Exxon Valdez Oil Spill Restoration Project Final Report

Ecological Factors Affecting the Distribution and Abundance of Forage Fish in Prince William Sound, Alaska; An APEX Synthesis Product

Restoration Project 00163T

Evelyn D. Brown Stephanie M. Moreland Institute of Marine Science University of Alaska Fairbanks P.O. Box 757220 Fairbanks, Alaska 99775-7220

October 2000

Ecological Factors Affecting the Distribution and Abundance of Forage Fish in Prince William Sound, Alaska; An APEX Synthesis Product Restoration Project 00163T Final Report

Study history: This project was initiated after a round of data sharing between the Sound Ecosystem Assessment (SEA) project, Restoration Project XX320, and the Alaska Predator Ecosystem Experiment (APEX) project, Restoration Project XX163. Ecological modelers for APEX (Project XX163Q) were frustrated by the lack of correlation between APEX acoustic data on forage fish distribution in Prince William Sound (PWS) and sea bird foraging patterns. Data from the SEA aerial surveys were provided to the modelers who documented a significant correlation between that data and the sea bird foraging patterns. The disparity in results between the two fish data sets (acoustic and aerial) was primarily due to the shallow distribution of the two main forage species in PWS (juvenile Pacific herring, Clupea pallasi, and juvenile Pacific sand lance, Ammodytes hexapterus). The depth limitation of acoustic data acquisition (shallow water < 10m and surface waters < 5m) excluded many of the fish schools from observation; unfortunately, many of these shallow schools were the prime targets for foraging sea birds. The principal investigator of this project was asked to present data on broadscale distributions of surface schooling forage fishes in Prince William Sound (PWS) from 1995-1997 during the 1998 annual meeting and review for Exxon Valdez Oil Spill (EVOS) science. She was also asked to participate in 1998-99 field logistic planning for APEX as aerial surveys were determined to be important to research goals for the APEX project. In 1998, a proposal was submitted to include aerial surveys for the final two field seasons of APEX (1998 and 1999). In 1999, this project was expanded to include a synthesis of the SEA and APEX forage fish data. The synthesis product is an ecological analysis of factors affecting distribution and availability (as prey to sea birds) of key forage species in PWS. The synthesis includes oceanographic data, combined acoustic and aerial results, and foraging patterns of sea birds and marine mammals observed from aircraft.

<u>Abstract:</u> The main objectives were (1) to document forage fish abundance and distribution in Prince William Sound (PWS), (2) provide data to cooperating studies and (2) determine key environmental factors driving forage fish availability as prey for sea birds. Aerial survey results and validations from 1995-1999 were compiled and data queries were fulfilled. Unlike Gulf of Alaska, PWS sea bird parents rely mainly on juvenile forms of Pacific herring and sand lance. Interannual variability in forage fish availability was due to variations in overall abundance and depth distribution. Weekly variability during the sea bird breeding period was largely due to recruiting events of herring and sand lance to nearshore nursery zones (< 1km). Oceanic and climate conditions during the five year period were reviewed, including the strong 1997 El Niño event. Topographical features and population abundance (geographic spread) are the two most likely factors affecting horizontal distribution. Zooplankton, temperature and predation risk are the factors likely affecting vertical distribution. To quantify factors affecting distribution, aerial

survey results must be combined with acoustic data, along with environmental data to created spatially explicit variables. A two-stage analytical approach is described. **Key Words:** Aerial surveys, *Ammodytes hexapterus*, capelin, *Clupea pallasi*, distribution, eulachon, forage fish, juvenile, kittiwakes, line transects, *Mallotus villosus*, Pacific herring, Prince William Sound, sand lance, sea bird ecology, *Thaleichthys pacificus*

<u>Citation</u>: Brown, E. D. and S.M. Moreland. 2000. Ecological factors affecting the distribution and abundance of forage fish in Prince William Sound, Alaska; An APEX Synthesis Product. Project 00163T.

Executive Summary	7
Introduction	10
Objectives	11
Methods	
Results and Discussion	15
Conclusions	
Acknowledgements	
Literature Cited	20
Table 1. Summary of area flown (km ²) within each of the three APEX regions month and year strata.	for each
Table 2. Summary of key fish, bird and invertebrate species observed by mont Total abundance estimates were expanded by the average area covered by aeria a given region (not the total area within the region).	h and year. al surveys in 26
Table 3. Weekly and interannual variability in forage fish surface school densi core kittiwake foraging area in the northeast; estimates are corrected for sighta missing data is denoted by NS for no survey.	ty within the bility error; 29
Table 4. Weekly and interannual variability in forage fish surface school densi expanded kittiwake foraging area in the northeast; estimates are corrected for serror.	ty within sightability 30
Table 5. Spatial variability in mean depth (m) of juvenile herring schools, stan deviation and 95% confidence interval range during July, 1996 based on acoust	dard stic surveys.
Table 6. Temporal variability in juvenile herring schools depth (m) at four her sites in PWS.	ring nursery
Table 7. Normalized climate and production indices for PWS and the north Pa the SEA/APEX study years including the June Bakun upwelling index at Hinc Entrance, the Aleutian Low Pressure Index (ALPI; (Beamish, 1999)), the Atma Forcing Index (AFI-PDO; (Beamish, 1999)), the El Niño Southern Oscillation	cific during hinbrook ospheric (ENSO;

Table of Contents

(Mantua, 1997)), and both the average and peak zooplankton production at the Armin F. Koernig (AFK) salmon hatchery in southwestern PWS
Table 8 Thermocline depth (m) and mean sea surface temperature to 10 m measured at APEX nearshore sites in each of the three study areas (northeast-NE, central-C, and southwest-SW) during July
Table 9. Mean sea surface temperature and salinity to 20 m at PWS SEA project offshore (> 1 km) sites in regions overlapping the APEX study regions during July
Figure 1. Flight paths used during the APEX project in 1998-9 for the north region, the central region, and the southwest or Jackpot region; the additional areas covered during the single July broadscale survey are also shown
Figure 2. Probability density functions of sighting distances (estimated from observed angle of sighting from wing) used to estimate effective (sampled) swath width for kittiwakes, herring and sand lance
Figure 3. Changes in relative abundance of fish over the months/years surveyed within the APEX study areas (note that herring in the NE are off the scale in May and June of 1996).
Figure 4. Changes in abundance of kittiwakes (bars) and proportion observed with foraging behaviors (lines) in the three APEX study areas
Figure 5. Distribution of forage fish schools by species in June and July of 1995-1996. The black lines denote the geographic query regions for APEX (northeast-NE, Central-C and southwest-SW).
Figure 6. Distribution of forage fish schools by species in June and July of 1997. The black lines denote the geographic query regions for APEX (northeast-NE, Central-C and southwest-SW)
Figure 7. Distribution of forage fish schools by species in July of 1998-9. More schools are mapped than in previous years due to intensive repeat surveys. The table of fish densities shows truer comparisons. The black lines denote the geographic query regions for APEX (northeast-NE, Central-C and southwest-SW)
Figure 9. Counts of key species sighted in APEX study regions during period 2, $7/8 - 7/14$, and period 3, $7/15 - 7/21$, 1998-1999. In addition to the APEX core regions, the broadscale survey was conducted in southwestern and outside PWS during period 2 both years and in northwestern PWS during period 3 of 1998 and periods 2 and 3 of 1999

Figure 10. Counts of key species sighted in APEX study regions during period 4, 7/22 – 7/28, and period 5, 7/29 - 8/4 during 1998 and 1999. Only the APEX core regions were flown during these periods
Figure 12. Site-specific relationships between aerial and acoustic fish school counts during 1996-97. Good agreement occurred at Simpson Bay (southeastern PWS) and Whale Bay (southwestern), poor agreement at Zaikof Bay (central) and Eaglek Bay (northern)
Figure 13. Spatial variation in depth distribution of juvenile herring in July, 1996 starting from eastern PWS (Pt. Gravina) counter-clockwise to southwestern PWS (Fox Farm), just west of PWS at the eastern edge of the Outer Kenai Penisula (Hogg Bay) then to central PWS (Zaikof)
Figure 14. Spatial variability in age structure at PWS herring nursery sites (mainly bays) in July, 1996
Figure 15. Site-specific temporal variability in PWS juvenile herring depth distribution. 49
Figure 16. Temporal variability in age structure at PWS herring nursery bays
APPENDIX I. Summary of flights conducted from 1995 to 1999 including the lineal distance flown per survey (km), the effective swath width for fish and white sea birds (km), and the effective area surveyed (km ²) by flight file. Keys for the letter codes are listed at the bottom of the table.
APPENDIX II. Net catches and underwater video observations used as species validation for aerial survey data; three catch modes are shown in cases of mixed age samples with the first mode as most predominant age
APPENDIX III. Aerial Survey Database Documentation
APPENDIX IV. Geographic queries provided during the APEX project from the aerial survey database
APPENDIX V. Identifying Seasonal Spatial Scale for the Ecological Analysis of Herring and Other Forage Fish in Prince William Sound, Alaska. Brown, Wang, Vaughan and Norcross

Executive Summary

This study was initiated in support of the Alaska Predator Experiment (APEX) program providing data to answer research questions concerning sea bird production and foraging success. In Prince William Sound (PWS), there was a lack of correlation between acoustic data on forage fish distribution and sea bird foraging patterns. However, a significant correlation was found between aerial survey results and sea bird foraging patterns. The disparity between the two fish data sets (acoustic and aerial) was primarily due to the shallow distribution of the two main forage species in PWS (juvenile Pacific herring, *Clupea pallasi*, and juvenile Pacific sand lance, *Ammodytes hexapterus*). The depth limitation of acoustic data acquisition (shallow water < 10m and surface waters < 5m) excluded many of the fish schools targeted as prey by the sea birds. Consequently, aerial surveys conducted under this project became a key component of the APEX project in PWS.

The main objectives of this study were (1) to document spatial and temporal variability in forage fish abundance and distribution in PWS, (2) to provide other *Exxon Valdez* Oil Spill (EVOS) projects with forage fish, jellyfish, and sea bird distribution data to meet their research objectives, and (3) to synthesize existing data and determine how environmental factors affect forage fish distribution and abundance. The field program consisted of aerial surveys coordinated with ground acoustic surveys, oceanographic surveys, zooplankton tows, other net sampling, and underwater video surveys over a five-year period from 1995-1999. Net catches and video footage was used to validate aerial fish sightings. Although the aerial surveys were originally designed to locate fish schools, other features easily observed from the air were recorded, including sea birds, marine mammals, jellyfish aggregations, and other large fish (e.g. salmon sharks. adult salmon). Methods used are cited or included in this report. Data from the aerial survey database was shared with a diverse array of researchers and has been included in publications on jellyfish, river otters, as well as sea bird foraging dynamics/modeling, sea bird reproduction, and behavior.

A total of 26,532 km² of effective area (incorporates detection correction) was surveyed for fish schools and 91,227 km² for kittiwakes and gulls from 1995-1999. Fish school, jellyfish, seabird abundance and proportion of birds observed foraging (from the air) varied by month, year and species in the three APEX study. During June and July, herring density and abundance peaked in 1996 and was lowest in 1999. The relative proportion of herring observed among regions varied from year to year. Prior to 1999, availability of age-1 herring was due to first year survival and depth distribution with a high in 1996 and a low in 1997. Age-0 recruitment peaked in 1997 and remained low through the end of the study. Sand lance abundance was low in 1995, increased by 1996 and peaked in 1997, recruiting a month early that year. Sand lance abundance remained relatively high through 1999. Capelin were episodically observed in abundance during 1995 and 1999. Eulachon were anomalously prevalent in 1997 following an anecdotally high incidental catch in commercial fishing gillnets outside the Copper River, a known spawning location. Kittiwakes (observed from the air) appeared to increase over the five years period while the proportion of birds observed engaged in foraging behavior declined overall. Weekly variability in fish distribution and abundance observed over a six-week

period in July through early August appeared to be due mainly to variations in temporal staging of age 0 herring and sand lance recruitment. Fish school depth and monthly patterns of depth distribution varied between sites and years. In general, juvenile herring were deeper in May and July, 1997 than May and July, 1996, but shallower in August 1997 vs. August 1996 in all bays except Zaikof. As before, differences in age composition between sites and months did not appear to explain the depth differences observed. Many schools observed from the air were invisible to acoustics and visa versa. This disagreement underscores the need to synthesize both data types to answer the research question concerning availability of forage fish species to birds. Both abundance levels and depth distribution can affect availability.

Oceanic and climatic conditions associated with GOA and APEX regions in PWS varied during the five-year period. The June Bakun upwelling anomalies at Hinchinbrook Entrance indicated stronger downwelling and potentially stronger inflow through PWS from 1995-97 and the opposite in1998. The Aleutian Low Pressure Index (ALPI) anomalies indicated that the atmospheric pressure field driving winds, storms, rainfall, and GOA residual currents were relatively intensified, especially in 1998. The Atmospheric Forcing Index (AFI), based on very similar inputs as the Pacific Decadal Oscillation vacillated near zero during most of the period becoming positive in 1998 mainly in response to the intensified ALPI. The El Niño-Southern Oscillation (ENSO) anomaly was mainly negative but a strong ENSO event occurred in 1997 potentially having a strong impact on temperature and weather patterns. Average zooplankton biomass (from hatchery data) was higher than average in 1995 and 1999, lower from 1996-1998. Peak zooplankton biomass was anomalously low in 1997 coinciding with ENSO; 1998 and 1999 were anomalously high indicating a more intense bloom when it occurred. We expected higher sea surface temperatures (SST) in 1997, but observed them highest at nearshore sites (< 1 km from shore) in 1998 and offshore areas (> 1 km) in 1996. In general, the offshore areas were cooler and less variable than inshore areas and southwestern PWS had the coolest inshore waters. The mean thermocline depth (m) was variable at nearshore sites. The differences between regions were not consistent in relation to one another with no single region standing out as warmer with a deeper or shallower thermocline. However, the two years with the deepest thermocline in the southwest (SW) region were associated with the two years of highest peak zooplankton production at AFK. The deepest thermocline occurred in central PWS in 1996, while the shallowest occurred in 1999.

From the SEA and APEX research, it is highly likely that intraspecific (age 0 and 1 herring) and interspecific (juvenile sand lance, herring, pollock) competition is likely at nearshore nursery zones in PWS affecting growth, survival and distribution patterns observed. Competition is intensified in years of low zooplankton abundance. By combining aerial and acoustic data, it may be possible to examine some of these biological factors. Recruitment of sand lance in 1997, coinciding with the ENSO event, was early (June) and the highest in magnitude recorded over the 5-year period. Peak abundance of age-1 herring in June of 1996 was likely related to above average first-year survival and a shallower depth distribution (compared to 1997). Age-0 herring recruiting in 1996 experienced poor survival (SEA studies) and age-1 abundance the next year was at a three-year low as measured by both aerial and acoustics. It is also possible that herring experienced poor

larval survival in 1998 and 1999. We confirm that the juvenile forms prefer the warmer, shallower regions as predicted by behavioral bioenergetic models of growth maximization in smaller fish.

The primary research objective for this project was a spatially explicit analysis of factors affecting availability of forage fish as prey. Completion of this objective was delayed from the original target date to enable rescaling and rebinning of the 5-yr acoustic data set and to compile the zooplankton data. We will identify factors deterministic in 3-d forage fish distribution out of the compiled set of oceanographic and biological variables. To accomplish this, acoustic data must be combined with aerial data and together synthesized with synoptic environmental data. For the analysis, we will use a two-stage geospatial analysis. The first stage is analysis of horizontal distribution (geographic spread by presence or absence in an array of bins); this distribution likely linked to topographic/bathymetric features, abundance, and predation risk. The second stage is analysis in the vertical direction (density and depth distribution), likely linked to zooplankton density and distribution, hydrographic conditions, and predator risk.

Introduction

This study was initiated to provide information on forage fish distribution, particularly in the upper 20m of the water column, to the Alaska Predator Experiment (APEX) program. Aerial surveys were used to increase spatial and temporal coverage. This information was used to answer research questions concerning sea bird production, foraging success, and jellyfish distribution. In Prince William Sound (PWS), there was a lack of correlation between acoustic data on forage fish distribution and sea bird foraging patterns. However, a significant correlation was found between aerial survey results and sea bird foraging patterns. The disparity between the two fish data sets (acoustic and aerial) was primarily due to the shallow distribution of the two main forage species in PWS (juvenile Pacific herring, *Clupea pallasi*, and juvenile Pacific sand lance, *Ammodytes hexapterus*). The depth limitation of acoustic data acquisition (shallow water < 10m and surface waters < 5m) excluded many of the fish schools targeted as prey by the sea birds. In 1998, aerial surveys became a key field component of the APEX study in PWS.

As in other regions, sea bird productivity in PWS appears to be dependent on the availability and quality of forage fish as prey. Colonies adjacent to the Gulf of Alaska (GOA) appear to rely mainly on adult stages of forage fish while PWS colonies are feeding primarily on juvenile stages. High quality forage prey species include herring, eulachon, capelin and sand lance, all relatively high in lipid as adults. Juveniles are generally lower in energetic content, but may be easier prey for sea birds and therefore more available than adult forms where they occur. From other APEX research it appears that kittiwakes in PWS will select quality (high energy) over quantity and diet is a function of the availability of the preferred species and age-classes (capelin > age-1 herring > age-0 herring > age-0 sand lance). Alcid species, such as puffins and murrelets may prefer and select age-0 herring over age-1s.

This study focused on temporal and spatial variability of schooling, pelagic forage fish species in PWS. In other parts of the world, herring, sardines, anchovy, capelin, and sand lance school in tight aggregations with distinctive shapes and are often found in oceanic surface waters (Mais 1974; Squire 1978; Blaxter and Hunter 1982; Hara 1985; Misund 1993; Carscadden et al. 1994). Many schooling pelagic fish are arranged in shoal or school groups (Cram and Hampton 1976; Fiedler 1978) that are often contiguous in distribution. The visibility of schools from the surface and spatial patchiness of nonrandom shoals affect seabird and marine mammal foraging behavior and success. In standard ship transect surveys, spatial patchiness and discrete school or shoal structure is often ignored. Fish abundance is provided as an integrated density through the water column (i.e. does not represent what the apex foragers see). However, using broadscale remote sensing techniques, such as visual aerial surveys, the sampling unit is a school or shoal and patchiness can be documented. The schooling pelagic species form seasonal aggregations often in the same areas year after year; these areas are unique to a particular population (Templeman 1948; Campbell and Winter 1973; Sinclair 1988; Stocker 1993). Therefore, temporal and spatial life history knowledge is important in designing abundance surveys. Given that PWS forage fish species formed easily identifiable schools and that a priori knowledge on distribution was available, aerial surveys were able to document

seasonal and interannual variation in distribution and abundance of key forage species in PWS, the adjacent Gulf of Alaska (GOA) inner shelf waters, and, to a lesser extent, the Outer Kenai (OK). We were able to survey most of the habitat occupied by the two main forage species and their sea bird predators. Since 1995, aerial surveys have added considerably to the base of knowledge on forage fish in the north central coast of Alaska.

The three main objectives of this study were (1) to document spatial and temporal variability in forage fish abundance and distribution in PWS, (2) to provide other *Exxon Valdez* Oil Spill (EVOS) projects with forage fish, jellyfish, and sea bird distribution data to meet their research objectives, and (3) to synthesize existing data and determine how environmental factors affect forage fish distribution and abundance. The main purpose of this report is: 1) to document the finalized aerial survey information, database, data sharing, and validations (catch and video data), and 2) to provide a preliminary analysis of environmental factors affecting forage fish distribution and abundance.

Objectives

During the first year of this project (FY99), the primary objective listed in the detailed study plan was:

Provide aerial support for the APEX project, deliver the resulting data, and assist APEX researchers in its use and interpretation.

This was addressed by the following tasks:

- 1) Coordinate with sea bird and other researchers from the APEX project to develop field survey plans addressing the overall objectives of APEX.
- 2) Conduct daily repeat surveys over the APEX study area which represents the foraging range of birds from a single; set small catcher and sea bird "chase" skiffs on schools with foraging flocks in order to obtain more detailed observations.
- 3) Over fly the entire APEX study region during times when acoustic vessels are performing surveys to obtain a broadscale data set, which will include nearshore schools invisible to acoustics.
- 4) During broadscale flights, coordinate with other sea bird researchers to enable synoptic measurements of bird distributions from ground surveys and fish/bird distributions from the air.
- 5) Process the data during and after the field season; build into the three-year database of aerial data already in place; obtain a data set of field net-catches.
- 6) Work with modelers and other researchers to deliver the data appropriately, accurately and in a timely manner.

7) Work with APEX projects to finalize annual reports, prepare presentations and complete publications.

The objective and tasks were completed as given except task number 3. We were not able to coordinate the APEX acoustic survey flyovers in 1998 because of ship survey schedule changes. However, the aerial survey flight paths and schedule were planned to minimize the time lapse and maximize the spatial overlap between aerial and acoustic surveys. In 1999, the aerial surveys were scheduled in coordination with acoustic surveys and 100% overlap in space and time was archived.

