wolter (1984) for linear trends. Necessary metrics were obtained from United States Geological Survey 1:250,000 maps for both Kodiak and Chignik index streams and ranges of habitat suitability indices extracted from available scientific literature (Andrew and Geen 1960;Chambers 1956; Divinin 1952; Krueger 1981; Neave 1966; Raleigh and Nelson 1985; Wilson et.al. 1981.). Indices used for habitat designation were substrate size and embeddedness, water velocity and depth. All habitat data were recorded on standardized forms and entered into the regional database.
In addition, spawning habitat was estimated for preemergent fry sampling sites for all 44 Kodiak and 18 Chignik index streams using the same criteria as above.

RESULTS

To calculate total escapement estimates using a spawner abundance curve a reliable stream life estimate is required. In 1989, the average pink salmon stream life for East Paramanof creek and Afognak River was an estimated 8.7 days and 8.19 days respectively (average 8.44 days). The 1989 pink salmon total escapements for the Afognak District were calculated based upon this value. However, for the remainder of the Kodiak and Chignik management districts a stream life value of 15 days was employed (grounded upon the professional judgement of regional ADF\&G staff). In 1990, six stream systems provided pink salmon stream life estimates. The average for each of the four methods used are: 8.6 days, 12.4 days, $7.4 / 12.2$ days, and 14.6 days (Table 1). According to Perrin and Irvine (1990) the true or theoretical stream life is one which is neither positively or negatively biased, which relates to whether the method over or under represents the actual population present. This value is felt to be approximated by the weighted average of 15.7 days (Table 1). In evaluating the various methods both methods 1 and 2 previously mentioned have a negative bias due to fish visibility by observers (Table 3). This problem influences the estimates derived by the first two methods but has no influence on the latter two methods due to the use of tagging data. Stream life estimates derived using tagged fish data are depicted in Tables 2 and 3. The overall or theoretical stream life value calculated in 1990 (14.6 days), is not appreciably different than the 15 day value used for estimating total escapements in 1989. It should be noted that the stream life values observed for 1990 were under distinctly different escapement magnitudes and spawner
This is an intsim or dian
docmmeni Dato pieienration, englosis, inaremetation and

Table 1．Estimated average pink salmon stream life by method for selected Kodiak Management Area streams， 1990.

System	Stre盛 Life Method				
	Cun．Fish Daye From Foot Survey Counte／Total Eecep． Through Weir	Cum．Fish Daye from Foot Survey Counte／Cum． Carcase Count	Moighted Ang．for Surveved Counted Live Tagged Fish （Mot Adj．Por Visiblitity）	Highted Avg．for Surveyed Counted Llve Tagged FIsh （Adj．for Vieibillity）	Welghted Avg．for Tegged Fleh Using Cercase Recover les
Berling	7.9	15.4	7.8	14.9	17.5
Afognek	6.7		3.8	7.8	9.9
PIn＊	6.5	6.8			
Akstura	3.5	5.9	6.0	9.9	10.8
Piller		16.4			
Saltery	13.7	15.8	14.2	18.8	18.6
Persmanof	13.2	14.2	5.1	9.6	15.9
Averege	8.6	12.4	7.4	12.2	14.6

```
This is
document．an inieviry or iraft
anelysis，mate presentation
conctusions are sutiaction and
Readers are are sembenter to brange．
the Envonenconthed to contac：
Pparmient of titw brow Atas
```

Table 2．Estimated pink salmon average stream life based on tagged fish carcass recoveries for four color coded tag groups，consisting of about 150 fish per code per week，for selected Kodiak Management Area streams， 1990.

System	Stream Life in Number of Days				
	Tag Group	Tag Group	Tag Group 3	Tag Group	Weighted Average
Barling	19.89	17.61	17.26		17.5
Afognak	10.14	8.43			9.9
Akalura	13.42	8.05			10.8
Saltery	25.08	18.90	14.77	13.44	18.6
Paramanof	21.43	20.19	14.77	9.50	15.9
Average	17.99	14.64	15.60	11.47	14.6

This is an interim or draft document．Dats presenvition， anelysis，interpretation and conciusions are sabpect to change． Fenders are encorrazed to coriact

Table 3. Estimated pink salmon average stream life based on live fish foot surveys of four color coded tag groups, consisting of about 150 fish per code per week, for selected Kodiak Management Area streams, 1990.

