# FY14 PROGRAM PROJECT PROPOSAL FORM

**Project Title: PWS Herring: Coordination and Logistics** 

Project Period: 1 February 2014 to 31 January 2015

**Primary Investigator(s):** W. Scott Pegau, Prince William Sound Science Center, Box 705 Cordova, AK 99574 ph: 907-424-5800 x222 email wspegau@pwssc.org

### Abstract:

This project is for the coordination and logistics aspects of the proposed program titled, "PWS Herring Research and Monitoring". The objectives of the program are 1) *Provide information to improve input to the age-structure-analysis (ASA) model, or test assumptions within the ASA model, 2) Inform the required synthesis effort, 3) Address assumptions in the current measurements, and 4) Develop new approaches to monitoring.* The Coordination and Logistics program objectives are to 1) ensure coordination between projects to achieve the program objectives, 2) Provide a synthesis from existing results, and 3) provide logistical support to the various projects.

Coordination includes scheduling of projects to ensure the maximum sharing of vessel time and so that projects dependent on results or samples from another project are in the correct order. Coordination will be primarily through email and teleconference, but each year all the investigators are required to meet in person. Coordination is also taking place with the existing Herring Survey program, the Long-Term monitoring program, and ADF&G herring sampling.

Logistics is primarily in providing vessel time although a remotely operated vehicle is requested in this budget to support non-lethal fish identification and being able to search under the ice.

The synthesis to be provided by this project is leveraging the required synthesis of the existing Herring Survey program. We intend to update that effort with new results and add a section on how environmental conditions affect herring growth.

#### Estimated Budget: EVOSTC Funding Requested:

| FY12    | FY13    | FY14    | FY15    | FY16    | TOTAL     |
|---------|---------|---------|---------|---------|-----------|
| 364,125 | 510,261 | 388,136 | 339,007 | 338,583 | 1,940,113 |

(Funding requested must include 9% GA)

### Non-EVOSTC Funds to be used:

| FY12 | FY13 | FY14 | FY15 | FY16 | TOTAL |
|------|------|------|------|------|-------|
|      |      |      |      |      |       |

Date: 16 August 2013

## (THIS SUMMARY PAGE NOT TO EXCEED ONE PAGE)

## I. NEED FOR THE PROJECT

## A. Statement of Problem

Robust Pacific herring (*Clupea pallasii*) populations, suitable for exploitation by commercial fisheries, are typically sustained by periodic recruitment of strong year classes into the adult spawning population. However, the Prince William Sound (PWS) herring population has not had a strong recruitment class since 1989, when the Exxon Valdez Oil Spill (EVOS) occurred. In the EVOS settlement herring were identified as an injured resource and they remain listed as an unrecovered species by the EVOS Trustee Council (EVOSTC). Understanding why herring have not recovered in Prince William Sound requires understanding potential bottlenecks in the herring life cycle. The identification of the limiting conditions to herring recovery requires a series of focused process studies combined with monitoring of the natural conditions that affect herring survival.

Described here is a single project that is a part of an integrative program that will enhance the current monitoring efforts of the Alaska Department of Fish and Game (ADF&G), and examine aspects of particular life stages to allow better modeling of herring populations. **The long-term goal of the program is to improve predictive models of herring stocks through observations and research.** While we do not anticipate that there will be a major change in our modeling ability in the next five years, we expect that the combination of monitoring and focused process studies will provide incremental changes over the next twenty years and result in a much better understanding of herring populations by the end of the program.

## **B.** Summary of Project to Date (if applicable)

All milestones to date have been met. The cruises have occurred as scheduled and there have been several meetings of the investigators to help coordination both within the program and with the PWS Herring Survey program and Gulf Watch Alaska program. All subcontracts to PWSSC are in place.

## **II. PROJECT DESIGN**

## A. Objectives

This project is designed as the oversight and logistics portion of the "PWS Herring Research and Monitoring" proposal submitted by the Prince William Sound Science Center. The objectives of that program are:

- 1) *Provide information to improve input to the age-structure-analysis (ASA) model, or test assumptions within the ASA model.* The ASA model is currently used by ADF&G for estimating herring biomass (Hulson et al. 2008). The proposed monitoring efforts are designed to address this objective by either expanding the data available for the existing ASA model or by providing information about factors that determine the size of recruitment events.
- 2) *Inform the required synthesis effort.* Proper completion of a detailed synthesis means being able to access and manipulate different sources of data and information. We are proposing projects that make data available to all researchers.
- 3) *Address assumptions in the current measurements*. Many of the existing studies are based on historical or logistical constraints. We are proposing research necessary to put the existing measurements into context spatially and temporally. This effort will allow the design of the most accurate and efficient monitoring program.