For the second year of the project (FY00), the following objectives were added in addition to the ones stated above:

- 1. Determine and compare the annual spatial coherence between foraging kittiwakes and surface schools of forage fish.
- 2. Determine how distributions of forage fish in the surface waters co-vary with oceanographic structure and zooplankton concentration.
- 3. Compare the depth distribution of forage fish for the three years and determine how it is affected by and related to ocean conditions and zooplankton concentrations.
- 4. Analyze and publish all significant findings.

These objectives were designed to address the following hypotheses:

Foraging patterns of sea birds are dependent on the occurrence and availability of forage fish in surface waters; and

The occurrence and availability of forage fish in surface waters are dependent on ocean conditions and zooplankton distribution and abundance.

The first objective has been completed and is presented here. The last three objectives were postponed until 2001. Resources originally assigned to these objectives in FY00 were reassigned in order to rescale the SEA and APEX acoustic data with the revised target strengths for these species (Thomas and Kirsch, 1999). The two data sets were also rebinned in order to be comparable for analysis. Previously, the APEX data was integrated through all depths in order to produce estimates of fish biomass by transect and region. In order to analyze 3-d fish distribution, the data needed to be binned by depth. In addition, zooplankton data needed for the analysis is still unavailable, but that situation is being rectified this fall.

Methods

Methodology for the aerial surveys conducted for this project was developed in 1995-1996 and documented beginning in 1997 (Brown and Norcross 1997; Brown and Borstad 1998; Brown 1998; Brown et al., submitted) under the Sound Ecosystem Assessment (SEA) project. Broadscale measurements of forage fish distribution and abundance in PWS, the GOA inner shelf, and the OK were completed for June and July, 1995-1997. In 1995-1996, other months were sampled. A broadscale survey was a single pass over most of the PWS coastline In 1996-7, fine scale and repeat measurements were taken for a subset of herring nursery bays in eastern, northern , southwestern and central PWS in addition to the broadscale survey measurements. For the APEX project, a single broadscale survey was conducted in July, 1998 and 1999. In addition, we conducted daily, repeat surveys (15) over the three APEX study regions in PWS (Northern, Central and Southwest; Figure 1) which represented the foraging range of two Black-legged kittiwake colonies (Shoup Bay and Eleanor) as well as the study sites for APEX and NVP Pigeon Guillemot and APEX Marbled Murrelet projects. A complete flight log of all surveys flown from 1995 to 1999 is listed in Appendix I.

At the start of the APEX field seasons, flight paths were established in the northern, central, and Jackpot APEX study regions (Figure 1). During the survey, the pilot stayed on the established flight path as closely as possible. Both flight path (transect) and features along path were recorded using the DLog program provided by Glen Ford (APEX modeler) A GPS mounted to the dash of the aircraft was connected to a lap top computer and dumped latitude, longitude, and date in 2-second intervals. Time was recorded from the computers internal clock. At the beginning of each flight, header information including weather, water visibility, wind, wind direction, tide stage, wave height and other notes concerning the survey were recorded in the log program. Information or "sightings" such as numbers of fish schools or jellyfish aggregations, species of fish, surface area of schools or jellyfish aggregations, and behavior of birds were recorded on the computer log program.

Validations of sightings, performed by this and cooperating projects, were collated (Appendix II). They included dip net, beach seine, small mesh purse seine, and anchovy seine catches as well as underwater video captures and diver observations. A small number of net captures by small mesh purse seine and anchovy purse seine were guided from the aircraft to be used to validate and correct species assignments. Because of the error in separating age 0 herring and sand lance schools during July (Brown and Norcross 1997; Brown et al. submitted), we realized that we needed to increase the sample size of validated nearshore schools. To address this problem in 1999, a small vessel (30 ft) was chartered to perform video validations. The vessel was outfitted with a front-mounted outrigger pole and pulley system. Then, an underwater sea-cam was mounted at the end of the pole and attached to a digital camera system operated from the vessel. We also used a cable sea-cam that could extend to depths beyond the range of the outrigger pole. In order to obtain validations (species identification) of surface schools, the vessel overlapped the aerial survey in a specified target area on a daily basis and set on schools by the surveyors. In areas where acoustic targets were observed (likely to be fish), the cabled camera was lowered to the appropriate depth and "drifted" through the targets. In this manner, we

obtained over 400 sightings of fish schools (about one half synoptic with the aerial surveys) as compared with 21 net catches over the same time period. Examples of synoptic images are provided in Appendix III. The camera method was cheaper, faster, and provided a higher degree of corrections. Other validations were obtained from other projects sampling fish during the time period of the aerial surveys. In that case, matching validations was a post-processing procedure using GIS and matching date codes. Aerial digital video footage of fish schools, foraging flock configurations, and other features were collected and used in identifying validations and evaluating schools shape. Although there are more questions we can answer with the images in terms of sea bird/forage fish school dynamics on smaller scales, further processing of the images was not covered within the scope of this study. A database of all flight paths and sightings was created and used for data queries and storage (documentation of metadata in Appendix IV). A listing of the queries provided from this data is in Appendix V. Single or double letter codes were developed for fish, bird and mammal species (such as h for herring, sd for sand lance, kw for kittiwakes, hs for harbor seals etc). Bird behavior was recorded as foraging or plunging (pl), resting on water (rw), resting on shore (rs), aggregated tightly on water over school (tw), traveling (tr) or flying in a "broad area search" (bs).

For estimating total school or sea bird density and forage fish abundance available at the surface (not including subsurface fish), the appropriate model is outlined by Quang and Lanctot (1991:

$$\hat{D} = \frac{n\hat{f}(d)}{L}, \ \hat{N} = 2A\hat{D} \text{ or } \hat{N} = \frac{n}{\hat{p}}, \ C = \frac{1}{\hat{p}}$$

where D is density, n is the observed schools or birds, f(d) is the maximum height of the probability density function (f(x)) of distances (x) at distance d from the center of the transect, L is the length of the transect, N is the total number of animals estimated in the area, A is the area sampled, p is the probability of detection and C is the visibility coefficient. Estimates of variance should include estimates of variance for p and surveyor bias (calculated via double counting, Brown and Norcross 1997; Brown et al., in prep). For this study, only one parameter needed to be estimated (f(d)). The estimate of p (0.83) was obtained in an earlier study using independent sampling techniques and is described in a publication in preparation that will appear in the EVOS final report for SEA project 99320T (Brown et al., in prep; also in Brown and Borstad 1998). In order to estimate f(d), we collected angles on a subset of sightings. This was accomplished by marking the strut of the aircraft with a series of graduated marks indicating angle off the wing and collecting the angles by flattening the aircraft (using the gyroscope) and taking a measurement. The angles were converted to distance from transect centerline using simple geometry and the frequency distribution of the distances (x) were plotted (i.e. the f(x)). In this model, a beta curve best represents the probability density function of x and f(d) is obtained from the plot of x. Sampled sizes were sufficient to calculate detection curves for herring and sand lance schools as well as for Black-legged kittiwakes (applicable to any white gull; Figure 2). The probability detection functions resulted in estimates for f(d) at approximately 0.18 at d =

700 m for kittiwakes (n = 1019), 0.31 at d = 600 m for herring (n = 345) and 0.28 at d = 600m for sand lance (n=274). Any expressions of density or numbers of birds or schools should reflect these values in the estimates.

Finally, the analytical deliverable of this project has been postponed until 2001. The main objective of this analysis is to determine what factors affect the availability of surface schooling pelagic fish as prev for seabirds. In preparation, aerial data is combined with acoustic data to provide a sub-surface correction factor for aerial data and a measure of variability in vertical distribution. This will be the first time, to our knowledge, that aerial and acoustic results have been combined to answer this type of ecological question. In addition, spatially and temporally appropriate oceanographic variables are being assembled. We will likely adopt a two-stage approach similar to Maravelias (1999)). The first stage addresses presence of absence answering questions about factors forcing horizontal distribution and geographic spread or abundance. Likely forcing variables are topographic/bathymetric features and variability in recruitment; satellite image data may be used. The second stage quantifies factors affecting the density and depth of schools where they occur. Likely variables include hydrographic data, zooplankton density and distribution, predator fields/risk, We will use spatially-explicit non-linear models (e.g. generalized additive modeling and pursuit regressions) to identify the key forcing factors in both horizontal and vertical distribution. The original completion data was moved forward in order to incorporate efforts from the NOAA fish investigators, reformulate acoustic data, and allow more time for compilation of biological oceanographic data. Acoustic data collected by both the SEA and APEX projects prior to 1999 was scaled improperly. A supplemental fund was provided to this project to complete the rescaling of all surveys collected from 1995-98. In addition, APEX data was reprocessed and binned to enable comparisons with the SEA data. The combined SEA/APEX acoustic data will be incorporated into a single database. Raw data files were assembled and edited by Brown and Moreland; while the algorithms to re scale the data were developed by Dr. Ken Coyle (UAF) according to Thomas and Kirsch (1999). The rescaling was completed in November, 2000. The compilation of appropriate hydrographic data included all ctd casts from APEX and SEA, NOAA buoy data, and other data from the IMS database from the period 1995-99 in PWS. All of this data has been complied on a single PWS oceanographic database to facilitate analysis. Satellite data composites will be used to determine variability in scale of ocean features. Zooplankton data is still required, but not yet fully available. A publication will be produced as a co-authored effort of all those who participate in data sharing or analysis.

Results and Discussion

Based on sea bird diets, the main pelagic prey species in PWS include Pacific herring, sand lance (*Ammodytes hexapterus*), capelin (*Mallotus villosus*), eulachon (*Thaleichthys pacificus*) and other unidentified smelt juvenile pollock (*Theragra chalcogramma*), Pacific cod (*Gadus macrocephalus*), juvenile salmon (*Onchorynchus sp.*), and macroinvertebrates (Kuletz et al. 1997; Irons et al. 1999). The first four species listed

formed distinct schools in PWS surface waters during the summer, peaking in June and July. Capelin and eulachon were visible for a narrow window of time, generally in June, corresponding to pre-spawning aggregations or post-spawning feeding aggregations. By July, capelin and eulachon schools were either diffuse, in deep water or both and became invisible to aerial spotters (E.Brown, unpublished data; reflected in APEX catches, Haldorson et al. 1996). Distinct foraging patterns of birds (categorized as Type II flocks; Maniscalco and Ostrand, 1997) visible from aircraft appear to form over post-spawn adult capelin (E. Brown, unpublished data; Maniscalco and Ostrand, 1997). The vast majority of fish schools sighted from the air consisted of the two main forage species, juvenile herring and sand lance. Capelin was the third most common fish species recorded, as either schools or distinct avian forging pattern with validated net captures. These results are summarized here.

A total of 26,532 km² of effective area (incorporates detection correction) was surveyed for fish schools and 91,227 km² for kittiwakes and gulls over the five year period (Table 1). The average area covered varied from year to year, month to month, and by each APEX area. In order to produce a density and index of abundance estimates for fish, a mean area or expansion factor by month/year strata was calculated over all periods for the Northeast (450 km²), Central (210) and Southwest (250). Average densities were not estimated for kittiwakes.

Fish school, jellyfish, seabird abundance and proportion of birds observed foraging (from the air) varied by month, year and species in the three APEX study regions (Table 2). The boundaries for the queries are shown in Figure 5. During June and July (most commonly surveyed months), herring density and abundance peaked in 1996 (note the northeast area bars are over the scale) and was lowest in 1999 (Figure 3). The relative proportion of herring observed among regions varied from year to year. Prior to 1999, availability of age-1 herring was due to first year survival and depth distribution with a high in 1996 and a low in 1997. Age-0 recruitment peaked in 1997 and remained low through the end of the study. Sand lance abundance was low in 1995, increased by 1996 and peaked in 1997 (recruiting a month early). Sand lance abundance remained relatively high through 1999. The recruitment to the northeast in 1997 was particularly noteworthy. Capelin were episodically observed in abundance during 1995 and 1999. Eulachon were anomalously prevalent in 1997 following an anecdotally high incidental catch in commercial fishing gillnets outside the Copper River, a known spawning location. Kittiwakes (Figure 4) appeared to increase in the numbers observed from the air, but we observed a decline in the proportion of birds engaged in foraging behavior. This may have reflected the decline of juvenile herring availability. The variability in spatial distributions of the fish are illustrated in Figures 5-7 for June and July, 1995-97 and July only, 1998-9. The occurrence of higher herring abundance in June of 1996, over 1995 and 1997, is apparent. Capelin and eulachon formed observable surface schools in June mainly near the entrance and exits of PWS to the adjacent GOA. The massive increase in sand lance from 1996 to 1999 is apparent in all sectors queried, but particularly in central, south central and eastern PWS. All four species of forage fish appear to occur in some areas all years; geographic spread accompanies increases in abundance from these distribution centers. We will characterize these centers of distribution in the geospatial analysis.

Within a six-week period (July 1 to August 8), there was a high degree of weekly variability in distribution and abundance of surface fish schools as well as bird foraging patterns during and between both years (1998-9; Figures 8-11). During the entire interval, there was a high degree of coherence between seabird (kittiwakes and alcids) foraging aggregations and locations of fish schools. Both age-0 sand lance and herring were recruiting to nearshore nursery beaches or bays during this period and therefore, this variability is expected. In both years, herring recruited first to eastern and northern PWS, than to southwestern portion; this timing agrees with the predicted timing of spatial recruitment from a larval drift model for PWS (Norcross et al., in prep). By period 4, herring likely adopt a deeper or more variable distribution as fewer surface schools were observed. This decrease in surface herring schools may be related to the decrease on proportion of foraging kittiwakes observed by August both years (Figure 4). A query of aerial data, within the core and expanded search area for the Shoup Bay kittiwake colony, revealed similar trends in timing. Herring generally peaked in availability during the first two weeks of the period in both the core and expanded areas (Tables 3 and 4) while sand lance peaked in period three. The differences in forage fish densities over the two scales (core vs. expanded) were not significant. Capelin peaked in period four for both years. Although herring abundance over all study areas was lowest in 1999, abundance in the northeast foraging area of the Shoup Bay colony was higher in 1999 than 1998.

Variability in depth distribution likely plays a major role in forage fish availability to sea birds. Aerial counts were compared with synoptic acoustic survey results in four herring nursery bays (SEA data; Figure 12). In general, there was good agreement at two sites (southeastern and southwestern PWS) and poor agreement at the other two (central and northern PWS). The disagreement could not be explained entirely by differences in age structure or month of observation, but the sample sizes may have been too small to identify the causal factor. The broadscale acoustic survey in July, 1996 (SEA) revealed a high degree of variability in both mean depth site-specific variance (Figure 13; Table 5). Three of the six sites with deepest mean distribution patterns were also sites dominated by adult herring (Figure 14); however, the other three were dominated by age 1 or 0 herring and therefore other factors were involved. Temporal variability in depth was observed at the four SEA herring nursery sites (Figure 15; Table 6). Variability in depth and monthly patterns of depth distribution varied between sites and years. In general, juvenile herring were deeper in May and July of 1997 than May and July of 1996, but shallower in August 1997 vs. August 1996 in all bays except Zaikof. As before, differences in age composition between sites and months did not appear to explain the depth differences observed (Figure 16). These mean depths may change as aerial survey is combined with acoustic data; many schools observed from the air were invisible to acoustics and visa versa. This disagreement in the two data sources underscores the need to collect both data types simultaneously in order to answer questions concerning availability of forage fish species to birds. It is clear that both abundance levels and depth distribution can affect availability. This is the same conclusion reached by Cram and Hampton (1976) but rarely have the two survey types been used together. We will attempt the sort out factors forcing variability in depth distribution in the geospatial analysis of the data.

Oceanic and climatic conditions associated with GOA or PWS, as a whole, varied during the five-year period. Within PWS, some regional differences were evident in the temperature profiles as well. The June Bakun upwelling anomaly at Hinchinbrook entrance was very low in 1995, increasingly less so through 1997, then very high in 1998. The ramifications are stronger downwelling and potentially stronger inflow through PWS during the negative phase and the opposite during the positive. The Aleutian Low Pressure Index (ALPI; Beamish et al. 1999) anomaly was mainly in a positive phase during the fiveyear period with a high in 1998 and a minimum in 1999. This indicates that the atmospheric pressure field driving winds, storms, rainfall, and GOA residual currents was relatively intensified, especially in 1998. The Atmospheric Forcing Index (AFI; Beamish et al. 1999), based on very similar inputs as the Pacific Decadal Oscillation (Mantua et al. 1997), vacillated near zero during most of the period becoming positive in 1998 mainly in response to the intensified ALPI. The El Niño-Southern Oscillation (ENSO) anomaly was mainly negative but a strong ENSO event occurred in 1997 potentially having a strong impact on temperature and weather patterns. The average zooplankton production anomaly, measured at the Armin F. Koernig (AFK) hatchery facility and located in southwestern PWS, represents average zooplankton biomass over the April copepod bloom. This is key for herring since the larvae feed on copepod eggs and the adult copepods are very high quality prey for juvenile fish. It was positive in 1995, negative from 1996-1998, then positive in 1999 indicating higher than average or lower than average copepod production. However, the peak zooplankton biomass (the magnitude of the bloom at its peak) was anomalously low in 1997 coinciding with ENSO; 1998 and 1999 were anomalously high indicating a more intense bloom when it occurred. Zooplankton were sampled at herring and sand lance nursery sites during the SEA and APEX project, they were unavailable at the time this summary was prepared.

We examined average water temperatures during July in PWS both offshore (> 1km from shore) and inshore (< 1 km from shore; Table 8). We expected to find higher than average sea surface water temperatures (SST) in 1997, but this was not evident. At nearshore sites, 1998 has the highest SSTs measured. At the offshore areas, 1996 had higher SSTs at all sites than other years. In general, the offshore areas were cooler and less variable than inshore areas and southwestern PWS had the coolest inshore waters. The mean thermocline depth (m), estimated as the depth where 90% of the temperature change occurred between 0 and 50 m, was variable at nearshore sites. The differences between regions were not consistent in relation to one another with no single region standing out as warmer with a deeper or shallower thermocline. However, it is interesting to note that two years with the deepest thermocline in the southwest (SW) region were associated with the two years of highest peak zooplankton production at AFK. The deepest thermocline occurred in central PWS in 1996, while the shallowest occurred in northeast PWS in 1999.

Understanding key life history events is a pre-requisite for investigating the effects of oceanic conditions on distribution and abundance of juvenile sand lance and herring. Biotic factors such as competition can alter distribution, food availability, and the response to a given set of ocean parameters thereby complicating the interpretation of causal factors. Variation in monthly distribution is mainly a function of recruiting events during the juvenile life stages. In June and early July, age-1 herring dominate the nursery bays and in

some cases share these habitats with the highly mobile and migratory adult herring. Based on the literature (Crowder and Magnuson, 1983; Ware 1985; Hughes and Grand, 2000), age-1 herring distribution is very likely affected by the presence of older herring and competition may limit age-1 growth in areas with high overlap. By late June to mid July, age-0 sand lance go through metamorphosis, begin schooling and recruit to mainly gravel or sand beaches where they bury themselves when not feeding. In late July and early August, age-0 herring also metamorphose and begin schooling. They show up in many of the same nursery bays already occupied by age-1 herring but recruitment is spatially variable. Although no cannibalism was observed during the SEA years, there was evidence of density-dependence with the lowest age-0 growth rate observed in the bay with the highest overall juvenile herring abundance (Stokesbury et al. 1999a). In addition, there is some overlap between age-0 herring and age-0 sand lance; where this occurs, it is expected that they compete as evidenced by APEX diet studies (Sturdevant et al. 2000a and b). Finally, juvenile pollock occurred in many of the same bays used by juvenile herring. Diet overlap between the two species is high and it is very possible that competition as well as piscivory limits herring growth and survival; therefore, quality of and availability as prey for sea birds is also affected (Sturdevant et al. 2000a).

It is clear that many variables, biotic and abiotic, affect distribution of the juvenile fish. Some factors are likely deterministic during the larval drift stage of the two species. Others are deterministic once the fish are in place at their nursery sites. Factors affecting herring may be different from those affecting sand lance. The regional variability will be better defined after completion of the spatial analysis is completed. However, a few interesting observations are mentioned. Recruitment of sand lance in 1997, coinciding with the ENSO event, was early (June) and the highest in magnitude recorded over the 5-year period. Peak abundance of age-1 herring in June of 1996 was likely related to above average first-year survival and a shallower depth distribution (compared to 1997). Age-0 herring recruiting in 1996 experienced poor survival (SEA studies) and age-1 abundance the next year was at a three-year low as measured by both aerial and acoustics. It is possible that interspecific competition occurred between sand lance, herring and pollock, especially in years of poor zooplankton production. It is also possible that herring experienced poor larval survival in 1998 and 1999. We confirm that the juveniles forms prefer the warmer, shallower regions as predicted by behavioral bioenergetic models of growth maximization in smaller fish (Neill, 1979; Ware, 1985; Crowder and Magnuson, 1983).