Systen	Stream Life in Number of Davs						
	$\begin{gathered} \text { Tag } \\ \hline \end{gathered}$	$\begin{gathered} \text { Tag } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Tag Group } \\ 3 \\ \hline \end{gathered}$	Tag	$\begin{aligned} & \text { Group } \\ & 4 \\ & \hline \end{aligned}$		ted Averaoe ${ }^{\text {a }}$
	Not Adj. Adj.*	Not Adj. Adj."	Not Adj. Adj.*	Not Adj.	Adj. ${ }^{\text {P }}$	Not Adj.	Adj.* NA/A
Barling	10.415 .4	7.315 .1	7.714 .8			7.8	$14.9 \quad 0.53$
Afognak	4.08 .1	$2.6 \quad 6.3$				3.8	$\begin{array}{ll}7.8 & 0.48\end{array}$
Akalura	$7.5 \quad 9.7$	4.310 .0				6.0	9.90 .61
Saltery	19.126 .1	13.818 .7	10.514 .6	11.2	13.2	14.2	18.80 .76
Paramanof	7.911 .8	4.0	4.211 .5	3.8	6.4	5.1	9.60 .53
Average	$9.8 \quad 14.2$	$6.4 \quad 12.5$	$7.5 \quad 13.6$	7.5	9.8	7.4	12.20 .58