4) *Develop new approaches to monitoring*. With technological advances we have the potential to improve our monitoring programs so they require less effort or reduce the need to collect fish.

This projects objectives are:

- 1) Ensure coordination between projects to achieve the program objectives.
- 2) Provide a synthesis from existing results.
- 3) Provide logistical support to the various projects.

The subcontracts for Data Management, Modeling, and Non-Lethal Sampling projects are contained within the budget of this project since the Coordination project has an oversight role for all projects.

### **B.** Procedural and Scientific Methods

The first objective is to ensure coordination between programs. Program coordination will primarily be through e-mail and phone communications. Annual meetings are planned in Cordova, tentatively in May, for all investigators to share information between themselves and with the community. These inperson meetings are vital to ensure proper communication among programs.

Dr. Pegau will act as the program team leader and be responsible for ensuring a coordinated and focused research program that leverages other assets whenever possible. He will be responsible for ensuring proper scientific oversight of individual projects and reporting to the EVOSTC. He will lead the development of annual work plans and the synthesis of findings from these programs. He will be responsible for coordinating the efforts of the herring research program with those of the Long-term Monitoring program.

There will be annual Principal Investigator meetings in Cordova each year to provide updates to the oversight panel, improve coordination between projects, and provide outreach and public input opportunities. This meeting will be in the spring so that there is opportunity to provide input on the development of the next year's work plan. In an effort to be proactive in the scientific oversight we sought input on the development of this proposal from ADF&G, NOAA, Cordova District Fishermens United (CDFU), and others. Team development and input on research direction was also sought at the 2011 Alaska Marine Science Symposium.

The wide array of projects that make up PWS Herring Research and Monitoring program required careful integration to ensure the maximum collaboration between projects. Not all observation projects are directly connected to each other, but are connected through the objectives of the program. The full benefits of the linkages will be seen at the points where synthesis efforts occur.

Coordination between programs is also taking place through scheduling of vessels by the Coordination project and the scheduling order of individual projects. All the investigators are required to work together to determine vessel type and number of days needed. Coordination was also achieved through the scheduling of projects to ensure results would be available for projects dependent on samples or data from another project. More information is available in section E. of this proposal.

The second objective is to provide a synthesis of results in year 3. A synthesis is also required for the currently funded herring program and due at approximately the same time. To reduce the cost of this proposal we will be relying on the existing synthesis effort to provide the required work. The aim of the

current synthesis effort is not to summarize the existing information, but to use that information to address specific questions. We are looking to address the questions of

- 1) How many bays must we sample to provide a juvenile herring index?
- 2) Where don't we find juvenile herring and why?
- 3) Energetically is it more important to be in good condition in the fall or have food available in the spring? This includes the quality of food available.
- 4) How do the sources of mortality (disease, energy, predation) interact with each other?

For the purpose of the synthesis required in this proposal we will add the question of how does environmental conditions affect growth and refine the answers to the other questions based on results obtained in this program.

The third objective is to supply logistical support. The primary logistical support is providing vessel time to the various projects. This is contained in the coordination budget to ensure maximum utilization of the vessels. This project will also obtain a remotely operated vehicle for use by the various projects. This is needed for non-lethal sampling, but has been identified as a need for the herring tagging project (mooring recovery), and for surveying under ice edges where large numbers of juvenile fish have been observed.

### C. Data Analysis and Statistical Methods

This project is dependent on the investigators of the other projects to help identify questions for the synthesis and upon their expertise in the subject areas to define the appropriate data analysis and statistical methods.

#### D. Description of Study Area

The study area includes all of Prince William Sound (N, E, S, and W boundaries of respectively, ~ 61, - 145.5. 60, and -149°). However, most of the projects will focus on the four bays (Zaikof, Whale, Eaglek, and Simpson) that were extensively studied during the Sound Ecosystem Assessment study and PWS Herring Survey program (Figure 2). This allows the work to build upon the historical research completed in those bays. These bays also cover four different quadrants of the Sound. We anticipate a potential build out to include other bays or contraction based on the results from the synthesis. As part of the synthesis effort we will be reviewing the question "What is the appropriate sampling distribution?" as applied to the questions of juvenile herring condition and providing an index of juvenile abundance.