For the analysis of forage fish distribution, we will use all available site-specific hydrographic data binned at a finer spatial scale to sort out the effect of environmental variability on distribution of fish. In the horizontal direction, there are likely "centers" of distribution that have consistently high habitat quality and fish distribution radiates from those points as abundance increases; topographical/bathymetric features and associated predation risk may dictate the locations of these regions. In the vertical direction (at a given site), zooplankton density and distribution, hydrographic characteristics, and associated predation risk are the likely factors forcing forage fish density and distribution. The quantitative spatial analysis planned for 2001 should answer many of these questions and synthesizes much of the fish distribution and oceanographic data collected by both the APEX and SEA programs.

Conclusions

In summary, using aerial surveys we were able to capture much of the spatial and temporal variability that affect observed sea bird foraging patterns and success. We were also able to document counting error and apply that to estimates of fish density and abundance. We were able to observe the two main forage fish species in PWS, juvenile Pacific herring and sand lance, over the entire period critical to sea bird reproduction. Herring have declined in abundance over the five-year study period while sand lance have increased. Occurrences of capelin and eulachon were more episodic. The weekly variability observed in fish distribution over the sea bird breeding period was largely dictated by spatial and temporal patterns of age 0 recruitment to nearshore nursery zones. The juvenile herring and sand lance tended to occupy warm, shallow, plankton-rich waters and were not mixed with adult forms to any degree. The aerial data was valuable in answering many "top-down" questions concerning sea birds and forage fish. However, since fish availability as prey is dictated by both fish abundance and vertical distribution of schools, we must combine acoustic with aerial survey results to answer "bottom up" questions. It is likely that forage fish distribution is dictated by both abundance (horizontal distribution) and environmental conditions (depth and density). We will adopt a two-stage analytical approach to examine fish distribution in the horizontal direction (stage one), the vertical direction (stage two) in 2001.

Acknowledgements

We would like to acknowledge Glen Ford, Bruce Wright, David Irons, Kathy Kuletz, and Bill Ostrand (all associated with APEX) for initiating and supporting this project within APEX. We thank the advance planning and field support supplied by the kittiwake radiotag team (Rob Suryan and Max Kaufman in particular), by the murrelet team (Kathy Kulitz and Joe Meaham), the guillemot team (Greg Golet in particular), and the NOAA fish crew (John Thedinga and Lee Hulbert). We would like to acknowledge the efforts of our commercial fishing vessel charters (John Herslieb of the F/V Pagan and Torie Baker, the F/V Lucky) whos' expertise made net captures and UW filming easy and the field season enjoyable. We would like to thank Lew Haldorson and Tom Shirley of UAF in Juneau for sharing data with us and for their expert knowledge. We thank George Rose and Bob Spies, EVOS scientific reviewers, for their continued support of the aerial survey technique. We appreciated the excellent field housing provided by Steve Ranney of the Orca Cannery and Lodge. Finally, we would like to thank Tim Veenstra, our pilot for maintaining a top-rate air charter and providing expert technical support with flight path planning, spotting, electronics and digital video.

Literature Cited

- Beamish, R.J., D.J. Noakes, G.A. MacFarlane, L. Klyashtorin, V.V. Ivanov, and V. Kurashov. 1999. The regime concept and natural trends in the production of Pacific salmon. Canadian Journal of Fisheries and Aquatic Science 56: 516-526
- Brown, E.D. and B.L. Norcross. 1997. Assessment of forage fish distribution and abundance using aerial surveys: survey design and methodology, Appendix I, Chapter 11 in 11 *in* Cooney, R.T. 1997. Sound Ecosystem Assessment (SEA) an integrated science plan for the restoration of injured species in Prince William
- Brown, E.D. and G.A. Borstad. 1998. Progress Report on Aerial Survey Development Appendix III, Chapter 10 in Cooney, R.T. 1997. Sound Ecosystem Assessment (SEA) – an integrated science plan for the restoration of injured species in Prince William Sound. FY96 Annual Report for the Exxon Valdez Trustee Council, Anchorage, Alaska. Pages 80-97.
- Brown, E.D. 1998. Preliminary documentation of temporal and spatial variability of Pacific herring, other forage fish, and seabirds in Prince William Sound, Alaska, Appendix II, Chapter 10 in Cooney, R.T. 1997. Sound Ecosystem Assessment (SEA) – an integrated science plan for the restoration of injured species in Prince William Sound. FY96 Annual Report for the Exxon Valdez Trustee Council, Anchorage, Alaska. Pages 44-79.
- Brown, E.D., G.A. Borstad, S.M. Moreland, and B.L Norcross. Submitted. Assessment of forage fish distribution and abundance using aerial surveys: survey design, methodology, and error. Ecological Applications 0:00.
- Blaxter, J.H.S., and J.R. Hunter. 1982. The biology of clupeoid fishes. Adv. Mar. Biol. 20: 1-223.
- Carscadden, J., B. Nakashima, and D.S. Miller. 1994. An evaluation of trends in abundance of capelin (Mallotus villosus) from acoustics, aerial surveys and catch rates in NAFO Division 3L, 1982-89. J. Northw. Atl. Fish. Sci. 17: 45-57.
- Campbell, J.S., and G.H. Winter. 1973. Some biological characteristics of capelin, *Mallotus villosus*, in the Newfoundland area. ICNAF Redb. 1973 (III): 137-144 (also ICNAF Res. Doc. 73/90, Ser. No. 3048).
- Cram, D.L., and I. Hampton. 1976. A proposed aerial/acoustic strategy for pelagic fish stock assessment. J. Const. Int. Explor. Mer. 37(1): 91-97.
- Crowder, L.B. and. J. J. Magnuson. 1983. Cost-benefit analysis of temperature and food resource use: a synthesis with examples from the fishes *In* W. P. A. a. S. I. Lurrick (eds) Behavioral Energetics: 189-221. Ohio State University Press. Columbus, Ohio.

- Fiedler, P.C. 1978. The precision of simulated transect surveys of northern anchovy, *Engraulis mordax*, school groups. Fish. Bull., U.S. 76(3): 679-685.
- Hara, I. 1985. Shape and size of Japanese sardine school in the waters off the southeastern Hokkaido on the basis of acoustic and aerial surveys. Bull. Jap. Soc. Sci. Fish. 51(1): 41-46.
- Haldorson, L., T. Shirley, K. Coyle and R. Thorne. 1996. APEX: Forage species studies in Prince William Sound, Project 163A-1996 Annual Report. Report to the EVOS TC, April 1996, Anchorage, Alaska. 93 pp.
- Hughes, F..N. and T.C. Grand. 2000. Physiological ecology meets the ideal free distribution: predicting the distribution of size-structured fish populations across temperature gradients. Environ. Biol. Fish. 59: 285-298.
- Irons, D.B., R.M. Suryan, J. Benson, M. Kaufman. 1999. Kittiwakes as indicators of forage fish availability *in* Duffy, D.C. (compiler), Restoration Project 98163 Annual Report, *Exxon Valdez* Oil Spill Trustee Council, Anchorage, AK: 88-95.
- Kuletz, K.J., D.Irons, J.F. Piatt, B. Agler and D.C. Duffy. 1997. Long-term changes in populations and diets of piscivorous birds and mammals in Prince William Sound, Alaska. Proceedings, Forage Fishes in Marine Ecosystems. Alaska Sea Grant College Program, University of Alaska Fairbanks, AK-SG-97-01: 703-706.
- Maniscalco, J.M. and W.D. Ostrand. 1997. Seabird behaviors at forage fish schools in Prince William Sound, Alaska *in* Forage Fishes in Marine Ecosystems. Proceedings of the International Symposium on the Role of Forage Fishes in Marine Ecosystems. Alaska Sea Grant College Program Report No. 97-01: 175-189
- Mais, K.F. 1974. Pelagic fish surveys in the California Current. Calif. Dept. Fish Game, Fish. Bull. 162:1-79.
- Mantua, N.J. and S.R. Hare, Y. Zhang, J.M. Wallace and R.C. Francis. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. American Meteorological Society 78 1069-1079
- Maravelias, C.D. 1999. Habitat selection and clustering of a pelagic fish: effects of topography and bathymetry on species dynamics. Can. J. Fish. Aquat. Sci. 56 (1999): 437-450
- Misund, O.A. 1993. Abundance estimation of fish schools based on a relationship between shcool area and school biomass. Aquat. Living Resour. 6:235-241.

- Neill, W.H. 1979. Mechanisms of fish distribution in heterothermal environments. Amer. Zool. 19: 305-18.
- Norcross, B.L., M.Jin, C.N.K. Mooers, S.L. Vaughan, and J. Wang. in prep. Initial results of a circulation model applied to dispersal of larval Pacific herring in Prince William Sound, Alaska. Alaska Fishery Reserach Bulletin 00 (00): 00
- Quang, P.X. and R.B. Lanctot. 1991. A line transect model for aerial surveys. Biometrics 47: 1089-1102.
- Sinclair, M. 1988. Marine Populations. An Essay on Population Regulation and Speciation. Washington Sea Grant, Seattle WA. 252 pp.
- Squire, J.L., Jr. 1978. Northern anchovy school shapes as related to problems in school size estimation. Fish. Bull., U.S. 76(2): 443-448.
- Stocker, M. 1993. Recent management of the British Columbia herring fishery, p. 267-293. In L.S. Parsons and W.H. Lear [eds.] Perspectives on Canadian marine fisheries management. Can.Bull.Fish.Aquat.Sci. 226.
- Stokesbury, K. D. E, R.J. Foy, and B.L. Norcorss. 1999a. Spatial and temporal variability in juvenile Pacific herring, *Clupea pallasi*, growth in Prince William Sound, Alaska. Environmental Biology of Fishes 56 408-418
- Stokesbury, K. D. E, J. Kirsch, E.D. Brown, G.L. Thomas, and B.L. Norcross. 1999b. Spatial distributions of Pacific herring, *Clupea pallasi*, and walleye pollock, *Theragra chalcogramma*, in Prince William Sound, Alaska. Fish. Bull. 98 400-409
- Sturdevant, M.V., A. L. J. Brase, and L. B. Hulbert. 2000. Feeding, prey fields and potential competition of young-of-the-year walleye pollock (*Theragra chalcogramma*) and Pacific herring (*Clupea pallasi*) in Prince William Sound, Alaska, 1994-95. Fish. Bull. (00): 00
- Sturdevant, M.V., and L. B. Hulbert. 2000. Diet overlap, prey fields, prey selection, and potential food competition among allopatric and sympatric forage fish species in Prince William Sound: juvenile Pacific herring, Pacific sandlance and pink salmon. Mar. Ecol. Prog. Ser. 00 00
- Templeman, W. 1948. The life history of the capelin (*Mallotus villosus*) in Newfoundland waters. Res. Bull. Newfoundland Govt. Lab. No. 17, p. 1-151.
- Thomas, G.L. and J. Kirsch. 1999. *Ex-situ* measurements of Pacific herring *Clupea harengus pallis* target strength; A note on the target strength of juvenile Pacific

sand lance, *Ammodytes hexapterus*. Report to NOAA, NMFS, Auke Bay Lab, Juneau under Contract No. #52abnf800084. 24 pp.

Ware, D.M. 1985. Bioenergetics of a pelagic fish: theoretical change in swimming speed and ration with body size. J. Fish. Res. Bd. Can. 35: 220-228

		April-May		Jun	e			July			August		Totals
Total Effective km ² Flown Fish	Northeast	Central	Southwest	Northeast	Central	Southwest	Northeast	Central	Southwest	Northeast	Central	Southwest	
1995	314.12	193.97	142.14	314.12	193.97	142.14	584.60	213.40	242.86	542.81	202.37	240.63	3,327.13
1996	414.59	169.10	275.91	310.67	99.25	80.88	454.59	248.29	580.87	89.09	155.22	78.05	2,956.51
1997				593.39	279.30	321.80	644.66	395.60	480.81				2,715.56
1998							2,934.28	2,949.86	387.60	1,113.13	657.57	91.18	8,133.62
1999							2,586.04	1,917.70	517.45	822.02	47.43	39.37	5,930.01
Average	364.36	181.54	209.03	406.06	190.84	181.60	561.28	285.76	434.85	315.95	178.79	159.34	3,469.40
Totals	1,093.07	544.62	627.08	1,624.24	763.36	726.42	7,765.45	6,010.61	2,644.44	2,883.00	1,241.37	608.57	26,532.22
Expansion Factors	450	210	250										
Total Effective km ² Flown Birds													
1995	982.26	606.55	444.46	982.26	606.55	444.46	1,828.04	667.30	759.42	1,697.36	632.79	752.45	10,403.89
1996	1,296.42	528.79	862.78	971.45	310.34	252.92	1,421.49	776.39	1,816.37	278.58	485.36	244.07	9,244.95
1997				1,855.53	873.38	1,006.25	2,015.83	1,237.03	1,503.49				8,491.52
1998							9,175.46	9,224.17	1,212.03	3,480.74	2,056.21	285.12	25,433.73
1999							8,086.50	5,996.63	1,618.06	4,066.15	24.57	78.18	19,870.10
Average	1,139.34	567.67	653.62	1,269.75	596.76	567.87	4,505.46	3,580.30	1,381.87	2,380.71	799.73	339.95	17,783.04
Totals	3,418.02	1,703.01	1,960.86	5,078.99	2,387.03	2,271.50	27,032.79	21,481.82	8,291.24	11,903.54	3,998.67	1,699.77	91,227.23

Table 1. Summary of area flown (km²) within each of the three APEX regions for each month and year strata.

Table 2. Summary of key fish, bird and invertebrate species observed by month and year. Total abundance estimates were expanded by the average area covered by aerial surveys in a given region (not the total area within the region).

		1995				1996				19	1997 199		98 1999		99	
Species	Index	Area	Мау	June	July	August	Мау	June	July	August	June	July	July	August	July	August
Herring	Density by Surface Area	Northeast	0.00	7.10	3.02	15.15	85.06	28.10	10.52	3.40	2.11	6.78	1.83	1.27	5.34	4.95
	(total m ² SA/km ² flown)	Central	0.85	7.11	3.44	8.74	35.60	37.99	2.32	9.07	2.16	7.62	2.69	15.91	4.72	0.52
		Southwest	1.16	18.21	19.26	0.00	21.57	57.92	13.79	6.32	4.06	1.57	26.56	0.39	3.61	1.99
	Density by No. Schools	Northeast	0.00	0.17	0.10	0.30	0.69	0.82	0.25	0.21	0.09	0.45	0.07	0.07	0.41	0.30
	(no. schools/km ² flown)	Central	0.01	0.18	0.09	0.10	0.15	0.33	0.78	0.50	0.04	0.21	0.09	0.47	0.22	0.02
	. , ,	Southwest	0.01	0.47	0.51	0.00	0.14	1.25	0.33	0.27	0.09	0.08	0.43	0.01	0.08	0.05
	Index of Abundance**	Northeast	0.00	3196.84	1356.90	6818.15	38276.75	12647.14	4733.69	1527.96	949.20	3052.25	824.79	569.51	2404.71	2225.94
	(total SA schools m ²)	Central	178.15	1492.61	723.09	1835.50	7475.41	7978.09	487.19	1903.98	454.03	1600.27	565.70	3340.61	991.15	108.80
		Southwest	289.43	4552.90	4815.82	0.00	5391.41	14480.38	3447.11	1580.16	1015.21	392.49	6639.09	97.99	901.51	496.47
Sand	Density by Surface Area*	Northeast	0.00	0.00	0.00	0.00	0.00	0.00	3.09	10.03	2.19	23.74	1.41	0.65	5.12	12.09
lance		Central	0.00	0.00	0.00	0.00	0.00	0.00	4.82	11.22	6.98	11.87	19.15	13.22	10.50	12.50
		Southwest	0.00	0.00	0.00	0.00	0.00	0.00	2.06	2.38	2.99	4.09	23.68	13.30	4.22	12.18
	Density by No. Schools	Northeast	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03	0.09	0.55	0.05	0.01	0.40	0.66
		Central	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.17	0.20	0.25	0.28	0.27	0.28	0.06
		Southwest	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.05	0.06	0.11	0.20	0.33	0.12	0.20
	Index of Abundance**	Northeast	0.00	0.00	0.00	0.00	0.00	0.00	1391.71	4513.25	984.21	10684.74	635.45	294.69	2302.91	5439.63
		Central	0.00	0.00	0.00	0.00	0.00	0.00	1012.05	2355.31	1466.22	2493.21	4020.49	2776.21	2205.35	2624.31
		Southwest	0.00	0.00	0.00	0.00	0.00	0.00	514.99	595.76	746.80	1021.79	5919.18	3324.71	1055.64	3045.00
Capelin	Density by Surface Area*	Northeast	0.00	4.00	0.00	1.09	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.00
		Central	0.00	0.00	1.13	0.55	0.00	0.00	0.00	0.00	0.00	0.02	0.17	0.00	1.66	0.00
		Southwest	0.00	5.10	0.00	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	35.96	0.00
	Density by No. Schools	Northeast	0.00	0.04	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Central	0.00	0.00	0.04	0.02	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.03	0.00
		Southwest	0.00	0.11	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.00
	Index of Abundance**	Northeast	0.00	1799.21	0.00	489.04	0.00	0.00	0.00	0.00	0.00	0.00	25.76	0.00	0.00	0.00
		Central	0.00	0.00	236.53	115.16	0.00	0.00	0.00	0.00	0.00	3.56	35.04	0.00	347.68	0.00
		Southwest	0.00	1274.09	0.00	35.72	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8990.81	0.00

				19	95			1996			19	97	199	8	19	99
Species	Index	Area	Мау	June	July	August	Мау	June	July	August	June	July	July	August	July	August
Eulachon	Density by Surface Area*	Northeast	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.47	0.00	0.28	0.00	0.00	0.00
		Central	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	35.15	0.75	0.00	0.00	0.05	0.00
		Southwest	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	27.94	0.00	0.00	0.00	1.19	0.00
	Density by No. Schools	Northeast	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00
		Central	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00	0.00
		Southwest	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.00	0.00	0.00	0.02	0.00
	Index of Abundance**	Northeast	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2912.54	0.00	126.75	0.00	0.00	0.00
		Central	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7380.53	158.11	0.00	0.00	10.19	0.00
		Southwest	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6986.18	0.00	0.00	0.00	297.87	0.00
Unknown	Density by Surface Area*	Northeast	0.00	0.22	0.14	1.61	0.00	0.00	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FF		Central	0.00	0.12	2.67	4.02	0.00	0.00	0.16	0.00	0.00	1.49	0.00	0.00	0.00	0.00
		Southwest	0.00	0.06	0.23	0.07	0.05	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Density by No. Schools	Northeast	0.00	0.01	0.01	0.05	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Central	0.00	0.01	0.02	0.07	0.00	0.00	0.01	0.00	0.00	0.05	0.00	0.00	0.00	0.00
		Southwest	0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Index of Abundance**	Northeast	0.00	100.27	63.62	725.43	0.00	0.00	49.53	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Central	0.00	24.38	561.26	843.59	0.00	0.00	32.75	0.00	0.00	312.26	0.00	0.00	0.00	0.00
		Southwest	0.00	13.82	57.49	18.17	13.06	0.00	16.66	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jellyfish	Density by Surface Area*	Northeast	0.00	0.00	3.03	3.39	0.00	0.00	0.00	0.00	0.00	0.00	5.13	0.08	7.65	2.00
		Central	0.00	0.00	0.21	0.69	0.00	0.00	0.00	0.00	0.00	0.00	2.99	3.35	0.78	0.00
		Southwest	0.00	0.00	0.85	2.30	0.00	0.00	0.00	0.00	0.00	0.00	23.57	0.00	2.84	0.00
	Density by No. Schools	Northeast	0.00	0.00	0.10	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.09	0.02
		Central	0.00	0.00	0.02	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.03	0.01	0.00
		Southwest	0.00	0.00	0.06	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.46	0.00	0.05	0.00
	Index of Abundance**	Northeast	0.00	0.00	1364.68	1524.39	0.00	0.00	0.00	0.00	0.00	0.00	2310.50	37.63	3440.93	901.24
		Central	0.00	0.00	43.96	144.49	0.00	0.00	0.00	0.00	0.00	0.00	628.25	703.64	163.43	0.00
		Southwest	0.00	0.00	211.55	573.88	0.00	0.00	0.00	0.00	0.00	0.00	5891.88	0.00	709.41	0.00

				19	95			1996				1997		1998		1999	
Species	Index	Area	Мау	June	July	August	Мау	June	July	August	June	July	July	August	July	August	
Kitti-	Total Observed	Northeast	0	1101	1616	13942	1063	570	997	627	7089	1929	16317	4923	19488	5671	
wakes		Central	80	251	561	767	369	398	521	1685	867	2079	13458	5647	22605	819	
		Southwest	0	21693	576	324	1739	172	989	13	696	395	2061	236	20302	48	
	Total Foraging	Northeast	0	593	1077	11618	638	461	814	167	3630	1334	5381	244	8922	2274	
		Central	40	207	440	730	302	360	409	0	653	1398	6428	750	12880	603	
		Southwest	0	8397	464	281	1175	172	853	13	408	263	1541	76	10671	18	
Glacous-	Total Observed	Northeast	0	48	3177	1501	326	0	1561	25	1506	3	94	49	730	88	
Winged		Central	20	4	70	40	0	0	1	0	0	0	0	5	467	2	
		Southwest	0	1	20	0	5	0	6	0	0	0	0	0	85	1	
	Total Foraging	Northeast	0	26	1324	0	285	0	937	0	602	3	6	0	216	25	
		Central	20	2	23	0	0	0	1	0	0	0	0	0	254	1	
		Southwest	0	0	20	0	0	0	0	0	0	0	0	0	65	0	
Unknown	Total Observed	Northeast	0	60	413	568	129	0	337	134	35	14	460	198	930	110	
Gulls		Central	505	19	565	60	2	15	459	1438	56	7	366	1312	1825	0	
		Southwest	0	158	134	52	13	0	283	102	0	14	0	0	300	25	
	Total Foraging	Northeast	0	23	283	426	60	0	267	80	16	9	43	22	85	0	
		Central	135	8	391	45	2	0	355	664	28	7	52	195	0	0	
		Southwest	0	123	34	17	0	0	222	77	0	0	0	0	0	0	
Alcids	Total Observed	Northeast	0	20	0	38	1208	0	231	5	91	3	2105	602	1090	470	
		Central	5	0	0	28	190	0	65	0	0	5	489	399	1918	0	
		Southwest	0	30	0	0	87	0	59	15	2	12	5	58	1487	0	

** Expansions to abundance index based in Average km² flown per Area of NE, 450; C, 210, and SW, 250

Table 3. Weekly and interannual variability in forage fish surface school density within the core kittiwake foraging area in the northeast; estimates are corrected for sightability error; missing data is denoted by NS for no survey.