[^0]```
This is an mate.m.
```



```
anghos, fmevebstina aj
conclusions ate sutyea to chanye
Rezden are enerrawed to crorec
the Invimome,i:S Remion, Mase*
```


densities than those which were experienced during the 1989 spawning event.

Aerial survey calibration as defined (Fish/Shellfish Detailed Study plan 7 b ) could not be adequately evaluated due to prolonged inclement weather which limited the number of surveys available for the stream systems designated. It is doubtful whether the calibration information, if obtained, would have been useful in evaluating 1989 escapements in light of the rather minimal escapements observed in 1990, Paramanof Ck. 24,446 ), Saltery Ck. 5,121 ), Akalura Ck. $(2,604)$, Barling Ck. $(18,953)$, Afognak R. $(27,808)$, Pillar Ck. $(13,348)$.

Total available pink salmon spawning habitat estimates and variances were estimated for 43 Kodiak and 18 Chignik index streams (Tables 4 and 5). Spawner densities were calculated using finalized escapement data from 1989, and total available spawning habitat estimates. In addition, $95 \%$ confidence intervals were calculated based upon the assumption that the habitat data is approximated by a symmetrical distribution. Stream specific spawner densities and 1989 total estimated escapements are used as a preliminary step in evaluation of preemergent fry data collected as part of Fish/Shellfish Study 8 b , and associated impact assessment modeling forthcoming.

At this time, spawning habitat estimates for the preemergent fry sampling sites have not been calculated.

## 8TATUS OF INJURY ASsEsBMENT

All of the stated objectives within this project have been met, except for calculation of the spawning area estimates for the preemergent fry sampling sites and the detailed spawner distribution maps. The 1989 spawner distribution maps for each of the index streams within the Kodiak and Chignik Management Areas will be completed by 15 January, while estimates for the preemergent fry sampling site spawning habitat should be completed by February 1991.

Within this study and its associated objectives impact is not directly addressed; results from this investigation will be integrated into an impact assessment conducted within Fish/Shellfish Study 8b.

This is an in:crive or draft documen: Dase presentavion, aneivis, interotetation and conclasions are sumiect to change. Readers eve crowirased to contact the Envionmente Section, Alast? Dumener oi isin beforc sitiag.

Table 4. Kodiak Management Area pink salmon preemergent fry index stream estimated escapements, total available spawning habitat, desired escapement goals and theoretical optimum and observed spawner densities, 1989.

| Stream | Habitat Est. | Std. Dev. | Escapenent <br> (1) of Fish) |  | $\begin{aligned} & \text { Spawner Density } \\ & \text { (Inds. } / M^{-2} \text { ) } \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | point |  | C.I. |
| Name Number |  |  | 1989 | Desired | -Opti. | Est. |  | High |
| Afognak District |  |  |  |  |  |  |  |  |
| Malína 251-105 | 5,524.4 | 42.81 | 4,022 | 18,418 | 3.333 | 0.728 | 0.721 | 0.735 |
| Paramanof 251-404 | 41.345 .9 | 128.32 | 20,056 | 18,418 | 0.445 | 0.485 | 0.483 | 0.486 |
| Waterfl. 251-822 | 10,414.6 | 380.701 | 106,347 | 30,000 | 2.880 | 10.21 | 9.768 | 10.69 |
| Peranosa 251-830 | 29,223.2 | 145.21 | 95,700 | 73,671 | 2.520 | 3.274 | 3.254 | 3.295 |
| Seal 251-901 | 619.7 | 24.33 | 6,000 | 6,000 | 9.682 | 9.682 | 9.233 | 10.17 |
| Danger 252-332 | 839.7 | 17.92 | 39,207 |  |  | 46.69 | 45.48 | 47.95 |
| Afognak 252-342 | 27,864.6 | 62.66 | 41,611 | 20,000 | 0.717 | 1.493 | 1.489 | 1.497 |
| Marka 252-343 | 58,724.6 | 196.51 | 20,794 | 36,835 | 0.627 | 0.354 | 0.352 | 0.355 |
| Subtotals | 174,557 |  | 333,737 | 203,342 | 1.164 | 1.911 |  |  |
| Northwest District |  |  |  |  |  |  |  |  |
| Sheratin 259-371 | 67,847.2 | 170.78 | 119,943 | 36,835 | 0.542 | 1.767 | 1.762 | 1.773 |
| Little R. 253-115 | 62,370.7 | 159.92 | 193,167 | 55,253 | 0.885 | 3.097 | 3.087 | 3.106 |