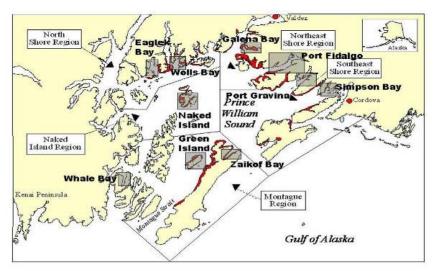



Figure 2. PWS study area, including the four SEA bays (Whale, Zaikof, Eaglek, and Simpson, as well as other bays historically important for juvenile herring.

### E. Coordination and Collaboration with Other Efforts

This proposal is structured to be part of a collaborative programmatic effort being led by the Prince William Sound Science Center. Program coordination will primarily be through e-mail and phone communications. Annual meetings are planned in Cordova, tentatively in May, for all investigators to share information between themselves and with the community. These in-person meetings are vital to ensure proper communication among programs.

Dr. Pegau will act as the program team leader and be responsible for ensuring a coordinated and focused research program that leverages other assets whenever possible. He will be responsible for ensuring proper scientific oversight of individual projects and reporting to the EVOSTC. He will lead the development of annual work plans and the synthesis of findings from these programs. He will be responsible for coordinating the efforts of the herring research program with those of the Long-term Monitoring program.

There will be annual Principal Investigator meetings in Cordova each year to provide updates to the oversight panel, improve coordination between projects, and provide outreach and public input opportunities. This meeting will be in the spring so that there is opportunity to provide input on the development of the next year's work plan. In an effort to be proactive in the scientific oversight we sought input on the development of this proposal from ADF&G, NOAA, Cordova District Fishermens United (CDFU), and others. Team development and input on research direction was also sought at the 2011 Alaska Marine Science Symposium.

The wide array of projects that make up this program required careful integration to ensure the maximum collaboration between projects. Not all observation projects are directly connected to each other, but are connected through the objectives of the program. The full benefits of the linkages will be seen at the points where synthesis efforts occur.

Direct overlap between observation projects occurs in the area of logistics. We intend to have the acoustic surveys, direct capture, and non-lethal collection components sharing a vessel. The direct capture and non-lethal collection are intended to provide validation to the acoustics. The direct capture component will be responsible for providing fish to the RNA condition, energetic condition, disease

research, fatty acid indicators, and genetic stock indicator projects. Another direct project overlap occurs between the herring scale analysis and primiparous herring projects, which will share growth information as determined from the scales. The combined efforts will lead to a greater number of scales becoming digitized and improving the statistics for both projects. All projects will also interact with the data management efforts to ensure the data is properly archived and maintained.

Indirect project overlap occurs between projects through the scheduling. Projects like the genetic stock indicators are pushed back in the cycle to ensure that the methodologies used by the direct capture program are mature enough to ensure collection of the required samples. Non-lethal collection is also later in the program to ensure new direct capture techniques are fully tested. Fish collected from the RNA and energetics intensive studies will also be used by the fatty acid indicator project. The acoustic tagging project is early in the program to take advantage of the acoustic receiver array that is in place and has a limited life span. Some projects like the disease research component also start later in the program because of coordination with the existing herring monitoring program. We worked hard to ensure that there isn't duplication between the proposed program and the existing program. One apparent exception is the RNA and energetic condition intensives. By moving these projects early in the program we intend to fill what is seen as a major gap in the existing program and hopefully more quickly resolve the information value that each project provides.

Coordination with the EVOSTC Long-term Monitoring program is critical to the success of the herring program. The ability to develop a predictive tool using the juvenile condition component requires an understanding of when feeding may occur and hence the need to coordinate with the oceanographic monitoring component. Predation by whales, fish, and birds are also considered potential factors inhibiting the recovery of herring. In that regard we will be looking to the monitoring program for information on the changes in the predator population base. That information will be critical if the herring program chooses to focus on predation during future efforts. The forage fish component and our efforts to develop an index of juvenile herring populations must inform each other. We expect that our hydroacoustic surveys and direct capture efforts will help provide measures of total fish biomass as well as forage fish populations. We will also work together to identify historical data that both programs would benefit from as part of the data management efforts. Throughout the proposal writing effort, the herring and long-term monitoring efforts led by Kris Holderied have been working together to identify how the two programs can inform and complement each other.