Core Ar	ea Estimates:								
Herring:	: Error = +/	- 12.0%				Error =	+/- 15.2%		
Der	nsity by Numbers o	of Schools (#	[‡] /km^2)		Density	by School Su	rface Area (m'	^2/km^2)	
Period	1996	1997	1998	1999	Period	1996	1997	1998	1999
1	0.22	NS	0.39	0.65	1.00	7.93	NS	10.85	26.01
2	NS	NS	0.17	0.63	2.00	NS	NS	2.85	16.07
3	NS	NS	0.30	0.20	3.00	NS	NS	7.39	5.14
4	NS	0.57	0.14	0.10	4.00	NS	11.23	3.55	1.27
5	NS	NS	0.05	0.11	5.00	NS	NS	1.15	2.32
6	NS	NS	0.06	NS	6.00	NS	NS	0.72	NS
Sar	nd Lance	Error =	+/- 27.7%			Error =	+/- 30.9%		
Dei	nsity by Numbers o	of Schools (#	[‡] /km^2)		Density	by School Su	rface Area (m'	^2/km^2)	
Period	1996	1997	1998	1999	Period	1996	1997	1998	1999
1	0.02	NS	0.01	0.26	1.00	3.01	NS	0.46	9.91
2	NS	NS	0.05	0.36	2.00	NS	NS	1.04	11.12
3	NS	NS	0.07	0.60	3.00	NS	NS	2.00	19.55
4	NS	0.11	0.04	0.31	4.00	NS	5.90	1.42	7.84
5	NS	NS	0.02	0.46	5.00	NS	NS	0.53	10.87
6	NS	NS	0.01	NS	6.00	NS	NS	0.04	NS
Capelin	no error	estimates a	vailable						
Dei	nsity by Numbers o	of Schools (#	[‡] /km^2)		Density	by School Su	rface Area (m'	^2/km^2)	
Period	1996	1997	1998	1999	Period	1996	1997	1998	1999
1	0.00	NS	0.00	0.00	1.00	0.00	NS	0.00	0.00
2	NS	NS	0.00	0.00	2.00	NS	NS	0.00	0.00
3	NS	NS	0.00	0.00	3.00	NS	NS	0.00	0.54
4	NS	0.00	0.00	0.03	4.00	NS	0.00	0.00	1.66
5	NS	NS	0.00	0.00	5.00	NS	NS	0.00	0.00
6	NS	NS	0.00	NS	6.00	NS	NS	0.00	NS
Periods	Date Range								
	1 July 1 - 7								
	2 July 7- 14								
	3 July 15 - 21								
	4 July 22 - 28								
	5 July 29 - Aug. 4	1							

5 July 25 - Aug. -

6 Aug. 5 - 11

Expan	ded Area Estin	nates:											
Herring:	Herring:	Error = -	+/- 12.0%				Error = +	+/- 15.2%					
Densi	ty by Numbers	of Schools (#	/km^2)		Density	by School Su	rface Area (m^	2/km^2)					
Period	1996	1997	1998	1999	Period	1996	1997	1998	1999				
1	0.29	NS	0.25	0.77	1.00	11.54	NS	6.98	29.66				
2	0.21	0.50	0.15	0.58	2.00	2.53	4.51	2.71	15.23				
3	NS	0.35	0.22	0.21	3.00	NS	3.23	5.47	4.85				
4	NS	0.51	0.11	0.13	4.00	NS	10.13	2.52	1.29				
5	0.20	NS	0.03	0.28	5.00	7.68	NS	0.74	5.04				
6	0.24	NS	0.09	NS	6.00	2.55	NS	1.47	NS				
Sand	Lance	Error = -	+/- 27.7%			Error = ·	+/- 30.9%						
Densi	ty by Numbers	of Schools (#	/km^2)		Density	Density by School Surface Area (m^2/km^2)							
Period	1996	1997	1998	1999	Period	1996	1997	1998	1999				
1	0.01	NS	0.05	0.32	1.00	2.12	NS	0.65	10.00				
2	0.19	0.00	0.10	0.39	2.00	8.73	0.00	3.02	8.39				
3	NS	1.64	0.05	0.55	3.00	NS	64.56	1.39	14.36				
4	NS	0.09	0.03	0.33	4.00	NS	4.95	1.03	9.74				
5	0.00	NS	0.02	0.63	5.00	0.00	NS	0.81	12.07				
6	0.00	NS	0.01	NS	6.00	0.00	NS	0.74	NS				
Capelin	no erroi	estimates av	vailable										
Densi	ty by Numbers	of Schools (#	/km^2)		Density	by School Su	rface Area (m^	2/km^2)					
Period	1996	1997	1998	1999	Period	1996	1997	1998	1999				
1	0.00	NS	0.00	0.00	1.00	0.00	NS	0.00	0.00				
2	0.00	0.00	0.03	0.00	2.00	0.00	0.00	0.66	0.00				
3	NS	0.00	0.00	0.00	3.00	NS	0.00	0.00	0.33				
4	NS	0.00	0.00	0.02	4.00	NS	0.00	0.00	0.98				
5	0.00	NS	0.00	0.00	5.00	0.00	NS	0.00	0.00				
6	0.00	NS	0.00	NS	6.00	0.00	NS	0.00	NS				

Table 4. Weekly and interannual variability in forage fish surface school density within expanded kittiwake foraging area in the northeast; estimates are corrected for sightability error.

Table 5. Spatial variability in mean depth (m) of juvenile herring schools, standard deviation and 95% confidence interval range during July, 1996 based on acoustic surveys.

	Mean	SD	95% CI
Simpson			
Head Pt.	11.86	5.97	11.70
Gravina			
Landlocked	22.59	12.84	25.17
Вау			
Jack Bay	7.60	6.64	13.02
Valdez Arm	13.13	1.25	2.44
Wells Bay	8.23	2.60	5.09
Eaglek	19.74	7.09	13.89
Culross	14.38	7.49	14.69
McClure Bay	9.88	2.31	4.52
Herring Bay	15.17	10.38	20.34
Whale	9.67	3.10	6.07
Port San Juan	19.57	12.61	24.71
Elrington Pass	23.71	7.29	14.30
Fox Farm	30.26	2.90	5.68
Hogg Bay	18.46	5.49	10.77
Zaikof	26.48	2.54	4.98

Table 6. Temporal variability in juvenile herring schools depth (m) at four herring nursery sites in PWS.

Month	Zaikof	sd	95%	Eaglek	sd	95%	Simpson	sd	95%	Whale	sd	95%
May-96	22.87	2.89	5.659926	18.17	3.30	6.473832	12.04	1.36	2.670699	25.82	6.20	12.15752
Jun-96	18.10	5.70	11.1748	12.67	7.45	14.59922	23.94	10.58	20.7295	10.44	4.54	8.891202
Jul-96	26.48	2.54	4.976629	19.74	7.09	13.88691			0	9.67	3.10	6.068807
Aug-96	21.66	2.62	5.141553	80.12	12.23	23.97416	17.97	10.88	21.33204	22.73	3.31	6.483419
Oct-96	37.93	6.88	13.47995	74.36	11.22	21.99289	22.76	13.39	26.2484	58.43	7.76	15.19983
May-97	28.71	4.18	8.183845	42.50	4.93	9.661512	29.33	6.18	12.12071	39.09	6.98	13.6754
Jul-97	42.50	0.71	1.385929	15.62	1.14	2.24099	27.02	5.61	10.99209	13.48	3.60	7.058925
Aug-97	24.10	4.73	9.276172	55.71	1.18	2.308329	10.91	7.98	15.63909	20.08	5.71	11.19727

Table 7. Normalized climate and production indices for PWS and the north Pacific during the SEA/APEX study years including the June Bakun upwelling index at Hinchinbrook Entrance, the Aleutian Low Pressure Index (ALPI; (Beamish, 1999)), the Atmospheric Forcing Index (AFI-PDO; (Beamish, 1999)), the El Niño Southern Oscillation (ENSO; (Mantua, 1997)), and both the average and peak zooplankton production at the Armin F. Koernig (AFK) salmon hatchery in southwestern PWS.

	June Upwell.	ALPI	AFI(PDO)	ENSO	Ave.AFK Zoop.	Peak AFK Zoop.
1995	-5.283	1.515	-0.645	-0.392	0.432	0.197
1996	-2.283	0.799	0.176	-0.688	-0.373	-0.399
1997	-0.283	0.538	-0.117	1.261	-0.388	-1.419
1998	6.717	4.707	1.360	0.331	-0.644	1.642
1999		0.007		-0.436	0.480	4.363

Table 8 Thermocline depth (m) and mean sea surface temperature to 10 m measured at APEX nearshore sites in each of the three study areas (northeast-NE, central-C, and southwest-SW) during July.

	Mean Thermocline			Mean Temperature to				
	C	Depth (m)			10m			
Year	NE	С	SW	NE	С	SW		
1995	13.33	8.67	10.00	13.09	11.91	11.00		
1996	6.00	21.67	2.67	10.59	12.95	11.84		
1997	6.00	9.33	10.00	14.27	14.91	13.03		
1998	4.33	9.50	14.67	13.96	13.09	11.92		
1999	1.00	2.67	16.00	14.46	16.33	13.83		

Table 9. Mean sea surface temperature and salinity to 20 m at PWS SEA project offshore (> 1 km) sites in regions overlapping the APEX study regions during July.

Temperature	Northeast	Northshore	Central	Montague St.	Southwest
1995	5.27	6.74	6.94	5.92	7.29
1996	5.84	7.29	7.96	8.11	7.98
1997	-	6.10	5.79	5.57	6.21
1998	-	-	-	6.71	5.91
1999	-	5.47	-	5.60	5.34
Salinity					
1995	31.09	29.34	29.10	30.78	29.19
1996	31.42	30.69	31.08	31.20	30.56
1997	-	31.08	31.41	31.54	30.68
1998	-	-	-	30.93	30.46
1999	-	31.31	-	31.53	31.14

Figure 1. Flight paths used during the APEX project in 1998-9 for the north region, the central region, and the southwest or Jackpot region; the additional areas covered during the single July broadscale survey are also shown.

Figure 2. Probability density functions of sighting distances (estimated from observed angle of sighting from wing) used to estimate effective (sampled) swath width for kittiwakes, herring and sand lance.

900

1000 1200 1300

1500

0

1600

1E-03 0.052

1800
Figure 3. Changes in relative abundance of fish over the months/years surveyed within the APEX study areas (note that herring in the NE are off the scale in May and June of 1996).

Figure 4. Changes in abundance of kittiwakes (bars) and proportion observed with foraging behaviors (lines) in the three APEX study areas.

Figure 5. Distribution of forage fish schools by species in June and July of 1995-1996. The black lines denote the geographic query regions for APEX (northeast-NE, Central-C and southwest-SW).

Figure 6. Distribution of forage fish schools by species in June and July of 1997. The black lines denote the geographic query regions for APEX (northeast-NE, Central-C and southwest-SW).

Figure 7. Distribution of forage fish schools by species in July of 1998-9. More schools are mapped than in previous years due to intensive repeat surveys. The table of fish densities shows truer comparisons. The black lines denote the geographic query regions for APEX (northeast-NE, Central-C and southwest-SW).

Figure 8. Counts of key species sighted in APEX study regions dring period 1, 7/1 - 7/7, 1998-1999. In 1998, only the northeastern area was surveyed during period 1.

Figure 9. Counts of key species sighted in APEX study regions during period 2, 7/8 - 7/14, and period 3, 7/15 - 7/21, 1998-1999. In addition to the APEX core regions, the broadscale survey was conducted in southwestern and outside PWS during period 2 both years and in northwestern PWS during period 3 of 1998 and periods 2 and 3 of 1999

Figure 10. Counts of key species sighted in APEX study regions during period 4, 7/22 - 7/28, and period 5, 7/29 - 8/4 during 1998 and 1999. Only the APEX core regions were flown during these periods.

Figure 11. Counts of key species sighted in APEX study regions during period 6, 8/6 - 8/11, 1998. No surverys were flown in period 6 during 1999.

Figure 12. Site-specific relationships between aerial and acoustic fish school counts during 1996-97. Good agreement occurred at Simpson Bay (southeastern PWS) and Whale Bay (southwestern), poor agreement at Zaikof Bay (central) and Eaglek Bay (northern).

Figure 13. Spatial variation in depth distribution of juvenile herring in July, 1996 starting from eastern PWS (Pt. Gravina) counterclockwise to southwestern PWS (Fox Farm), just west of PWS at the eastern edge of the Outer Kenai Penisula (Hogg Bay) then to central PWS (Zaikof).

Figure 14. Spatial variability in age structure at PWS herring nursery sites (mainly bays) in July, 1996.

Figure 15. Site-specific temporal variability in PWS juvenile herring depth distribution.

Figure 16. Temporal variability in age structure at PWS herring nursery bays.

APPENDIX I. Summary of flights conducted from 1995 to 1999 including the lineal distance flown per survey (km), the effective swath width for fish and white sea birds (km), and the effective area surveyed (km²) by flight file. Keys for the letter codes are listed at the bottom of the table.

Filename	GMT Date	Duration (hrs)	Ave. Altitude (ft)	Total km Flown	Ave. Fish Swath (m)	Total Fish Area (km ²)	Ave. Bird Swath (m)	Total Bird Area (km ²)	Survey Type	Error Est.	Validation Catches	Digitized	Video Taken
950320	03/20/95	1.55	1000	189.76	455.33	86.40	1423.82	270.17	В			Ν	у
950327	03/27/95	2.72	1000	316.44	455.33	144.09	1423.82	450.56	В			Ν	у
950330	03/30/95	3.43	1000	706.89	455.33	321.87	1423.82	1006.48	В			Ν	у
950414	04/25/95	1.94	1000	298.34	455.33	135.85	1423.82	424.79	В			Ν	у
950430A	04/30/95								В			Y	у
950505B	05/05/95								В			Y	у
950506	05/06/95								В	D	Х	Y	n
950609	06/09/95	3.34	1000	535.55	455.33	243.85	1423.82	762.53	В			Ν	n
950610	06/10/95	4.20	1059	645.70	482.02	311.22	1507.28	973.18	В			Ν	n
950612	06/12/95	3.94	761	532.17	346.74	190.61	1084.24	596.03	В			Ν	n
950614	06/14/95	4.21	1000	674.31	455.33	307.04	1423.82	960.10	В		Х	Y	n
950709	07/09/95	7.68	1053	999.14	479.56	517.18	1499.57	1617.21	В			Ν	n
950710	07/10/95	3.54	948	558.73	431.77	240.41	1350.13	751.75	В			Ν	n
950715	07/15/95	0.17	1000	28.71	455.33	13.07	1423.82	40.88	В			Ν	n
950715B	07/15/95	1.88	1000	235.57	455.33	107.26	1423.82	335.41	В			Ν	n
950716	07/16/95	0.74	1040	124.83	473.55	58.87	1480.78	184.07	В			Ν	n
950721	07/21/95	3.80	1000	710.36	455.33	323.45	1423.82	1011.43	В			Ν	n
950727	07/27/95	3.90	1029	571.32	468.68	269.74	1465.57	843.46	В		Х	Ν	n
950728	07/28/95	4.71	1001	654.69	455.98	298.49	1425.84	933.38	В		Х	Ν	n
950802	08/02/95	0.15	1000	23.63	455.33	10.76	1423.82	33.64	В			Ν	n
950804	08/04/95	0.11	1000	0.37	455.33	0.17	1423.82	0.52	В			Ν	n
950805	08/05/95	4.78	1000	465.22	455.33	211.83	1423.82	662.40	В			Ν	n
950806	08/06/95	1.48	1000	214.82	455.33	97.82	1423.82	305.87	В			Ν	у
950805B	08/06/95	0.82	1000	148.17	455.33	67.47	1423.82	210.96	В			Ν	n
950808	08/08/95	2.13	941	270.57	428.65	116.81	1340.40	365.28	В			Ν	у
950809	08/09/95	2.18	866	407.53	394.16	162.00	1232.53	506.56	В			Ν	у
950811	08/11/95	5.52	900	789.66	409.80	323.60	1281.44	1011.88	В			Ν	у
950815	08/15/95	6.52	900	987.75	409.80	404.78	1281.44	1265.74	В			Ν	у
950819	08/19/95	3.80	900	465.34	409.80	190.70	1281.44	596.33	В			Ν	n
950820	08/20/95	1.29	400	108.64	182.13	19.79	569.53	61.88	В		Х	Ν	n
950822	08/22/95	3.58	1000	515.63	455.33	234.78	1423.82	734.14	В			Ν	n

Filename	GMT Date	Duration (hrs)	Ave. Altitude	Total km Flown	Ave. Fish Swath (m)	Total Fish Area (km ²)	Ave. Bird Swath (m)	Total Bird Area (km ²)	Survey Type	Error Est.	Validation Catches	Digitized	Video Taken
951004	10/04/95	4.45	1000	739.27	455.33	336.62	1423.82	1052.60	В		Х	Ν	у
960416a	04/16/96	1.27	1000	172.47	455.33	78.54	1423.82	245.58	В			Ν	у
960418a	04/18/96	2.76	1192	403.68	542.97	218.43	1697.87	683.03	В			Ν	у
960419a	04/19/96	2.18	1106	372.68	503.47	188.85	1574.36	590.53	В			Ν	у
960424a	04/24/96	1.03	1182	303.22	538.02	167.03	1682.39	522.29	В			Y	n
960509a	05/09/96	3.33	1147	393.02	522.24	206.00	1633.04	644.17	BD		х	Ν	n
960509b	05/10/96	0.90	1042	138.51	474.38	65.60	1483.39	205.12	В			Ν	n
960510a	05/10/96	0.28	794	30.49	361.67	11.00	1130.92	34.40	BD	R	х	Ν	n
960510b	05/11/96	1.12	1063	53.59	484.00	26.05	1513.47	81.45	BD	R	х	Y	n
960511a	05/11/96	1.88	1104	259.88	502.57	134.58	1571.54	420.83	BD		х	Ν	n
960511b	05/12/96	2.31	1055	263.87	480.23	125.69	1501.67	393.04	BD	R	Х	Ν	n
960512a	05/12/96	2.21	1047	324.02	476.65	154.64	1490.47	483.56	BD	R	Х	Ν	n
960513a	05/13/96	2.34	1105	369.50	503.13	186.19	1573.28	582.22	BD	R	Х	Ν	n
960514a	05/14/96	3.65	1067	501.17	485.88	243.43	1519.34	761.22	BD	R	Х	Ν	n
960610a	06/10/96	0.86	999	97.46	454.90	44.31	1422.45	138.56	BD	R	Х	Ν	n
960611a	06/11/96	0.73	988	95.54	449.64	42.88	1406.03	134.08	BD		Х	Ν	n
960612a	06/12/96	1.08	1068	174.59	486.27	85.03	1520.56	265.88	BD		Х	Ν	n
960613a	06/13/96	1.78	1106	272.18	503.63	136.99	1574.86	428.38	В	R	Х	Ν	n
960614a	06/14/96	1.88	1100	279.30	500.87	139.89	1566.21	437.43	BD	R	Х	Ν	n
960615a	06/15/96	2.73	1100	381.56	500.87	191.11	1566.21	597.61	В	R	Х	Ν	n
960702a	07/02/96	1.52	983	248.99	447.37	111.25	1398.93	347.89	В		Х	Ν	n
960703a	07/03/96	1.48	935	206.78	425.66	87.46	1331.04	273.50	В		Х	Ν	n
960704a	07/04/96	1.98	907	233.19	413.04	98.32	1291.57	307.46	В		Х	Ν	n
960705b	07/05/96	3.42	887	427.16	403.71	170.72	1262.39	533.83	В		Х	Ν	n
960706a	07/06/96	2.88	1005	413.59	457.70	189.36	1431.21	592.12	В		Х	Ν	n
960707a	07/07/96	4.08	904	483.53	411.85	202.68	1287.83	633.78	В		Х	Ν	n
960708a	07/08/96	5.04	1000	482.64	455.33	219.77	1423.82	687.22	В	R	Х	Ν	n
960709a	07/09/96	2.01	798	260.93	363.14	94.75	1135.53	296.29	В	R	Х	Ν	У
960710a	07/10/96	2.03	1000	298.51	455.33	135.92	1423.82	425.02	В	R	Х	Ν	n
960711a	07/11/96	2.51	927	336.54	422.31	141.00	1320.57	440.92	В		Х	Ν	n
960717a	07/17/96	3.64	992	356.03	451.80	160.70	1412.77	502.52	В	R	Х	Ν	У
960718a	07/18/96	3.06	918	348.72	418.21	143.71	1307.75	449.37	В	R		Ν	у
960720a	07/20/96	1.33	904	168.51	411.51	69.93	1286.78	218.67	В	R	Х	Ν	у
960721a	07/21/96	3.28	740	280.21	337.11	104.03	1054.14	325.30	В	R	Х	Ν	у