| Uganik 253-122 | 46,903.4 | 352.74 | 795,899 | 257,847 | 5.497 | 16.96 | 16.81 | 17.12 |
| Tertor 253-331 | 68,798.2 | 275.38 | 410,913 | 110,506 | 1.606 | 5.972 | 5.943 | 6.002 |
| Baumans 253-332 | 44,646.3 | 253.7 | 353,333 | 18,418 | 0.412 | 7.914 | 7.858 | 7.970 |
| Browns 254-204 | 40,176.9 | 213.82 | 63,820 | 18,418 | 0.458 | 1.588 | 1.578 | 1.599 |
| Uyak 254-202 | 97,817.9 | 145.08 | 645,157 | 184,176 | 1.882 | 6.595 | 6.583 | 6.607 |
| Zachar 254-301 | 116,852.0 | 314.32 | 103,983 | 73,671 | 0.630 | 0.889 | 0.887 | 0.893 |
| Subtotals | 428,561 |  | 2,686,215 | 755,124 | 1.762 | 6.268 |  |  |

Tinis is in
documen: Fxis periensetion, -Continuedgne: wif, inirmottstion and coricilusions arf subject to change.

Table 4. (page 2 of 2 )

| Strarm | Mabitat Est. | Std. Dev. | Escapement <br> (1 of Fish) |  | $\begin{aligned} & \text { Spawner Density } \\ & \text { (Inds. } / M^{\wedge} 2 \text { ) } \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Point |  |  |
| Name Nunber |  |  |  | Desired | Opti. | Est. | Low | High |
| Northeast District |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Pillar 259-102 } \\ & \text { Buskin R. 259-211 } \end{aligned}$ | $\begin{array}{r} 2,541 \\ 47,945 \end{array}$ | $\begin{array}{r} 23.12 \\ 222.86 \end{array}$ | $\begin{array}{r} 42,950 \\ 272,785 \end{array}$ | 100,000 | $2.085$ | $\begin{aligned} & 16.90 \\ & 5.689 \end{aligned}$ | $\begin{aligned} & 16.71 \\ & 5.656 \end{aligned}$ | $\begin{aligned} & 17.09 \\ & 5.722 \end{aligned}$ |
| Subtotals | 50,486 |  | 315,735 | 100,000 | 1.980 | 6.253 |  |  |
| Mainland District |  |  |  |  |  |  |  |  |
| $\begin{array}{ll}\text { Kukak } & 262271 \\ \text { Missack } & 262-402\end{array}$ | 21,257 5,345 | 82.24 121.06 | 3,802 36.120 | 7.367 11 | 0.346 2.067 | 0.178 6.757 | 0.178 | 0.179 6.952 |
| Kinak 262-451 | 21,738 | 126.93 | 54,327 | 73,671 | 3.389 | 2.499 | 2.481 | 2.517 |
| Dakavak 262-551 | 34,635 | 365.18 | 65,910 | 73,671 | 2.127 | 1.902 | 1.878 | 1.928 |
| Kashvik 262-604 | 117,682 | 219.38 | 282,600 | 92,088 | 0.782 | 2.401 | 2.395 | 2.406 |
| Alinchak 262-651 | 3,317 | 42.98 | 541,827 | 73,671 | 22.20 | 163.3 | 160.7 | 166.0 |
| Portage 262-702 | 4,543 | 79.98 | 138,880 | 36,835 | 8.107 | 30.56 | 29.91 | 31.25 |
| $0 i 1$ 262-751 | 10,966 | 87.96 | 115,612 | 36,835 | 3.358 | 10.54 | 10.43 | 10.64 |
| Jute 262-801 | 5,473 | 60.62 | 23,303 | 3,684 | 0.673 | 4.257 | 4.200 | 4.316 |
| Kanatak 262-802 | 23,005 | 140.18 | 158,350 | 36,835 | 1.601 | 6.883 | 6.831 | 6.935 |
| Big Ck. 262-851 | 77,704 | 184.84 | 2,078,433 | 221,012 | 2.844 | 26.74 | 26.66 | 26.82 |
| Subtotals | 325,667 | 3,499,164 |  | 666,720 | 2.047 | 10.74 |  |  |

This is an intecien or draft domment. Dets perientalan, anklysis inamotation and conclasions are whject to stange. Resders are enc, diajed to contact the Environmanta Section, Aaska


Table 5. Chignik Management Area total pink salmon spawning habitat estimated 1989 total escapements and observed spawner density by preemergent fry index stream.

| Stream |  | Habitat <br> Est (M^2) | Std. Dev. | $1989$ <br> Escapement ( of Fish) | Spawner Density (Inds./M^2) |  |  | |
|---|---|---|---|---|---|---|---|---|
|  |  | Point |  |  | 95\% | C. |
| Name | Number |  |  |  | Est. | Low | High |
| Hook | 272-302 |  | 153,244 | 390.46 | 45,000 | 0.293 | 0.292 | 0.294 |
| Kuml iun | 272-501 | 24,234 | 74.05 | 89,499 | 3.693 | 3.679 | 3.707 |
| North Fk. | 272-702 | 128,837 | 280.06 | 25,497 | 0.197 | 0.197 | 0.198 |
| Amber | 272-703 | 200,041 | 632.83 | 53,000 | 0.264 | 0.263 | 0.265 |
| Ocean Bh. | 272-801 | 80,014 | 279.47 | 14,080 | 0.175 | 0.175 | 0.176 |
| Chg. (904) | 272-904 | 19,245 | 188.23 | 32,000 | 1.662 | 1.642 | 1.683 |
| Chg. (905) | 272-905 | 54,284 | 132.53 | 89,000 | 1.639 | 1.634 | 1.644 |
| Agripina | 272-961 | 115,699 | 251.61 | 82,592 | 0.713 | 0.711 | 0.715 |
| Ivan R. | 273-722 | 189,000 | 416.27 | 32,000 | 0.169 | 0.168 | 0.169 |
| Foot Bay | 273-802 | 18,063 | 120.45 | 10,800 | 0.597 | 0.593 | 0.602 |