Other important programs for coordinating with are the existing PWS herring survey program and existing ADF&G herring research. This program has been developed with input from both of these programs and the focus of this proposal is extending the interpretation of the data from those two programs. The Herring Survey program will still be operating in FY12 and FY13. There are field observations scheduled in FY12 and in FY13 funds are strictly for analysis and report writing. Included in the report writing is a synthesis of previous and current research. This report will be finished in FY13 and be the basis for the synthesis required under this request for proposals.

#### **III. CV's/RESUMES**

W. Scott Pegau Oil Spill Recovery Institute Box 705 Cordova, AK 99574 ph: 907-424-5800 x222 email: wspegau@pwssc.org

#### **Education:**

1990 B.S., Physics, University of Alaska, Fairbanks1996 Ph.D, Oceanography, Oregon State University

#### **Professional Experience:**

| 1987-1990    | Research Assistant, University of Alaska, Fairbanks    |
|--------------|--------------------------------------------------------|
| 1990-1996    | Graduate Research Assistant, Oregon State University   |
| 1996-1997    | Research Associate (Post Doc), Oregon State University |
| 1997-1999    | Faculty Research Associate, Oregon State University    |
| 1999-present | Assistant Professor, Oregon State University           |
| 2002-2003    | Senior Scientist, Kachemak Bay Research Reserve        |
| 2003-2007    | Research Coordinator, Kachemak Bay Research Reserve    |
| 2007-present | Research Program Manager, Oil Spill Recovery Institute |

#### **Research Interests:**

To develop novel oil spill detection and tracking approaches. Understanding the fate and behavior of oil spilled in cold water environments. Development of response options for oceans with sea ice present. Circulation in Prince William Sound, Cook Inlet and the Gulf of Alaska and the associated larval transport. Relationship between oceanographic conditions and fisheries. Application of remote sensing for understanding coastal processes.

#### **Publications**

Selected publications

- Pegau, W. Scott, Inherent optical properties of the central Arctic surface waters, *J. Geophys Res*, **107**, doi. 10.1029/2000JC000382, 2002.
- Montes-Hugo, M. A., K. Carder, R. J. Foy, J. Cannizzaro, E. Brown, and S. Pegau, Estimating phytoplankton biomass in coastal waters of Alaska using airborne remote sensing, *Remote Sens. Environ.* 98, 481-493, 2005.
- Streever, B., R. Suydam, J.F. Payne, R. Shuchman, R.P. Angliss, G. Balogh, J. Brown, J. Grunblatt, S. Guyer, D.L. Kane, J.J. Kelley, G. Kofinas, D.R. Lassuy, W. Loya, P. Martin, S.E. Moore, W.S. Pegau, C. Rea, D.J. Reed, T. Sformo, M. Sturm, J.J. Taylor, T. Viavant, D. Williams, and D. Yokel, Environmental Change and Potential Impacts: Applied Research Priorities for Alaska's North Slope, *Arctic*, **64**, 390-397, 2011.
- Moline, M.A., I. Robbins, B. Zelenke, W.S. Pegau, and H. Wijesekera, Evaluation of bio-optical inversion of spectral irradiance measured from an autonomous underwater vehicle, *J. Geophys. Res.*, 117, 12pp., doi:10.1029/2001JC007352, 2012.
- Musgrave, D.L., M.J. Halverson, and W.S. Pegau, Seasonal Surface Circulation, Temperature, and Salinity in Prince William Sound, Alaska, *Cont. Shelf Res.*, doi:10.1016/j.csr.2012.12.001, 2012