File	ename	GMT Date	Duration (hrs)	Ave. Altitude (ft)	Total km Flown	Ave. Fish Swath (m)	Total Fish Area (km ²)	Ave. Bird Swath (m)	Total Bird Area (km ²)	Survey Type	Error Est.	Validation Catches	Digitized	Video Taken
960	801a	08/01/96	0.34	529	55.35	240.68	13.27	752.59	41.50	BD	D	Х	Ν	n
960	802a	08/02/96	0.45	800	70.86	364.27	25.81	1139.06	80.72	В	RD	Х	Ν	n
960	802b	08/03/96	1.53	997	231.13	453.85	104.79	1419.18	327.68	В	R	Х	Ν	n
960	804a	08/04/96	1.28	1000	177.37	455.33	80.76	1423.82	252.54	В	R	Х	Ν	n
960	804b	08/05/96	0.79	1000	91.34	455.33	41.59	1423.82	130.05	В	RD	Х	Ν	n
960)805a	08/06/96	0.48	900	87.57	409.80	35.89	1281.44	112.22	В	RD	Х	Ν	у
960	806a	08/06/96	0.50	1000	78.52	455.33	35.75	1423.82	111.80	В	R	Х	Ν	n
970	612a	06/12/97	2.07	1000	284.58	455.33	129.57	1423.82	405.18	BD	D		Ν	n
970	613a1	06/13/97	1.38	1000	187.72	455.33	85.48	1423.82	267.29	В	D		Ν	n
970	613a2	06/13/97	0.30	968	60.31	440.57	26.48	1377.65	82.82	В	D		Ν	n
970	613b	06/13/97	0.18	639	41.46	291.02	12.02	910.01	37.58	В	D	Х	Ν	n
970	614a	06/14/97	4.12	1000	439.13	455.33	199.96	1423.82	625.26	В	D	Х	Ν	n
970	615a	06/15/97	2.78	1000	211.06	455.33	96.11	1423.82	300.54	В	D	Х	Ν	n
970	616a	06/16/97	2.78	1000	304.80	455.33	138.79	1423.82	433.99	В	D		Ν	у
970	617a	06/17/97	3.23	1018	466.22	463.43	216.67	1449.14	677.54	В			Ν	n
970	617b	06/17/97	0.38	1000	68.35	455.33	31.12	1423.82	97.32	В			Ν	n
970	618a	06/18/97	3.28	1000	518.36	455.33	236.03	1423.82	738.06	В	D		Ν	n
970	619a	06/19/97	2.65	828	398.32	376.83	150.50	1178.34	470.62	В	D		Ν	n
970	620a	06/20/97	3.34	1000	447.79	455.33	203.90	1423.82	637.58	В	D	Х	Ν	n
970	621a	06/21/97	5.19	997	484.14	454.09	281.46	1419.95	880.13	В	D	Х	Ν	n
970	709a	07/09/97	1.00	1000	143.43	455.33	65.31	1423.82	204.21	BD	DC	Х	Ν	n
970	709b	07/09/97	1.36	1000	152.14	455.33	69.28	1423.82	216.62	BD	RDC	Х	Ν	С
970	709c	07/10/97	1.28	1000	74.55	455.33	33.94	1423.82	106.14	BD	RDC	Х	Ν	С
970)713a	07/13/97	0.29	514	42.78	233.99	9.97	731.69	31.17	BD	D		Ν	С
970	713b	07/13/97	0.60	1000	52.30	455.33	23.82	1423.82	74.47	В	DC		Ν	С
970)714a	07/14/97	0.60	1000	91.91	455.33	41.85	1423.82	130.87	В	D		Ν	n
970)714b	07/14/97	1.08	927	130.47	422.31	54.80	1320.57	171.35	В	DC		Ν	С
970)715a	07/15/97	2.36	1000	239.89	455.33	109.23	1423.82	341.57	В	DC		Ν	С
970	715b	07/15/97	1.94	1000	197.43	455.33	89.90	1423.82	281.12	В	DC		Ν	С
970)717a	07/17/97	1.93	942	319.23	429.13	137.29	1341.89	429.29	BA	D		Ν	у
970)718a	07/18/97	3.39	1014	409.22	461.81	189.78	1444.06	593.43	BA	D	Х	Ν	у
970)719a	07/19/97	4.39	1013	468.16	461.11	211.88	1441.89	662.55	BA	D	Х	Ν	у
970	720a	07/20/97	4.31	1000	494.90	455.33	225.35	1423.82	704.65	BA	D		Ν	n

Filename	GMT Date	Duration (hrs)	Ave. Altitude	Total km Flown	Ave. Fish Swath (m)	Total Fish Area (km ²)	Ave. Bird Swath (m)	Total Bird Area (km ²)	Survey Type	Error Est.	Validation Catches	Digitized	Video Taken
970721a	07/21/97	5.79	1000	479.57	455.33	218.38	1423.82	682.87	BA	D	Х	Ν	n
970722a	07/22/97	5.23	989	558.89	450.33	250.77	1408.18	784.15	BA	D	х	Ν	n
970723a	07/23/97	3.21	1000	69.17	455.33	31.50	1423.82	98.49	BA	D	х	Y	n
970723b	07/23/97	0.90	1000	93.88	455.33	42.54	1423.82	133.01	BA	D	х	Y	n
970723c	07/23/97	0.73	1000	63.29	455.33	25.40	1423.82	89.57	BA	D	х	Y	n
970723d	07/23/97	0.03	1000	11.43	455.33	5.20	1423.82	16.27	BA	D	х	Y	n
970723e	07/23/97	0.06	1000	12.49	455.33	3.13	1423.82	17.73	BA	D	х	Y	n
970724a	07/23/97	3.05	1000	79.30	455.33	3.53	1423.82	110.23	BA	D		Y	n
970725a	07/25/97	4.06	1000	476.13	455.33	216.80	1423.82	677.95	BA	D	х	Ν	n
970725b	07/25/97	0.56	1000	76.41	455.33	34.79	1423.82	108.79	BA	D	х	Ν	у
980706a.raw	07/06/98	0.58	1146	67.97	522.03	35.68	1632.38	111.56	AN		х	Ν	n
980706b.raw	07/06/98	0.79	1092	125.97	497.07	62.57	1554.34	195.64	AN		х	Ν	n
980706c.raw	07/06/98	0.11	1200	10.51	546.40	5.74	1708.59	17.95	AN			Ν	n
980706d.raw	07/06/98	1.54	1018	253.46	463.66	117.47	1449.85	367.33	AN			Ν	n
980707a.raw	07/07/98	3.24	1000	528.13	455.33	240.48	1423.82	751.97	AN		х	Ν	n
980707b.raw	07/07/98	0.74	1000	648.70	455.33	54.90	1423.82	171.67	AN			Ν	n
980707c.raw	07/07/98	0.06	1000	660.87	455.33	5.54	1423.82	17.32	AN			Ν	n
980707d.raw	07/07/98	0.48	1000	83.98	455.33	53.29	1423.82	166.63	AN			Ν	n
980708a.raw	07/08/98	0.00	1000	0.00	455.33	0.00	1423.82	0.00	AN		Х	Ν	n
980708b.raw	07/08/98	3.54	974	592.07	443.58	262.58	1387.06	821.07	А		Х	Ν	n
980708c.raw	07/08/98	0.62	1000	100.72	455.33	45.86	1423.82	143.41	А			Ν	n
980710a.raw	07/10/98	3.78	981	624.50	446.83	1633.60	1397.23	5108.24	ACB		Х	Ν	n
980711a.raw	07/11/98	0.88	998	137.43	454.48	62.54	1421.16	195.57	ACB		Х	Ν	n
980711b.raw	07/11/98	0.43	1000	211.78	455.33	33.85	1423.82	105.86	ACB			Ν	n
980711c.raw	07/11/98	0.45	918	282.36	418.08	29.62	1307.33	92.62	ACB			Ν	n
980711d.raw	07/11/98	1.91	1003	607.81	456.62	148.62	1427.85	464.74	ACB			Ν	n
980712c.bs	07/12/98	1.51	1000	386.51	455.33	111.41	1423.82	348.38	ACB		Х	Ν	n
980712a.raw	07/12/98	1.03	994	158.39	452.78	71.72	1415.85	224.26	ACB		Х	Ν	n
980712b.raw	07/12/98	0.88	1000	141.83	455.33	64.58	1423.82	201.93	ACB		Х	Ν	n
980712d.raw	07/12/98	0.72	1000	509.64	455.33	56.07	1423.82	175.33	В		х	Ν	n
980712e.raw	07/12/98	0.68	1000	635.16	455.33	57.15	1423.82	178.71	ACB		Х	Ν	n
980712f.raw	07/12/98	0.95	1000	796.37	455.33	73.41	1423.82	229.55	ACB		Х	Ν	n
980713a.bs	07/13/98	2.26	1005	368.90	457.51	168.81	1430.63	527.87	В		Х	Ν	n
980713b.bs	07/13/98	2.03	1000	689.26	455.33	145.87	1423.82	456.14	В		х	Ν	n

Filename	GMT Date	Duration (hrs)	Ave. Altitude	Total km Flown	Ave. Fish Swath (m)	Total Fish Area (km ²)	Ave. Bird Swath	Total Bird Area (km ²)	Survey Type	Error Est.	Validation Catches	Digitized	Video Taken
980714b.bs	07/14/98	0.03	1000	338.58	455.33	2.38	1423.82	7.45	AC		х	Ν	n
980714a.raw	07/14/98	2.08	956	333.35	435.11	145.16	1360.57	453.90	В		Х	Ν	n
980715a.raw	07/15/98	2.32	996	360.66	453.54	163.55	1418.21	511.41	AC		Х	Ν	n
980715b.raw	07/15/98	2.27	1000	363.52	455.33	165.52	1423.82	517.58	AC		Х	Ν	n
980715c.raw	07/15/98	0.54	1000	93.45	455.33	42.55	1423.82	133.07	ACB		Х	Ν	n
980716a.raw	07/16/98	2.16	996	333.64	453.41	151.26	1417.80	472.99	ACB		Х	Ν	n
980716b.raw	07/16/98	2.03	1000	646.25	455.33	142.34	1423.82	445.10	ACB		Х	Ν	n
980716c.raw	07/16/98	0.51	1000	84.60	455.33	38.52	1423.82	120.46	ACB		Х	Ν	n
980717a.bs	07/17/98	2.11	988	332.34	449.78	149.52	1406.45	467.55	В		Х	Ν	n
980717b.bs	07/17/98	1.42	1000	558.44	455.33	102.95	1423.82	321.93	В		Х	Ν	n
980718a.raw	07/18/98	0.99	1000	156.15	455.33	71.10	1423.82	222.32	AC		Х	Ν	n
980718b.raw	07/18/98	1.04	1000	321.31	455.33	75.21	1423.82	235.17	AC		Х	Ν	n
980718c.raw	07/18/98	1.98	1000	615.67	455.33	134.03	1423.82	419.11	AC		Х	Ν	n
980718d.raw	07/18/98	0.46	1000	688.16	455.33	33.01	1423.82	103.22	AC		Х	Ν	n
980719c.bs	07/19/98	1.03	1000	411.07	455.33	80.81	1423.82	252.68	AC		Х	Ν	n
980719a.raw	07/19/98	0.93	1000	147.88	455.33	67.34	1423.82	210.57	AC		Х	Ν	n
980719b.raw	07/19/98	0.52	1000	233.60	455.33	39.03	1423.82	122.05	В		Х	Ν	n
980719d.raw	07/19/98	0.53	1000	514.06	455.33	46.89	1423.82	146.63	AC		Х	Ν	n
980719e.raw	07/19/98	0.53	1000	606.61	455.33	42.14	1423.82	131.78	AC		Х	Ν	n
980719f.raw	07/19/98	2.10	1000	946.56	455.33	154.79	1423.82	484.04	AC		Х	Ν	n
980720a.raw	07/20/98	0.94	965	153.91	439.36	67.57	1373.87	211.30	AC		Х	Ν	n
980720b.raw	07/20/98	0.40	1000	65.88	455.33	30.00	1423.82	93.81	AC		Х	Ν	n
980723a.raw	07/23/98	2.02	1000	328.36	455.33	149.51	1423.82	467.52	AC		Х	Ν	n
980723b.raw	07/23/98	1.83	1000	621.34	455.33	133.41	1423.82	417.16	AC		Х	Ν	n
980723c.raw	07/23/98	0.57	1000	88.27	455.33	40.19	1423.82	125.69	AC		Х	Ν	n
980724a.raw	07/24/98	2.18	1000	352.81	455.33	160.64	1423.82	502.33	AC		Х	Ν	n
980724b.raw	07/24/98	1.81	1000	644.64	455.33	132.88	1423.82	415.53	AC		Х	Ν	n
980724c.raw	07/24/98	0.58	1000	99.69	455.33	45.39	1423.82	141.94	AC		Х	Ν	n
980726a.sm	07/26/98	0.81	922	125.04	420.02	52.48	1313.41	164.10	AC	D	Х	Ν	n
980726b.sm	07/26/98	2.40	991	501.62	451.08	169.58	1410.52	530.28	AC	D	Х	Ν	n
980726c.sm	07/26/98	0.38	1000	562.17	455.33	27.57	1423.82	86.21	AC	D	Х	Ν	n
980728a.raw	07/28/98	0.84	1000	108.68	455.33	49.49	1423.82	154.74	AC		Х	Ν	n
980728b.raw	07/28/98	0.46	1000	188.23	455.33	36.22	1423.82	113.27	AC		Х	Ν	n
980728c.raw	07/28/98	0.14	1000	214.53	455.33	11.97	1423.82	37.44	AC		х	Ν	n

Filename	GMT Date	Duration (hrs)	Ave. Altitude	Total km Flown	Ave. Fish Swath (m)	Total Fish Area (km ²)	Ave. Bird Swath (m)	Total Bird Area (km ²)	Survey Type	Error Est.	Validation Catches	Digitized	Video Taken
980728d.raw	07/28/98	0.38	1000	277.08	455.33	28.49	1423.82	89.08	AC		Х	Ν	n
980728e.raw	07/28/98	1.05	1000	457.59	455.33	82.19	1423.82	257.01	AC		Х	Ν	n
980728f.raw	07/28/98	0.01	1000	460.21	455.33	1.19	1423.82	3.73	AC		Х	Ν	n
980730a.raw	07/30/98	2.03	1000	351.25	455.33	159.94	1423.82	500.12	AC		Х	Ν	у
980730b.raw	07/30/98	1.65	1000	284.19	455.33	250.40	1423.82	783.01	AC		Х	Ν	у
980730c.raw	07/30/98	0.53	1000	97.95	455.33	44.60	1423.82	139.45	AC		Х	Ν	у
980730d.raw	07/30/98	0.76	1000	134.82	455.33	61.39	1423.82	191.97	AC		Х	Ν	у
980730e.raw	07/30/98	1.12	1000	336.55	455.33	91.85	1423.82	287.20	AC		Х	Ν	у
980730f.raw	07/30/98	0.97	1000	510.50	455.33	79.21	1423.82	247.69	AC		Х	Ν	у
980731a.sm	07/31/98	1.86	1000	326.96	455.33	148.88	1423.82	465.53	AC	D	Х	Ν	у
980731b.sm	07/31/98	0.16	1000	355.25	455.33	12.88	1423.82	40.28	AC	D	Х	Ν	у
980731c.sm	07/31/98	1.43	1000	610.28	455.33	116.13	1423.82	363.13	AC	D	Х	Ν	у
980731d.sm	07/31/98	1.09	1000	103.03	455.33	93.83	1423.82	293.40	AC	D	Х	Ν	у
980801a.sm	08/01/98	1.80	1000	324.02	455.33	147.54	1423.82	461.35	AC	D	Х	Ν	у
980801b.sm	08/01/98	0.89	757	475.60	344.87	53.09	1078.41	166.02	AC	D	Х	Ν	у
980801c.sm	08/01/98	0.58	1000	98.07	455.33	44.65	1423.82	139.63	AC	D	Х	Ν	у
980803a.raw	08/03/98	0.83	887	141.47	403.88	57.17	1262.93	178.77	AC		Х	Ν	у
980803b.raw	08/03/98	0.93	956	310.02	435.41	73.41	1361.53	229.55	AC		Х	Ν	у
980803c.raw	08/03/98	2.09	1000	693.37	455.33	174.55	1423.82	545.83	AC		Х	Ν	у
980804a.raw	08/04/98	0.81	1000	139.90	455.33	63.70	1423.82	199.19	AC		Х	Ν	у
980804b.raw	08/04/98	0.51	1000	228.74	455.33	40.45	1423.82	126.50	AC		Х	Ν	у
980804c.raw	08/04/98	0.51	1000	314.49	455.33	39.04	1423.82	122.09	AC		Х	Ν	у
980804d.raw	08/04/98	0.89	1000	475.39	455.33	73.26	1423.82	229.10	AC		Х	Ν	у
980804e.raw	08/04/98	1.58	1000	755.25	455.33	127.43	1423.82	398.47	AC		Х	Ν	у
980805a.raw	08/05/98	0.88	790	146.76	359.59	52.90	1124.42	165.42	AC		Х	Ν	у
980805b.raw	08/05/98	1.11	795	332.04	361.89	67.30	1131.62	210.45	AC		Х	Ν	у
980805c.raw	08/05/98	0.98	839	502.53	382.21	65.13	1195.17	203.65	AC		Х	Ν	у
980805d.raw	08/05/98	1.21	705	698.73	320.92	63.10	1003.50	197.31	AC		Х	Ν	у
980807a.sm	08/07/98	1.93	1000	333.84	455.33	152.01	1423.82	475.33	AC		Х	Ν	у
980807b.sm	08/07/98	1.60	1000	619.34	455.33	130.00	1423.82	406.50	AC		Х	Ν	у
980807c.sm	08/07/98	0.58	1000	95.91	455.33	43.67	1423.82	136.56	AC		Х	Ν	у
980808a.sm	08/08/98	1.91	1000	334.39	455.33	152.26	1423.82	476.12	AC		Х	Ν	у
980808b.sm	08/08/98	1.67	1000	623.62	455.33	131.70	1423.82	411.82	AC		Х	Ν	у
980808c.sm	08/08/98	0.63	1000	94.17	455.33	42.88	1423.82	134.07	AC		х	Ν	у