| Spoon | 273-823 | 23,652 | 60.79 | 1,700 | 0.071 | 0.071 | 0.072 |
| Portage | 272-842 | 19,107 | 76.62 | 1,200 | 0.062 | 0.062 | 0.063 |
| Ivanof | 275-406 | 256,723 | 302.304 | 168,403 | 0.655 | 0.655 | 0.656 |
| Humpback | 275-502 | 110,294 | 208.29 | 51,000 | 0.462 | 0.461 | 0.463 |

This is an interits an diaft documen: Eat: presentation, anrinsis, futcromation and conchations ore subject to change. Rewders sre encomazed to conzact 12 ATTORNEY WORK PPOSUCT the Enmonnontu Sertion Alasha


## LITERATURE CITED

Andrew, F.J. and Geen, G.H. 1960. Sockeye and Pink salmon production in relation to proposed dams in the Fraser River system. International Pacific Fisheries Commission Bull. No. 11.

Barrett, B.M. 1990. An estimate of the 1989 Chignik Management Area salmon catch and escapement numbers had there been a normal fishery without the Exxon Valdez oil spill. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 4K90-28.

Barrett, B.M., Swanton, C.O. and Roche, P.J. 1990. An estimate of the 1989 Kodiak Management Area salmon catch and escapement numbers had there been a normal fishery without the Exxon Valdez oil spill. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report, No. $4 \mathrm{~K} 90-$

Chambers, J.S. 1956. Research relating to study of spawning grounds in natural areas. U.S. Army Corps. Eng. No. Pac. Div. Fish Eng. Res. Prog. 6pp.

Cochran, W.G. 1977. Sampling Techniques. John Wiley, New York.
Divinin, P.A. 1952. The Salmon of South Sakhalin. InvestiaTinro. 37:69-108.

Johnson, B.A. and Barrett, B.M. 1988. Estimation of salmon escapement based on stream survey data: A geometric approach. Alaska Department of Fish and Game, Division of Commercial Fisheries, Kodiak. Regional Information Report. No. 4K8835. 8pp.

Krueger, S.W. 1981. Freshwater habitat relationships, pink salmon (Oncorhynchus gorbuscha). Alaska Department of Fish and Game, Anchorage. 41 pp .

Neave, F. 1966. Salmon of the North Pacific Ocean-Part III. A review of the life history of North Pacific pink salmon in British Columbia. International North Pacific salmon fisheries commission Bull. No. 18:71-78.

Perrin, C. J. and Irvine, J. R. 1990. A review of survey life estimates as they apply to the area-under-the-curve method for estimating the spawning escapement of Pacific salmon. Can. Tech. Rep. Fish. Aquat. Sci. 1733: 49p.

This is an inesins of deft docmment Thite presentation, enabsis, inteprotatom and contaions are seb;ect io chatge. Resters are enc-raged to contact Ee Ensmonacoa Bertion Áask


## LITERATURS CITED (Continued)

Probasco, P., Fox, J., and Theis, S. 1987. Westward region Chignik Area Annual Management Report, 1986. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Unpublished Report 4K86-06.

Raleigh, R. F. and Nelson, P. C. 1985. Habitat suitability index models and instream flow suitability curves: Pink salmon. U.S. Fish and Wildife Service. Biol. Rept. 82(10.109). 36pp.

Wilson, W. J., Trihey, E. W., Baldridge, J. E., Evans, C. D., Thiele, J. G. and Trudgen, D. E. 1981. An assessment of environmental effects of construction and operation of the proposed Terror Lake hydroelectric facility, Kodiak, Alaska. Arctic Environmental Information and Data center, Univ. of Alaska, Anch. 419pp.

Wolter, K. M. 1984. An investigation of some estimators of variance for systematic sampling. Journal of the American Statistical Association. 79:781-790.

This is an iatcing ai diat documen: Dats presentivin, anelysis, interpgtation and corcliasions are subject to change.


[^0]:    * Weighted average stream life derived by a weighting factor representing the escapement counted during the respective tagging periods.
    - The adjustment is based on the visibility of tagged fish by tag color group and stream. For example if only 75 of 150 tagged fish of a specific color code were observed on the first survey following tagging, the number of tagged fish observed begining with the first survey following release of the 150 color coded tagged fish was increased by a factor of 2.0 .