### Collaborators

Mary Abercrombie (USF), Robyn Angliss (NOAA), Greg Balogh (USFWS), Mike Banner (UNSW), P. Bhandari (UM), Mary Anne Bishop (PWSSC), Rob Bochenek (Axiom consulting), Emmanuel Boss (U Maine), Kevin Boswell (FIU), Tim Boyd (SAM), Trevor Branch (UW), Evelyn Brown (Flying fish), John Brown, Michele Buckhorn (PWSSC), Lindsay Butters (PWSSC), Rob Cambell (PWSSC), L Carvalho (UCSB), Grace Chang (UCSB), Yi Chao (JPL), Paula Coble (USF), Robyn Conmy (EPA), Tim Cowles (OSU), Helen Czerski (U Southhampton), M. Darecki (PAS), Tommy Dickey (UCSB), C. Dong (IGGP), David Farmer (URI), Jim Farr (NOAA), Scott Freeman (NASA), J. Gemmrich (UVic), P. Gernez (U Nantes), Jess Grunblatt (UAF), Scott Guyer (BLM), Jeff Guyon (NOAA), B. Hagen (SAM), Nate Hall-Patch (IOS), Mark Halverson (PWSSC), Ron Heintz (NOAA), Paul Hershberger (USGS), Ben Holt (JPL), S. Jiang (UCSB), Mark Johnson (UAF), C. Jones (UCSB), Doug Kane (UAF), Lee Karp-Boss (U Maine), George Kattawar (TAMU), John Kelley (UAF), T. King (BIO), Tom Kline (PWSSC), Cory Koch (Wetlabs), Gary Kofinas (UAF), Kathy Kuletz (USFWS), J. Lacoste (Dalhousie), Denny Lassuy (DOI), D. LeBel (Lamont), Ken Lee (BIO), L. Lenain (SIO), Marlin Lewis (Satlantic), Y. Liu (MIT), L. Logan (UMiami), Wendy Loya (Wilderness org), Ted Maksym (WHOI), Darek Manov (UCSB) Phillip Martin (USFWS), W. Melville (SIO), Scott Miles (LSU), Steve Moffitt (ADF&G), Mark Moline (Cal Poly), Sue Moore (NOAA), Rue Morison (UNSW), Dave Musgrave, F. Nencioli (MIO), Carter Ohlmann (UCSB), John Payne (DOI), Sean Powers (USA), Caryn Rea (Conoco), Dan Reed (ADFG), B. Reineman (SIO), Ian Robbins (Cal Poly), B. Robinson (BIO), Chris Roman (WHOI), R. Rottgers (HZG), Scott Ryan (BIO), H. Schultz (UMass), Li Shen ( Johns Hopkins), M. Shinki (CRI), Matt Slivkoff( ISMO), M. Sokolski (PAS), Frank Spada (Sea Engineering), Nate Statom (SIO), Darius Stramski (SIO), Bill Streever (BP), Todd Sformo (NSB), Robert Shuchman (Mich Tech), Petere Sutherland (SIO), Hanumat Singh (WHOI), Matt Sturm (ACE), Robert Suydam (NSB), J. Taylor, Richard Thorne (PWSSC), Mike Twardowski (Wetlabs), S. Vagle (IOS), Ronnie Van Dommelen (Satlantic), Tim Viavant (ADFG), Johanna Vollenweider (NOAA), Ken Voss (UMiami), Ian Walsh (Wetlabs), Libe Washburn (UCSB), J. Wei (Dal), Hemantha Wijesekera (NRL), Dee Williams (BOEM), Sharon Wilde (NOAA), Amanda Whitmire (OSU), Jeremy Wilkinson (BAS), Michelle Wood (UO), O. Wurl (Old Domin), D. Yankg (John Hopkins), Dave Yokel (BLM), Dick Yue (MIT), Len Zabilansky (CRREL), Ron Zaneveld (Wetlabs), Chris Zappa (Lamont), Brian Zelenke (Cal Poly)

### **IV. SCHEDULE**

### A. Project Milestones

| Objective 1.         | Ensure coordination between projects to achieve the program objectives.<br>This is an ongoing objective and will last through the proposal period |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Objective 2</b> . | Provide a synthesis from existing results.                                                                                                        |

- To be met by November 2014
- **Objective 3** Provide logistical support to the various projects. *This is an ongoing objective and will last through the proposal period*

#### **B.** Measurable Project Tasks

Specify, by each quarter of each fiscal year, when critical project tasks (for example, sample collection, data analysis, manuscript submittal, etc.) will be completed. This information will be the basis for the quarterly project progress reports that are submitted to the Trustee Council Office. Please format your schedule like the following example.

| FY14 2 <sup>nd</sup> Quarter |                                                                     |
|------------------------------|---------------------------------------------------------------------|
| January                      | Annual Marine Science Symposium                                     |
| March                        | Complete acoustic intensive                                         |
| March                        | Conduct spring juvenile collection                                  |
| FY14 2nd Quarter             |                                                                     |
| April                        | Conduct extended adult biomass cruise, collect samples for genetics |
| May                          | Conduct annual PI meeting                                           |
| FY14 3rd Quarter             |                                                                     |
| August                       | Submit semi-annual report and FY15 work plan for review             |
| October                      | Complete herring program synthesis.                                 |
| FY14 4th Quarter (No         | ovember 1, 14 to January 31, 15)                                    |
| November                     | Conduct juvenile index survey                                       |

# V. BUDGET

**Budget Form (Attached)** 

Please complete the budget form for each proposed year of the project.