Filename	GMT Date	Duration (hrs)	Ave. Altitude	Total km Flown	Ave. Fish Swath (m)	Total Fish Area (km ²)	Ave. Bird Swath	Total Bird Area (km ²)	Survey Type	Error Est.	Validation Catches	Digitized	Video Taken
980809a.sm	08/09/98	1.92	1000	329.98	455.33	150.25	1423.82	469.83	AC		х	Ν	у
980809b.sm	08/09/98	1.71	1000	623.92	455.33	133.84	1423.82	418.52	AC		Х	Ν	y
980809c.sm	08/09/98	0.51	1000	89.29	455.33	40.66	1423.82	127.14	AC		Х	Ν	y
980810a.sm	08/10/98	0.36	1000	62.16	455.33	28.30	1423.82	88.51	AC		Х	Ν	у
980810b.sm	08/10/98	0.90	1000	156.27	455.33	71.16	1423.82	222.51	AC		Х	Ν	у
980811a.sm	08/11/98	0.49	1000	81.33	455.33	37.03	1423.82	115.79	AC		Х	Ν	у
990701a.raw	07/01/99	2.00	1000	355.62	455.33	161.93	1423.82	506.34	AN			Ν	n
990701b.raw	07/01/99	0.78	1000	141.74	455.33	64.54	1423.82	201.81	AN			Ν	n
990702a.raw	07/02/99	2.29	974	389.08	443.29	173.68	1386.16	543.09	AN		Х	Ν	n
990702b.raw	07/02/99	1.59	1000	270.82	455.33	123.31	1423.82	385.60	AN		Х	Ν	n
990702c.raw	07/02/99	0.47	1000	87.77	455.33	39.96	1423.82	124.96	AN		Х	Ν	n
990703a.raw	07/03/99	2.10	1000	351.52	455.33	160.05	1423.82	500.49	AN			Ν	у
990703b.raw	07/03/99	1.38	1000	237.94	455.33	108.35	1423.82	338.80	AN			Ν	у
990703c.raw	07/03/99	0.53	1000	96.36	455.33	43.88	1423.82	137.21	AN			Ν	у
990706a.raw	07/06/99	1.49	835	251.21	380.33	96.03	1189.29	300.28	AC			Ν	n
990706b.raw	07/06/99	1.96	881	320.26	401.31	129.11	1254.90	403.74	AC			Ν	n
990707a.raw	07/07/99	1.39	994	239.13	452.62	108.24	1415.35	338.48	AC		XUW	Ν	n
990707b.raw	07/07/99	0.42	1000	70.77	455.33	32.22	1423.82	100.76	AC		XUW	Ν	n
990707c.raw	07/07/99	0.33	1000	59.93	455.33	27.29	1423.82	85.33	AC		XUW	Ν	n
990707d.raw	07/07/99	1.99	1000	346.18	455.33	157.63	1423.82	492.90	AC		XUW	Ν	n
990708.bs	07/08/99	0.62	1000	102.35	455.33	46.60	1423.82	145.73	AC			Ν	n
990708a.raw	07/08/99	1.30	1000	220.06	455.33	100.20	1423.82	313.31	AC			Ν	n
990708b.raw	07/08/99	0.87	1000	144.59	455.33	65.83	1423.82	205.86	AC			Ν	n
990708c.raw	07/08/99	1.46	1000	255.57	455.33	116.37	1423.82	363.88	В			Ν	n
990709a.bse	07/09/99	3.37	986	606.15	449.09	272.59	1404.31	852.38	В			Ν	n
990709b.bse	07/09/99	0.71	1000	131.59	455.33	59.92	1423.82	187.36	В			Ν	n
990710.bs	07/10/99	1.88	1000	325.40	455.13	148.08	1423.20	463.05	AN		XUW	Ν	n
990710a.raw	07/10/99	2.04	955	364.90	434.97	158.22	1360.16	494.74	AN		XUW	Ν	n
990710b.raw	07/10/99	0.51	1000	97.08	455.33	44.20	1423.82	138.23	В		Х	Ν	n
990711a.raw	07/11/99	0.96	1000	152.15	455.33	69.28	1423.82	216.63	AN		XUW	Ν	у
990711b.raw	07/11/99	1.20	997	204.76	454.08	92.97	1419.90	290.72	AN		XUW	Ν	у
990711c.raw	07/11/99	0.34	1000	56.45	455.33	25.70	1423.82	80.38	AN		XUW	Ν	у
990711d.raw	07/11/99	0.25	1000	44.52	455.33	20.27	1423.82	63.38	AN		XUW	Ν	у
990712a.raw	07/12/99	2.10	994	327.71	452.54	148.20	1415.10	463.43	AN		XUW	Ν	у

Filename	GMT Date	Duration (hrs)	Ave. Altitude	Total km Flown	Ave. Fish Swath (m)	Total Fish Area (km ²)	Ave. Bird Swath (m)	Total Bird Area (km ²)	Survey Type	Error Est.	Validation Catches	Digitized	Video Taken
990712b.raw	07/12/99	0.33	1000	51.41	455.33	23.41	1423.82	73.20	AN		XUW	Ν	у
990712c.raw	07/12/99	0.63	1000	114.78	455.33	52.26	1423.82	163.42	AN		XUW	Ν	у
990713a.bs	07/13/99	1.48	987	229.83	449.19	103.22	1404.63	322.78	В		XUW	Ν	у
990713b.bs	07/13/99	1.07	1000	174.92	455.33	79.65	1423.82	249.06	В		XUW	Ν	у
990713c.raw	07/13/99	0.60	1000	107.12	455.33	48.77	1423.82	152.52	ACB		XUW	Ν	у
990714a.raw	07/14/99	1.68	1000	279.85	455.33	127.43	1423.82	398.46	AC		XUW	Ν	у
990714b.raw	07/14/99	0.58	1000	95.99	455.33	43.71	1423.82	136.67	AC		XUW	Ν	у
990714c.raw	07/14/99	0.63	1000	85.01	455.33	38.71	1423.82	121.03	AC		XUW	Ν	у
990714d.raw	07/14/99	0.50	1000	80.89	455.33	36.83	1423.82	115.17	AC		XUW	Ν	у
990715a.raw	07/15/99	1.05	1000	158.03	455.33	71.96	1423.82	225.01	AC		XUW	Ν	у
990715b.raw	07/15/99	1.08	1000	176.55	455.33	80.39	1423.82	251.38	AC		XUW	Ν	у
990715c.raw	07/15/99	1.29	1000	214.74	455.33	97.78	1423.82	305.75	AC		XUW	Ν	у
990716a.raw	07/16/99	0.71	850	117.68	387.03	45.54	1210.25	142.41	В		XUW	Ν	у
990716b.raw	07/16/99	2.23	900	356.02	409.89	145.57	1281.71	455.21	В		XUW	Ν	у
990716c.raw	07/16/99	0.15	1000	25.58	455.33	11.65	1423.82	36.42	В		XUW	Ν	у
990717a.raw	07/17/99	1.72	1000	278.16	455.33	126.66	1423.82	396.05	ANB		XUW	Ν	у
990717b.raw	07/17/99	0.84	1000	134.23	455.33	61.12	1423.82	191.12	ANB		XUW	Ν	у
990717c.raw	07/17/99	0.46	1000	82.92	455.33	37.76	1423.82	118.06	ANB		Х	Ν	у
990718a.raw	07/18/99	2.58	1000	422.67	455.33	192.46	1423.82	601.81	AN		Х	Ν	У
990718b.raw	07/18/99	1.64	1000	264.71	455.33	120.53	1423.82	376.89	AN		Х	Ν	у
990718c.raw	07/18/99	0.57	1000	92.63	455.33	42.18	1423.82	131.89	AN		Х	Ν	У
990719a.raw	07/19/99	2.10	995	334.40	453.17	151.54	1417.07	473.85	AN		Х	Ν	У
990719b.raw	07/19/99	1.88	1027	319.92	467.77	149.52	1462.71	467.54	AN		Х	Ν	У
990719c.raw	07/19/99	0.48	1000	96.61	455.33	43.99	1423.82	137.55	AN		Х	Ν	У
990721a.raw	07/21/99	1.92	1000	341.54	455.33	155.51	1423.82	486.29	AC			Ν	у
990722a.raw	07/22/99	1.45	1000	238.96	455.33	108.80	1423.82	340.23	ACJ			Ν	У
990722b.raw	07/22/99	0.41	1000	73.61	455.33	33.52	1423.82	104.81	ACJ			Ν	У
990722c.raw	07/22/99	0.91	1000	164.46	455.33	74.89	1423.82	234.17	ACJ			Ν	У
990722d.raw	07/22/99	1.60	1000	285.33	455.33	129.92	1423.82	406.25	ACJ			Ν	У
990723a.raw	07/23/99	1.93	1000	323.37	455.33	147.24	1423.82	460.42	AC			Ν	У
990723b.raw	07/23/99	1.98	1000	335.89	455.33	152.94	1423.82	478.24	AC			Ν	У
990725a.raw	07/25/99	1.88	994	329.41	452.73	149.18	1415.67	466.50	AN		XUW	Ν	у
990725b.raw	07/25/99	1.10	896	187.48	408.09	76.66	1276.09	239.70	AN			Ν	у
990725c.raw	07/25/99	0.52	1000	89.27	455.33	40.65	1423.82	127.10	AN			Ν	у

Filename	GMT Date	Duration (hrs)	Ave. Altitude (ft)	Total km Flown	Ave. Fish Swath (m)	Total Fish Area (km ²)	Ave. Bird Swath (m)	Total Bird Area (km ²)	Survey Type	Error Est.	Validation Catches	Digitized	Video Taken
990728a.raw	07/28/99	1.39	988	241.35	449.91	108.83	1406.87	340.32	AC		XUW	Ν	у
990728b.raw	07/28/99	0.16	1000	27.37	455.33	12.46	1423.82	38.97	AC		XUW	Ν	у
990728c.raw	07/28/99	0.24	1000	43.13	455.33	19.64	1423.82	61.40	AC		XUW	Ν	у
990729a.raw	07/29/99	2.01	1000	342.68	455.33	156.03	1423.82	487.91	ANJC		XUW	Ν	у
990729b.raw	07/29/99	0.63	1000	113.77	455.33	51.80	1423.82	161.99	ANJC		XUW	Ν	у
990731a.raw	07/31/99	1.48	1000	248.10	455.33	112.97	1423.82	353.26	AC		Х	Ν	у
990731b.raw	07/31/99	0.94	1000	162.06	455.33	73.79	1423.82	230.75	AC		Х	Ν	у
990731c.raw	07/31/99	1.61	1000	278.28	455.33	126.71	1423.82	396.21	AC		Х	Ν	у
990801a.raw	08/01/99	1.91	996	320.42	453.35	145.29	1417.63	454.34	AN			Ν	n
990801b.raw	08/01/99	1.47	1000	250.64	455.33	114.12	1423.82	356.86	AN			Ν	n
990801c.raw	08/01/99	0.55	1000	100.44	455.33	45.73	1423.82	143.00	AN			Ν	n
990802a.raw	08/02/99	2.02	1000	346.91	455.33	157.96	1423.82	493.95	AN			Ν	n
990802b.raw	08/02/99	1.41	1000	243.69	455.33	110.96	1423.82	346.97	AN			Ν	n
990802c.raw	08/02/99	0.47	1000	85.00	455.33	38.70	1423.82	121.02	AN			Ν	n
990803a.raw	08/03/99	0.33	1000	55.34	455.33	25.20	1423.82	78.79	AN			Ν	n
990803b.raw	08/03/99	1.48	1000	249.80	455.33	113.74	1423.82	355.67	AN			Ν	n
990803c.raw	08/03/99	1.38	1000	241.04	455.33	109.76	1423.82	343.21	AN			Ν	n
990803d.raw	08/03/99	0.51	1000	84.24	455.33	38.36	1423.82	119.94	AN			Ν	n
990804a.raw	08/04/99	0.45	1000	86.52	455.33	39.40	1423.82	123.19	ANJC		Х	Ν	n
990804b.raw	08/04/99	0.46	1000	86.46	455.33	39.37	1423.82	123.11	ANJC		Х	Ν	n
990804c.raw	08/04/99	0.64	955	108.90	434.90	47.43	1359.93	148.31	ANJC		х	Ν	n

Key Codes:

- A Survey Type; APEX process studies
- N,C or J Survey Type; APEX areas (north, central or Jackpot)
- D, B Survey Type; herring nursery bay or broadscale
- R,D,C Error Estimation; Repeat survey, dual count, or CASI survey
- X, UW Validation Catches; catches exist; UW = underwater camera
- Y Digitized flight path (gps error)
- y, n Video taken; yes or no

APPENDIX II. Net catches and underwater video observations used as species validation for aerial survey data; three catch modes are shown in cases of mixed age samples with the first mode as most predominant age.

Species	Distance	Validation	Actual	First	Avg.	Second	Avg.	Third	Avg.	Latitude	Longitude	Set date
i.d. from	to shore	Туре	Species	Mode	length	Mode	length	Mode Age	length			
aerial	(m)			Age of		Age						
h	25	с	h	2	119.67	3	170.17			60.7325	146.089	7/3/96
h	10	с	h	2	107.68	1	78			60.7983	146.312	7/4/96
h	20	с	h	2	107.68	1	78	1	+	60.7983	146.312	7/4/96
h	15	с	h	2	107.68	1	78			60.7983	146.312	7/4/96
h	75	с	h	2	107.68	1	78			60.7983	146.312	7/4/96
h	15	с	h	2	107.68	1	78			60.7983	146.312	7/4/96
h	50	с	h	2	107.68	1	78			60.7983	146.312	7/4/96
h	50	с	h	2	107.68	1	78			60.7983	146.312	7/4/96
h	15	с	h	++					+	60.717	146.344	7/3/96
h	25	с	h	++						60.715	146.352	7/3/96
h	25	с	h	2	128.6	3	168.82			60.7758	146.483	7/4/96
h	25	с	h	2	128.6	3	168.82		+	60.7758	146.483	7/4/96
h	25	с	h	2	128.6	3	168.82			60.7758	146.483	7/4/96
h	30	с	h	2	128.6	3	168.82			60.7758	146.483	7/4/96
sd	10	с	h	++						61.0543	146.707	7/5/96
sd	15	с	h	++					+	61.0543	146.707	7/5/96
sd	15	с	h	++						61.0543	146.707	7/5/96
sd	10	с	h	++					+	61.0543	146.707	7/5/96
h	15	с	h	2	129.01	3	167.06			61.047	146.789	7/5/96
h	25	с	h	2	129.01	3	167.06		+	61.047	146.789	7/5/96
h	25	с	h	2	129.01	3	167.06		+	61.047	146.789	7/5/96
h	25	с	h	2	129.01	3	167.06			61.047	146.789	7/5/96
h	75	с	sd	++	81					60.8688	147.456	7/5/96
h	50	с	h	2	111					60.9187	147.456	7/6/96
h	75	с	h	2	111					60.9187	147.456	7/6/96
h	25	с	h	2	118.55				+	60.9472	147.466	7/6/96
h	10	с	h	2	118.55					60.9472	147.466	7/6/96
h	25	с	h	2	118.55					60.9472	147.466	7/6/96
h	75	с	h	2	118.55					60.9472	147.466	7/6/96
h	75	с	h	2	118.55					60.9472	147.466	7/6/96
h		с	h	2	115.1					60.9623	147.486	7/6/96
h	20	с	h	2	115.1				+	60.9623	147.486	7/6/96
h	15	с	h	2	115.1					60.9623	147.486	7/6/96
h	15	с	h	2	115.1					60.9623	147.486	7/6/96
h	25	с	h	2	115.1					60.9623	147.486	7/6/96
h	25	с	h	2	115.1				+	60.9623	147.486	7/6/96
h	50	с	h	2	115.1				+	60.9623	147.486	7/6/96
h	100	с	h	2	115.1				+	60.9623	147.486	7/6/96
h	75	с	h	2	115.1				+	60.9623	147.486	7/6/96
h	50	с	h	2	115.1				+	60.9623	147.486	7/6/96
h	20	с	h	2	115.1				+	60.9623	147.486	7/6/96
h	15	с	h	2	115.1				+	60.9623	147.486	7/6/96
h	35	с	h	2	118.15	3	172		+	60.2668	147.103	7/11/96
				1 .		1						

sd	3	d	sd							60.6531	147.3641	7/21/96
sd	3	d	sd							60.6531	147.3641	7/21/96
sd	3	d	sd							60.6531	147.3641	7/21/96
sd	5	d	h							60.6519	147.379	7/21/96
sd	5	d	h							60.6519	147.379	7/21/96
h	10	d	h							60.6519	147.379	7/21/96
h	5	d	sd							60.6519	147.379	7/21/96
sd	5	d	sd							60.6737	147.4502	7/20/96
sd	5	d	sd							60.6737	147.4502	7/20/96
sd	3	d	sd							60.6737	147.4502	7/20/96
sd	3	d	sd							60.6737	147.4502	7/20/96
sd	3	d	sd							60.6737	147.4502	7/20/96
sd	3	d	sd							60.6737	147.4502	7/20/96
sd	3	d	sd							60.6737	147.4502	7/20/96
sd	5	d	sd							60.6737	147.4502	7/20/96
sd	5	d	sd							60.6737	147.4502	7/20/96
sd	5	d	sd							60.6737	147.4502	7/20/96
sd	5	d	sd							60.6737	147.4502	7/20/96
sd	5	d	sd							60.6737	147.4502	7/20/96
sd	5	d	sd							60.6737	147.4502	7/20/96
sd	5	d	sd							60.6737	147.4502	7/20/96
sd	5	d	sd							60.6737	147.4502	7/20/96
sd	5	с	sd	1	64.8					60.6876	147.4798	7/22/96
sd	5	с	sd	1	64.8					60.6876	147.4798	7/22/96
sd	5	с	sd	1	64.8					60.6876	147.4798	7/22/96
sd	3	с	sd	1	64.8					60.6876	147.4798	7/22/96
sd	5	с	sd	1	64.8					60.6876	147.4798	7/22/96
sd	5	с	sd	1	64.8					60.6876	147.4798	7/22/96
sd	5	с	sd	1	64.8					60.6876	147.4798	7/22/96
h	5	с	sd	1	64.8					60.6876	147.4798	7/22/96
h	20	с	h	1	31.42					60.6648	145.87	8/6/96
h	20	с	h	1	31.42					60.6648	145.87	8/6/96
h	25	с	h	1	62.11					60.6227	145.879	8/5/96
h	25	с	h	1	62.11					60.6227	145.879	8/5/96
h	25	с	h	1	55.89	2	112.04	3	175	60.6635	145.894	8/6/96
h	25	с	h	1	33.67					60.6747	145.895	8/6/96
sd	10	с	sd		83.6					60.2972	146.993	8/4/96
sd	15	с	sd		83.6					60.2972	146.993	8/4/96
sd	10	с	sd		83.6					60.2972	146.993	8/4/96
sd	10	с	sd		83.6					60.2972	146.993	8/4/96
sd	15	с	sd		85.2					60.2745	147.061	8/4/96
sd	15	с	sd		85.2					60.2745	147.061	8/4/96
sd	10	с	sd		85.2					60.2745	147.061	8/4/96
sd	15	с	sd		85.2					60.2745	147.061	8/4/96
sd	10	с	sd		85.2					60.2745	147.061	8/4/96
h	15	с	sd		85.2					60.2745	147.061	8/4/96
sd	10	с	sd		85.2					60.2745	147.061	8/4/96
sd	10	с	sd		85.2					60.2745	147.061	8/4/96
h	15	с	sd		85.2					60.2745	147.061	8/4/96
h	15	с	sd		85.2					60.2745	147.061	8/4/96
h	10	с	h	2	123.21	3	170.33			60.6377	145.858	7/9/97

h	100	С	h	2	127.59	3	175.42		60.6612	145.881	7/9/97
h	50	С	h	2	127.59	3	175.42		60.6612	145.881	7/9/97
h	50	с	h	2	127.59	3	175.42		60.6612	145.881	7/9/97
h	20	С	h	2	121.16				60.6438	145.894	7/9/97
h	15	S	h	1							7/9/97
h	15	s	h	1							7/9/97
h	15	S	h	1							7/9/97
h	20	s	h	1							7/9/97
sd	10	d	sd						60.6905	147.438	7/22/97
sd	10	d	sd						60.6905	147.438	7/22/97
sd	10	d	sd						60.6745	147.4755	7/22/97
sd	15	С	sd								7/19/97
sd	15	С	sd								7/19/97
sd	15	С	sd								7/19/97
sd	5	v	sd	J							7/21/97
sd	5	v	sd	J							7/21/97
sd	5	v	sd	J							7/21/97
sd	5	v	sd	J							7/21/97
sd	5	v	sd	J							7/21/97
sd	25	v	sd	J							7/21/97
sd	25	v	sd	J							7/21/97
sd	10	v	sd	J							7/21/97
sd	10	v	sd	J							7/21/97
sd	10	v	sd	J							7/21/97
sd	10	v	sd	J							7/21/97
sd	10	v	sd	J							7/21/97
h	35	с	h		75.4				60.945	146.6741	7/25/97
h	50	с	h		75.4				60.945	146.6741	7/25/97
h	30	с	h		75.4				60.945	146.6741	7/25/97
h	15	с	h		75.4				60.945	146.6741	7/25/97
h	25	с	h		65.9				60.8985	146.734	7/25/97
h	15	v	h	0+					60.7971	146.789	7/25/97
h	15	v	h	0+					60.7971	146.789	7/25/97
h	15	v	h	0+					60.7971	146.789	7/25/97
h	25	v	h	0+					60.7971	146.789	7/25/97
h	10	v	h	0+					60.7971	146.789	7/25/97
h	10	v	h	0+					60.7971	146.789	7/25/97
h	10	v	h	0+					60.7971	146.789	7/25/97
h	20	v	h	0+					60.7971	146.789	7/25/97
h	20	v	h	0+					60.7971	146.789	7/25/97
h	20	v	h	0+					60.7971	146.789	7/25/97
h	20	v	h	0+					60.7971	146.789	7/25/97
Н	5	с	sd		80.3		120.9		60.658	-147.436	7/13/98
Н	5	с	sd		80.3		120.9		60.658	-147.436	7/13/98
Н	10	с	sd		80.3		120.9		60.658	-147.436	7/13/98
Н	5	с	sd		80.3		120.9		60.658	-147.436	7/13/98
Н	5	с	sd		80.3		120.9		60.658	-147.436	7/13/98
Н	15	с	sd		80.3		120.9		60.658	-147.436	7/13/98
Н	5	с	sd		80.3		120.9		60.658	-147.436	7/13/98
Н	15	с	sd		80.3		120.9		60.658	-147.436	7/13/98
Н	15	с	sd		80.3		120.9		60.658	-147.436	7/13/98
L		1	1	1		1		I			

С	500	с	С		98		60.281	-147.263	7/11/98
С	1000	с	с		98		60.281	-147.263	7/11/98
С	100	С	с		98		60.281	-147.263	7/11/98
SD	25	d	sd				60.2926	-147.231	7/13/98
SD	10	d	sd				60.2926	-147.231	7/13/98
Н	35	С	h		167.5	50.6	60.6081	-145.859	7/14/98
Н	0	С	h		167.5	50.6	60.6081	-145.859	7/14/98
SD	100	С	h		127.7	180	60.8705	-147.4	7/18/98
SD	100	с	h		127.7	180	60.8705	-147.4	7/18/98
SD	5	с	sd	уоу			60.6525	-147.318	7/16/98
SD	75	с	h		132.8	179.9	60.9048	-147.318	7/18/98
SD	50	С	h		132.8	179.9	60.9048	-147.318	7/18/98
Н	75	с	h		132.8	179.9	60.9048	-147.318	7/18/98
Н	25	с	h		132.8	179.9	60.9048	-147.318	7/18/98
SD	250	с	h		132.8	179.9	60.9048	-147.318	7/18/98
SD	5	с	h		132.8	179.9	60.9048	-147.318	7/18/98
Н	35	с	h		105.1	187.9	60.9726	-147.271	7/17/98
Н	50	с	h		105.1	187.9	60.9726	-147.271	7/17/98
Н	35	с	h		105.1	 187.9	60.9726	-147.271	7/17/98
SD	25	с	h		105.1	187.9	60.9726	-147.271	7/17/98
SD	35	с	h		105.1	 187.9	60.9726	-147.271	7/17/98
SD	15	с	h		105.1	187.9	60.9726	-147.271	7/17/98
SD	50	с	h		105.1	187.9	60.9726	-147.271	7/17/98
Н	50	с	h		105.1	 187.9	60.9726	-147.271	7/17/98
SD	100	с	h		105.1	187.9	60.9726	-147.271	7/17/98
Н	50	с	h		105.9	 188.3	60.9988	-147.222	7/17/98
Н	75	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	50	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	35	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	50	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	25	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	15	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	20	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	50	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	100	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	35	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	50	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	100	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	50	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	25	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	30	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	50	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	25	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	50	с	h		105.9	188.3	60.9988	-147.222	7/17/98
Н	50	с	h		105.9	188.3	60.9988	-147.222	7/17/98
SD	10	с	sd,h	уоу			60.856	-146.811	7/21/98
SD	10	с	sd,h	уоу			60.856	-146.811	7/21/98
SD	0	с	sd,h	уоу			60.856	-146.811	7/21/98
SD	5	v	h	1	150		60.82017	-146.652	7/21/98
Н	0	с	h		46.2	111	60.6276	-145.891	7/15/98
Н	0	с	h		46.2	 111	60.6276	-145.891	7/15/98

H S c h 46.2 111 00.275 744.98 774.98 H 50 c h 167.5 50.6 00.0601 148.89 774.98 SD 0 c 00.24617 147.434 725.98 SD 3 c sd yoy c 00.24617 147.434 725.98 SD 5 c sd yoy c 00.24617 147.434 725.98 SD 40 0 yoy c 00.24617 147.434 725.98 SD 40 0 yoy c 00.24617 147.408 725.98 SD 3 n yoy c 00.25417 147.408 725.98 SD 40 ed yoy c 00.25417 147.408 725.98 SD 10 n yoy c 00.0305 147.357 725.98 SD 10 n.4d <	Н	15	С	h		46.2		111	60.627	6 -145.891	7/15/98
H 50 c h 167.5 90.6 00.00 148.86 774.968 SD 0 c 8d yoy 0 60.24617 1.47.434 72598 SD 3 c 8d yoy 0 60.24617 1.47.434 72598 SD 5 c 8d yoy 0 60.24617 1.47.434 72598 SD 40 c h yoy 0 60.24617 1.47.434 72598 SD 40 c h yoy 0 60.24617 1.47.434 72598 SD 40 c h yoy 0 60.24617 1.47.408 72598 SD 3 c h yoy 0 60.3035 1.47.355 72598 SD 10 c h.sd yoy 0 60.3035 1.47.355 72598 SD 10 c h.sd yoy 0 60.27616 1.47.334 73098 SD 10 c h.sd yoy </td <td>Н</td> <td>5</td> <td>С</td> <td>h</td> <td></td> <td>46.2</td> <td></td> <td>111</td> <td>60.627</td> <td>6 -145.891</td> <td>7/15/98</td>	Н	5	С	h		46.2		111	60.627	6 -145.891	7/15/98
H 3 c 9d yoy Perform 60.24617 147.434 772568 SD 3 c ad yoy 0 60.24617 147.434 772568 SD 5 c ad yoy 0 60.24617 147.434 772568 SD 6 c dy yoy 0 60.24617 147.434 772568 SD 4 c h yoy 0 60.24617 147.434 772568 SD 3 c h yoy 0 60.24617 147.406 772568 SD 1 c h.ad yoy 0 60.3035 147.355 772568 SD 1 c h.ad yoy 0 60.3035 147.355 725568 SD 10 c h.ad yoy 0 60.3035 147.354 73068 SD 15 c h.ad yoy 0	Н	50	С	h		167.5	Ę	0.6	60.608	1 -145.859	7/14/98
SD O c sd yoy 60.24617 -147.434 722508 SD 3 c sd yoy 60.24617 -147.434 722508 SD 6 c sd yoy 60.24617 -147.434 72508 SD 40 c h yoy 60.24617 -147.408 72598 SD 3 c h yoy 60.25417 -147.408 72598 SD 4 c sd yoy 60.3035 -147.357 72598 SD 1 c h.sd yoy 60.3035 -147.357 72598 SD 10 c h.sd yoy 60.3035 -147.357 72598 SD 13 c h.sd yoy 60.3035 -147.334 73098 SD 15 c h.sd yoy <td< td=""><td>Н</td><td>3</td><td>С</td><td>sd</td><td>уоу</td><td></td><td></td><td></td><td>60.2461</td><td>7 -147.434</td><td>7/25/98</td></td<>	Н	3	С	sd	уоу				60.2461	7 -147.434	7/25/98
SD 3 c sd yoy c </td <td>SD</td> <td>0</td> <td>с</td> <td>sd</td> <td>уоу</td> <td></td> <td></td> <td></td> <td>60.2461</td> <td>7 -147.434</td> <td>7/25/98</td>	SD	0	с	sd	уоу				60.2461	7 -147.434	7/25/98
SD Sc sd yoy Parts Pars Parts	SD	3	с	sd	уоу				60.2461	7 -147.434	7/25/98
SD 5 c sd yoy c 60.24517 :147.434 72596 SD 3 c h yoy c 60.25416 :147.408 72596 SD 3 c h yoy c 60.25417 :147.408 72596 SD 4 c sd yoy c 60.25417 :147.408 72596 SD 1 c h,sd yoy c 60.3035 :147.355 72596 SD 10 c h,sd yoy c 60.3035 :147.355 72596 SD 10 c h,sd yoy c 60.3035 :147.357 72596 SD 15 c h,sd yoy c 60.27516 :147.334 73006 SD 10 v h yoy c 60.27516 :147.334 73006 SD 10 v h yoy c 60.27618 :147.319 73086 SD 10 v h yoy <td>SD</td> <td>5</td> <td>с</td> <td>sd</td> <td>уоу</td> <td></td> <td></td> <td></td> <td>60.2461</td> <td>7 -147.434</td> <td>7/25/98</td>	SD	5	с	sd	уоу				60.2461	7 -147.434	7/25/98
SD 40[c h yoy 60.24416 -147.408 772598 SD 3 c h yoy 60.25416 -147.408 72598 SD 3 c h yoy 60.25417 -147.408 72598 SD 4 c ad yoy 60.335 -147.408 72598 SD 1 c h.ad yoy 60.335 -147.355 72598 SD 10 c h.ad yoy 60.3335 -147.355 72598 SD 10 c h.ad yoy 60.3335 -147.355 72598 SD 10 c h.ad yoy 60.27516 -147.334 73098 SD 10 v h yoy 60.27516 -147.334 73098 SD 10 v h yoy 60.2783 -147.319 73098 SD 15 c h yoy 60.2783 -147.319 73098 SD 10 v ad yoy 60	SD	5	с	sd	уоу				60.2461	7 -147.434	7/25/98
SD 3 c h yoy 60.25416 -147.408 772598 SD 3 c h yoy 60.25417 -147.408 772598 SD 1 c h.sd yoy 60.25417 -147.408 772598 SD 1 c h.sd yoy 60.3035 -147.355 772598 SD 10 c h.sd yoy 60.3035 -147.355 772598 SD 10 c h.sd yoy 60.3035 -147.355 772598 SD 10 c h.sd yoy 60.27516 -147.334 773098 SD 10 v h yoy 60.27516 -147.334 73098 SD 10 v h yoy 60.2783 -147.319 73098 SD 10 v h yoy 60.2783 -147.314 73098 SD 15 c h yoy 60.5105 -148.403 771199 SD 10 v sd yoy	SD	40	с	h	уоу				60.2541	6 -147.408	7/25/98
SD 3 n yoy 0 60.2417 147.408 7/2598 SD 1 n.k.dl yoy 0 60.335 147.355 7/2598 SD 1.0 n.k.dl yoy 0 60.333 147.355 7/2598 SD 100 n.k.dl yoy 0 60.3335 147.355 7/2598 SD 100 n.k.dl yoy 0 60.3335 147.355 7/2598 SD 10 n.k.dl yoy 0 60.335 147.355 7/2598 SD 10 n.k.dl yoy 0 60.27516 147.334 7/3098 SD 10 v h yoy 0 60.27518 147.319 7/3098 SD 10 v h yoy 0 60.27518 147.319 7/3098 SD 10 v yoy 0 60.5105 146.403 7/1198 SD 0	SD	3	с	h	уоу				60.2541	6 -147.408	7/25/98
SD 4 c sd yoy 60.25417 -147.408 772598 SD 1 c h.sd yoy 60.3335 -147.355 772598 SD 100 c h.sd yoy 60.3335 -147.355 772598 SD 100 c h.sd yoy 60.3335 -147.355 772598 SD 15 c h.sd yoy 60.27516 -147.334 773098 SD 15 c h.yoy 60.27516 -147.334 773098 SD 15 c h.yoy 60.27516 -147.334 773098 SD 15 c h.yoy 60.2763 -147.319 773098 SD 15 c h.yoy 60.5105 -146.403 771199 SD 15 c h.yoy 60.5105 -146.403 771199 SD 0 sd yoy 60.5105 -146.403 771199	SD	3	с	h	yoy				60.2541	7 -147.408	7/25/98
SD 1 c h,sd yoy c 60.0335 -147.355 7725/98 SD 2 c h,sd yoy c 60.0335 -147.355 7725/98 SD 100 c h,sd yoy c 60.0335 -147.355 7725/98 SD 15 c h,sd yoy c 60.0335 -147.355 7725/98 SD 15 v h yoy c 60.27516 -147.334 730/98 SD 10 v h yoy c 60.27516 -147.334 730/98 SD 15 c h yoy c 60.29783 -147.334 730/98 SD 15 c h yoy c 60.29783 -147.334 730/98 SD 15 c h yoy c 60.5105 146.403 711/99 SD 0 V sd yoy <t< td=""><td>SD</td><td>4</td><td>с</td><td>sd</td><td>yoy</td><td></td><td></td><td></td><td>60.2541</td><td>7 -147.408</td><td>7/25/98</td></t<>	SD	4	с	sd	yoy				60.2541	7 -147.408	7/25/98
SD 2 h,sd yoy 60.0035 147.355 77.25/98 SD 100 h,sd yoy 60.0035 147.355 77.25/98 SD 15 h,sd yoy 60.0035 147.355 77.25/98 SD 15 h,sd yoy 60.2751 147.355 77.25/98 SD 15 v h yoy 60.27516 147.334 730/98 SD 10 v h yoy 60.27516 147.334 730/98 SD 15 c h yoy 60.27783 147.319 730/98 SD 15 c h yoy 60.29783 147.319 730/98 SD 15 c h yoy 60.5105 146.403 7/1199 SD 0 v sd yoy 60.5105 146.403 7/1199 SD 0 v sd yoy 60.5105 146.403 7/1199	SD	1	с	h,sd	vov				60.303	5 -147.355	7/25/98
SD 100 c h,sd yoy B 60.0333 147.355 77.25/98 SD 10 c h,sd yoy 0 60.3035 147.355 77.25/98 SD 15 v h yoy 0 60.27516 147.334 77.30/98 SD 10 v h yoy 0 60.27516 147.334 77.30/98 SD 10 v h yoy 0 60.27516 147.334 77.30/98 SD 10 v h yoy 0 60.27783 147.319 77.098 SD 15 c h yoy 0 60.2793 147.319 77.098 H 100 v sd yoy 0 60.5105 146.403 7/11/99 SD 0 V sd yoy 0 60.5105 146.403 7/11/99 SD 0 V sd yoy 0 60.5105 146.403 7/11/99 SD 0 V<	SD	2	с	h,sd	vov				60.303	5 -147.355	7/25/98
SD 10 h.sd yoy 60.3035 -147.355 77.2598 SD 15 h.sd yoy 60.3035 -147.355 77.2598 SD 15 h yoy 60.27516 -147.334 730/98 SD 10 h yoy 60.27516 -147.334 730/98 SD 25 h yoy 60.27751 -147.334 730/98 SD 15 h yoy 60.29783 -147.319 730/98 SD 15 h yoy 60.5105 -146.403 7/11/99 SD 15 h yoy 60.5105 -146.403 7/11/99 SD 0 sd yoy 60.5105	SD	100	с	h.sd	vov				60.303	5 -147.355	7/25/98
SD 15 c h,sd yoy 60.3035 -147.335 772598 SD 15 v h yoy 60.27516 -147.334 7730/98 SD 10 v h yoy 60.27516 -147.334 7730/98 SD 10 v h yoy 60.2756 -147.334 7730/98 SD 25 c h yoy 60.29783 -147.319 7730/98 SD 15 c h yoy 60.29783 -147.319 7730/98 SD 15 c h yoy 60.29783 -147.319 7730/98 SD 15 c h yoy 60.5105 -146.403 7/11/99 SD 0 V sd yoy	SD	10	c	h.sd	vov				60.303	5 -147.355	7/25/98
SD 115 N No 10000 10000 <td>SD</td> <td>15</td> <td>c</td> <td>h sd</td> <td>VOV</td> <td></td> <td></td> <td></td> <td>60.303</td> <td>5 -147 355</td> <td>7/25/98</td>	SD	15	c	h sd	VOV				60.303	5 -147 355	7/25/98
SD 10 N 100 N 1000 1000 <td>SD</td> <td>15</td> <td>v</td> <td>h,ou</td> <td>VOV</td> <td></td> <td></td> <td></td> <td>60.2751</td> <td>6 -147 334</td> <td>7/30/98</td>	SD	15	v	h,ou	VOV				60.2751	6 -147 334	7/30/98
SD 10 N yoy 000 170302 SD 10 v h yoy 60.27766 -147.334 7730/88 SD 25 c h yoy 60.29783 -147.319 7730/88 SD 15 c h yoy 60.29783 -147.319 7730/88 SD 15 c h yoy 60.5105 -146.403 7/11/99 SD 0 V sd yoy 60.5105 -146.4	SD	10	v	h	vov				60.2751	6 -147 334	7/30/98
SD COLUMN Column <thcolumn< th=""> <thcolumn< th=""></thcolumn<></thcolumn<>	90 90	10	v	h	vov				60.2751	6 -147 334	7/30/08
DD L30 V H yoy D D0 U D0 L3100 H17130 H17300 S SD 15 c h yoy 0 60.5105 146.403 T/1199 SD 0 V sd yoy 0 60.5105 146.403 T/1199 SD 0 V sd yoy 0 60.5105 146.403 T/1199 SD 0 V sd yoy 0 60.5105 146.403 T/1199 SD 0 V sd yoy 0 60.5105 146.403 T/1199 SD 0 V sd yoy 0 60.5105	00 SD	25	v C	h	vov				60 2078	3 _147 310	7/30/08
In In Joy In Joy In Joy In Joy Joy In Joy	5D Ц	15		n h	yoy				60 2078	3 147.313	7/30/08
SD 10 V sd yoy 60.23783 147.318 77.30383 H 100 V sd yoy 60.5105 146.403 77.1199 SD 0 V sd yoy	11 9D	15	0	h	yoy				60.2970	2 147.319	7/20/00
H 100 V sd yoy 60.510 -140.403 7/1199 SD 0 V sd yoy 60.5105 -146.403 7/1199 SD 0 V sd yoy	<u>эр</u>	10		11 od	yoy				60.510	5 147.319	7/11/00
H O V Sd yoy 60.5105 -146.403 7/11/99 SD 0 V sd yoy 60.5105 -146.403 7/11/99 H 100 V sd yoy 60.5105 -146.403 7/11/99 SD 0 V sd yoy </td <td></td> <td>100</td> <td>V</td> <td>su</td> <td>yoy</td> <td></td> <td></td> <td></td> <td>60.510</td> <td>5 -140.403</td> <td>7/11/99</td>		100	V	su	yoy				60.510	5 -140.403	7/11/99
SD 0 v sd yoy 0 60.5105 -146.403 //11/99 SD 0 V sd yoy 0 60.5105 -146.403 7/11/99 SD 0 V sd yoy 0 60.5105 -146.403 7/11/99 SD 0 V sd yoy 0 60.5105 -146.403 7/11/99 H 100 V sd yoy 0 60.5105 -146.403 7/11/99 SD 0 V sd yoy 0 60.5105 -146.403 7/11/99 SD 0 V sd yoy 0 60.5105 -146.403 7/11/99 SD 0 V sd yoy 0 60.5105 -146.403 7/11/99 SD 0 V sd yoy 0 60.516 -146.402 7/11/99 H 100 V sd yoy 0		0	V	su	yoy				60.510	5 -140.403	7/11/99
SD 0 V sd yoy 0 60.5105 -146.403 //11/99 SD 0 V sd yoy 0 60.5105 -146.403 7/11/99 H 100 V sd yoy 0 60.5105 -146.403 7/11/99 H 0 V sd yoy 0 60.5105 -146.403 7/11/99 SD 0 V sd yoy 0 60.5105 -146.403 7/11/99 SD 0 V sd yoy 0 60.5105 -146.403 7/11/99 SD 0 V sd yoy 0 60.5105 -146.403 7/11/99 SD 0 V sd yoy 0 60.5105 -146.403 7/11/99 SD 0 V sd yoy 0 60.516 -146.402 7/11/99 SD 0 V sd yoy 0	5D 0D	0	V	sa	уоу				60.510	5 -146.403	7/11/99
SD 0 v sd yoy o 60.5105 148.403 7/11/99 SD 0 V sd yoy 0 60.5105 148.403 7/11/99 H 100 V sd yoy 0 60.5105 146.403 7/11/99 SD 0 V sd yoy 0 60.5105 146.403 7/11/99 SD 0 V sd yoy 0 60.5105 146.403 7/11/99 SD 0 V sd yoy 0 60.5105 146.403 7/11/99 SD 0 V sd yoy 0 60.5105 146.403 7/11/99 SD 0 V sd yoy 0 60.516 146.402 7/11/99 H 100 V sd yoy 0 60.516 146.402 7/11/99 SD 2000 V sd yoy 0	SD	0	V	sa	уоу				60.510	5 -146.403	7/11/99
SD 0 V sd yoy 60.5105 -146.403 //11/99 H 100 V sd yoy 60.5105 -146.403 7/11/99 H 0 V sd yoy 60.5105 -146.403 7/11/99 SD 0 V sd yoy 60.5105 -146.403 7/11/99 H 100 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy <td>SD</td> <td>0</td> <td>V</td> <td>sa</td> <td>уоу</td> <td></td> <td></td> <td></td> <td>60.510</td> <td>5 -146.403</td> <td>7/11/99</td>	SD	0	V	sa	уоу				60.510	5 -146.403	7/11/99
H 100 V sd yoy Image: Constraint of the second sec	SD	0	V	sd	уоу				60.510	5 -146.403	//11/99
H 0 V sd yoy 60.5105 -146.403 7/11/99 SD 0 V sd yoy 60.5105 -146.403 7/11/91 H 100 V sd yoy 60.516 -146.402 7/11/91 H 30 V sd yoy 60.516 -146.402 7/11/91 H 400 V sd yoy 60.516 -146.402 7/11/91 SD 0 V sd yoy 60.516 -146.402 7/11/91 SD 2000 V sd yoy 60.516 -146.402 7/11/91 H 100 V sd yoy 60.516 -146.402 7/11/91 SD 2000 V sd yo	H	100	V	sd	уоу				60.510	5 -146.403	7/11/99
SD 0 V sd yoy 60.5105 -146.403 7/11/99 H 100 V sd yoy 60.516 -146.402 7/11/99 H 30 V sd yoy 60.516 -146.402 7/11/99 H 40 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 2000 V sd yoy 60.516 -146.402 7/11/99 H 100 V sd yoy 60.516 -146.402 7/11/99 SD 00 V sd <td>Н</td> <td>0</td> <td>V</td> <td>sd</td> <td>уоу</td> <td></td> <td></td> <td></td> <td>60.510</td> <td>5 -146.403</td> <td>7/11/99</td>	Н	0	V	sd	уоу				60.510	5 -146.403	7/11/99
SD 0 V sd yoy 60.5105 -146.403 7/11/99 SD 0 V sd yoy 60.5105 -146.403 7/11/99 SD 0 V sd yoy 60.5105 -146.403 7/11/99 H 100 V sd yoy 60.5105 -146.402 7/11/99 H 30 V sd yoy 60.5105 -146.402 7/11/99 H 40 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 2000 V sd yoy 60.516 -146.402 7/11/99 H 100 V sd yoy 60.516 -146.402 7/11/99 H 30 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy </td <td>SD</td> <td>0</td> <td>V</td> <td>sd</td> <td>уоу</td> <td></td> <td></td> <td></td> <td>60.510</td> <td>5 -146.403</td> <td>7/11/99</td>	SD	0	V	sd	уоу				60.510	5 -146.403	7/11/99
SD 0 V sd yoy 60.5105 -146.403 7/11/99 SD 0 V sd yoy 60.5105 -146.403 7/11/99 H 100 V sd yoy 60.5105 -146.402 7/11/99 H 30 V sd yoy 60.516 -146.402 7/11/99 H 40 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 2000 V sd yoy 60.516 -146.402 7/11/99 H 100 V sd yoy 60.516 -146.402 7/11/99 H 30 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd	SD	0	V	sd	уоу				60.510	5 -146.403	7/11/99
SD 0 V sd yoy 60.5105 -146.403 7/11/99 H 100 V sd yoy 60.510 -146.402 7/11/99 H 30 V sd yoy 60.516 -146.402 7/11/99 H 40 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 2000 V sd yoy 60.516 -146.402 7/11/99 H 100 V sd yoy 60.516 -146.402 7/11/99 H 30 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy <td< td=""><td>SD</td><td>0</td><td>V</td><td>sd</td><td>уоу</td><td></td><td></td><td></td><td>60.510</td><td>5 -146.403</td><td>7/11/99</td></td<>	SD	0	V	sd	уоу				60.510	5 -146.403	7/11/99
H 100 V sd yoy 60.516 -146.402 7/11/99 H 30 V sd yoy 60.516 -146.402 7/11/99 H 40 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 2000 V sd yoy 60.516 -146.402 7/11/99 H 100 V sd yoy 60.516 -146.402 7/11/99 H 100 V sd yoy 60.516 -146.402 7/11/99 H 100 V sd yoy 60.516 -146.402 7/11/99 H 40 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 2000 V sd yoy 60.516 -146.402 7/11/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy </td <td>SD</td> <td>0</td> <td>V</td> <td>sd</td> <td>уоу</td> <td></td> <td></td> <td></td> <td>60.510</td> <td>5 -146.403</td> <td>7/11/99</td>	SD	0	V	sd	уоу				60.510	5 -146.403	7/11/99
H 30 V sd yoy 60.516 -146.402 7/11/99 H 40 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 2000 V sd yoy 60.516 -146.402 7/11/99 H 100 V sd yoy 60.516 -146.402 7/11/99 H 100 V sd yoy 60.516 -146.402 7/11/99 H 100 V sd yoy 60.516 -146.402 7/11/99 H 400 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 2000 V sd yoy 60.811 -146.402 7/11/99 H 250 N yoy </td <td>Н</td> <td>100</td> <td>V</td> <td>sd</td> <td>уоу</td> <td></td> <td></td> <td></td> <td>60.51</td> <td>6 -146.402</td> <td>7/11/99</td>	Н	100	V	sd	уоу				60.51	6 -146.402	7/11/99
H 40 ∨ sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 2000 V sd yoy 60.516 -146.402 7/11/99 H 100 V sd yoy 60.516 -146.402 7/11/99 H 30 V sd yoy 60.516 -146.402 7/11/99 H 40 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 H 2000 V sd yoy 60.516 -146.402 7/11/99 H 250 V h yoy	Н	30	V	sd	уоу				60.51	6 -146.402	7/11/99
SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 2000 V sd yoy 60.516 -146.402 7/11/99 H 100 V sd yoy 60.516 -146.402 7/11/99 H 30 V sd yoy 60.516 -146.402 7/11/99 H 40 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 2000 V sd yoy 60.816 -146.402 7/11/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 250 V h yoy <td>Н</td> <td>40</td> <td>V</td> <td>sd</td> <td>уоу</td> <td></td> <td></td> <td></td> <td>60.51</td> <td>6 -146.402</td> <td>7/11/99</td>	Н	40	V	sd	уоу				60.51	6 -146.402	7/11/99
SD 2000 V sd yoy 60.516 -146.402 7/11/99 H 100 V sd yoy 60.516 -146.402 7/11/99 H 30 V sd yoy 60.516 -146.402 7/11/99 H 40 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 2000 V sd yoy 60.516 -146.402 7/11/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy <td>SD</td> <td>0</td> <td>V</td> <td>sd</td> <td>уоу</td> <td></td> <td></td> <td></td> <td>60.51</td> <td>6 -146.402</td> <td>7/11/99</td>	SD	0	V	sd	уоу				60.51	6 -146.402	7/11/99
H 100 V sd yoy 60.516 -146.402 7/11/99 H 30 V sd yoy 60.516 -146.402 7/11/99 H 40 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 2000 V sd yoy 60.516 -146.402 7/11/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy <td>SD</td> <td>2000</td> <td>V</td> <td>sd</td> <td>уоу</td> <td></td> <td></td> <td></td> <td>60.51</td> <td>6 -146.402</td> <td>7/11/99</td>	SD	2000	V	sd	уоу				60.51	6 -146.402	7/11/99
H 30 V sd yoy 60.516 -146.402 7/11/99 H 40 V sd yoy 60.516 -146.402 7/11/99 SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 2000 V sd yoy 60.516 -146.402 7/11/99 H 250 V h yoy 60.516 -146.402 7/11/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy <td>Н</td> <td>100</td> <td>V</td> <td>sd</td> <td>уоу</td> <td></td> <td></td> <td></td> <td>60.51</td> <td>6 -146.402</td> <td>7/11/99</td>	Н	100	V	sd	уоу				60.51	6 -146.402	7/11/99
H 40 V sd yoy Image: Mark and the state of	Н	30	V	sd	уоу				60.51	6 -146.402	7/11/99
SD 0 V sd yoy 60.516 -146.402 7/11/99 SD 2000 V sd yoy 60.516 -146.402 7/11/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy<	Н	40	V	sd	уоу				60.51	6 -146.402	7/11/99
SD 2000 V sd yoy 60.516 -146.402 7/11/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99	SD	0	V	sd	уоу				60.51	6 -146.402	7/11/99
H 250 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99	SD	2000	V	sd	уоу				60.51	6 -146.402	7/11/99
H 400 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99	Н	250	V	h	уоу				60.821	7 -146.711	7/17/99
H 500 V h yoy 60.8217 -146.711 7/17/99 H 250 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99	Н	400	V	h	уоу				60.821	7 -146.711	7/17/99
H 250 V h yoy 60.8217 -146.711 7/17/99 H 400 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99	Н	500	V	h	уоу				60.821	7 -146.711	7/17/99
H 400 V h yoy 60.8217 -146.711 7/17/99 H 500 V h yoy 60.8217 -146.711 7/17/99	Н	250	V	h	уоу				60.821	7 -146.711	7/17/99
H 500 V h yoy 60.8217 -146.711 7/17/99	Н	400	V	h	уоу				60.821	7 -146.711	7/17/99
	Н	500	V	h	уоу				60.821	7 -146.711	7/17/99

SD	1000	V	sd	уоу						60.7078	-146.685	7/17/99
SD	1000	V	sd	уоу						60.7078	-146.685	7/17/99
Н	600	С	h	уоу	58.9	sd	91.5	gad	46.4	60.6815	-146.572	7/18/99
SD	1000	С	h	уоу	58.9	sd	91.5	gad	46.4	60.6815	-146.572	7/18/99
Н	600	С	h	уоу	58.9	sd	91.5	gad	46.4	60.6815	-146.572	7/18/99
SD	1000	С	h	уоу	58.9	sd	91.5	gad	46.4	60.6815	-146.572	7/18/99
SD	100	С	gad	уоу	57.1	sa	121			60.755	-146.568	7/17/99
SD	100	С	gad	уоу	57.1	sa	121			60.755	-146.568	7/17/99
SD	30	С	gad	уоу	57.1	sa	121			60.755	-146.568	7/17/99
SD	100	С	gad	уоу	57.1	sa	121			60.755	-146.568	7/17/99
SD	100	С	gad	уоу	57.1	sa	121			60.755	-146.568	7/17/99
SD	30	С	gad	уоу	57.1	sa	121			60.755	-146.568	7/17/99
SD	150	С	gad	уоу	55.7	sa	76.4			60.7882	-146.381	7/17/99
SD	100	С	gad	уоу	55.7	sa	76.4			60.7882	-146.381	7/17/99
SD	75	С	gad	уоу	55.7	sa	76.4			60.7882	-146.381	7/17/99
SD	150	С	gad	уоу	55.7	sa	76.4			60.7882	-146.381	7/17/99
SD	100	С	gad	уоу	55.7	sa	76.4			60.7882	-146.381	7/17/99
SD	75	С	gad	уоу	55.7	sa	76.4			60.7882	-146.381	7/17/99
SD	400	С	h	уоу	48.6					60.7493	-146.327	7/18/99
SD	400	С	h	уоу	48.6					60.7493	-146.327	7/18/99
SD	400	V	sd	уоу						60.524	-147.329	7/28/99
SD	400	V	sd	уоу						60.524	-147.329	7/28/99
SD	400	V	sd	уоу						60.524	-147.329	7/28/99
SD	400	V	sd	уоу						60.524	-147.329	7/28/99
SD	600	V	sd	уоу						60.2077	-147.32	7/28/99
SD	600	V	sd	уоу						60.2077	-147.32	7/28/99
Н	100	V	h	уоу		1				60.867	-147.255	7/26/99
Н	100	V	h	уоу		1				60.867	-147.255	7/26/99
SD	400	С	sd							60.357	-147.399	7/31/99
SD	0	С	sd							60.357	-147.399	7/31/99
SD	0	С	sd							60.357	-147.399	7/31/99
SD	800	С	sd							60.357	-147.399	7/31/99
SD	200	С	sd							60.357	-147.399	7/31/99
SD	400	С	sd							60.357	-147.399	7/31/99
SD	0	С	sd							60.357	-147.399	7/31/99
SD	0	С	sd							60.357	-147.399	7/31/99
SD	800	С	sd							60.357	-147.399	7/31/99
SD	200	С	sd							60.357	-147.399	7/31/99
		key:		age								
		C=	net catch	yoy=	young of	the year						
		D=	dip net	or age no	o. in years							
		V=	video shot									

APPENDIX III. Aerial Survey Database Documentation

Updated October 20 2000

Number of Tables in Database AERIAL is 29. Number of Columns in Database AERIAL is 286. Number of Indexes in Database AERIAL is 14.

Tables in the Database AERIAL

Name	Columns	Rows	Name	Columns	Rows
notes Sighting9899 Weather Valid CASI FlightLog keybehavior	6 25 15 32 8 13 2	1581 21560 533 715 799 318 9	FlightPath KeyCodes KeySpecies gridlist Sighting9597 keyshape FishSurfaceAreas	13 2 15 27 2 16	55119 16 35 3467 6756 9 8125
Table: KeyCodes		No Lock(s)			

No Lock(s) Descr: Codes for Flightlog No. Column Name Attributes 1 KCode Type : TEXT 3

```
Default: B
                    Comment: Code used in Flightlog table
2 KNotes
                    Type : TEXT 35
                    Comment: Definition for code
Current number of rows:
                       16
```

No Lock(s) Table: KeySpecies Descr: Species codes No. Column Name Attributes ____ _____ Type : TEXT 4 1 spcode Comment: 2 letter species code

```
2 spname
                    Type : TEXT 25
                    Comment: long name for species
Current number of rows:
                        35
```

Table: keyshape No Lock(s) Descr: key for school shape codes No. Column Name Attributes ____ ____ 1 shpcode Type : TEXT 4 Comment: 1-3 letter shape code 2 shpdesc Type : TEXT 25 Comment: description of shape Current number of rows: 9

Table: keybehavior No Lock(s) Descr: key codes for bird behavior No. Column Name No. Column Name Attributes 1 behcode Type : TEXT 4 Comment: 2 letter behavior code in Act columns Type : TEXT 25 2 behavior Comment: type of behavior coded Current number of rows: 9 Table: FlightLog No Lock(s) Descr: List of all surveys conducted No. Column Name Attributes --- -----------1 FileName Type : TEXT 13 Comment: Flightpath file and/or sighting filename Type : TEXT 13 2 Flightpath Comment: Filename for flightpaths associated with survey Type : TEXT 5 3 Stype Default: B Comment: Type of survey conducted 4 VType Туре : TEXT 4 Default: Comment: Type of Validation Made 5 VCatch : TEXT 3 Туре Default: Comment: Validation Catches Made : TEXT 3 6 Digitized Туре Default: N Comment: File was digitized or not (Y or N) Туре Туре 7 Airplane : TEXT 6 8 Pilot : TEXT 15 9 Video Type : TEXT 1 10 AirNote Type : TEXT 80 11 GMTDate Type : DATE 12 GMTTime Type : TIME Type : TIME 13 ASTTime Default: 00:00:00 Comment: Alaska Standard Time Current number of rows: 318

Ta De	able: Weather escr: Weather log fo	No Lock(s) pr surveys
NO.		ALLIDULES
1 2	filename SeaState	Type : TEXT 13 Type : TEXT 4
3	Direction	Comment: Beaufort scale of sea state Type : TEXT 4 Comment: Wind direction - coming from
4	WindSpeed	Type : TEXT 4 Comment: wind speed estimate in knots (by water surface)
5	Cloud	Type : TEXT 4 Comment: cloud cover in % cover of sky
6	Visibility	Type : TEXT 4 Comment: visibility code; see key
7	TideStage	Type : TEXT 4 Comment: flood, ebb, slack high, slack low, etc codes
8	WaveHT	Type : TEXT 8 Comment: estimated wave height in feet
9	Altitude	Type : INTEGER Comment: altitude of aircraft in feet
10	EnvNote	Type : TEXT 80 Comment: notes about weather/survey conditions
11 12 13 14	Latitude Longitude GMTTime ASTTime	Type : REAL Type : REAL Type : TIME Type : TIME Default: 00:00:00 Comment: Alaska Standard Time
15 Cເ	GMTDate arrent number of row	Type : DATE vs: 533
Ta No.	able: notes Column Name	No Lock(s) Attributes
 1 2 3 4 5 6 Cu	filename Notettext latitude longitude GMTTime GMTDate urrent number of row	Type : TEXT 13 Type : TEXT 100 Type : REAL Type : REAL Type : TIME Type : DATE vs: 1581

Т	able: FlightPath	No Lock(s)
D	escr: Processed Flig	ght Path Data
No.	Column Name	Attributes
		штиш 10
T	Filename	Type : TEXT 13
		Comment: Raw data filename
2	Latitude	Type : REAL
3	longitude	Type : REAL
4	GMTTime	Type : TIME
5	ASTTime	Type : TIME
		Default: 00:00:00
		Comment: Alaska Standard Time
6	GMTDate	Type : DATE
7	YEAR	Type : INTEGER
8	MONTH	Type : INTEGER
9	Altitude	Type : INTEGER
10	Distkm	Type : REAL
11	TtlKm	Type : REAL
12	Swath	Type : REAL
		Compute: ((tan(70)-tan(50))*Altitude/3.2808)
		Comment: Aerial swath in meters
13	Area	Type : REAL
		Compute: (Distkm*Swath/1000)
		Comment: Flight path bin in km ²
C	urrent number of row	vs: 55119

Ta De No.	able: Sighting9597 escr: All aerial s Column Name	ighting Attri	No s fi bute	Lock(s) om 95-97 s		
1	FileName	Туре	:	TEXT 13		
2	Latitude	Туре	:	REAL		
3	Longitude	Type	:	REAL		
4	GMTTIME	Туре	:	T.T.ME		
5	GMIDALE	Туре	:	DATE		
0 7		Type	:	INIEGER TEVT 1		
	512e	Type	:	IEAL 4 DENI		
0	tickulam	Type	:	REAL		
10	Shape	Type	•	TEAD TEYT A		
11	Snecies	Type	:	TEXT 4 TEXT 4		
12	Validate	Type	:	TEXT 4		
13	DistShore	Type	:	TEXT 4		
14	bird1	Type		TEXT 4		
15	NumBird1	Type	:	INTEGER		
16	bird2	Type	:	TEXT 4		
17	Numbird2	Type	:	INTEGER		
18	bird3	Type	:	TEXT 4		
19	Numbird3	Type	:	INTEGER		
20	Act1	Type	:	TEXT 4		
21	Act2	Type	:	TEXT 4		
22	Act3	Type	:	TEXT 4		
23	Feature	Type	:	TEXT 8		
24	SightNote	Type	:	TEXT 80		
25	extrap	Туре	:	TEXT 3		
26	ttlkm	Туре	:	REAL		
27	Altitude	Туре	:	INTEGER		
Cı	irrent number of r	ows:	6756			

Ta De	able: Sighting9899 escr: Sightings for	No Lock(s) 1998-99 using Dlog Program
No.	Column Name	Attributes
1	FileName	Гуре : ТЕХТ 13
2	Latitude	Гуре : REAL
3	Longitude	Гуре : REAL
4	Hour	Гуре : INTEGER
		Default: 00
		Comment: Alaska Standard Hour
5	Minute	Гуре : INTEGER
		Default: 00
		Comment: Alaska Standard Time minute
6	Second	Type : INTEGER
		Default: 00
		Comment: Alaska Standard Time second
7	Year	Гуре : INTEGER
8	Month	Type : INTEGER
9	Day	Гуре : INTEGER
10	IDNumber	Type : INTEGER
		Default: 000
		Comment: Dlog ID sighting number
11	Species	Type : TEXT 4
12	NumSchool	Type : INTEGER
		Comment: Number of species objects sighted
13	Actl	Type : TEXT 4
		Comment: benavior of bird
14	BenavDiam	Type : REAL Commont Diamoton of foundating mottown foundation (m)
1 5	tialdiam	Transformer of foraging pattern for kw (m)
10	CICKUIAIII	Type : REAL Commont, diameter of achool in dichting tube ticks
16	Shapa	Transferrer of school in signifing tube ticks
17		
т,	LIEKeuge	Default: 00
		Comment: width of non-circular schools in tube ticks
18	Distance	Type · REAL
ŦŬ	Dibeance	Comment: distance from water line in meters
19	Angle	Type : REAL
		Comment: Sighting angle from ticks on wing
20	Link	Ivpe : TEXT 5
		Comment: Electronic program link to previous sighting
21	TideStage	Ivpe : TEXT 4
		Comment: Stage of the tide letter code
22	Altitude	Fype : INTEGER
		Comment: Altitude in feet
23	Direction	Гуре : ТЕХТ 4
		Comment: Wind direction source
24	WindSpeed	Гуре : TEXT 4
	-	Comment: Wind speed in knots
25	Conditions	Type : TEXT 15
		Comment: Survey Conditions qualitative
Cı	urrent number of row	s: 21560

Ta De	able: FishSurfaceAre	eas No	o Lock(s) at and long, surface area
No.	Column Name	Attribute	es
1	Latitude	Туре :	REAL
		Comment:	decimal degrees
2	Longitude	Type :	REAL
		Comment:	decimal degrees
3	hour	Type :	INTEGER
		Comment:	AST time integer hour
4	minute	Type :	INTEGER
		Comment:	AST time integer minute
5	year	Type :	INTEGER
	_	Comment:	four digit year
6	month	Type :	INTEGER
_		Comment:	integer month
7	day	Type :	INTEGER
8	numschool	Type :	INTEGER
		Comment:	Number of schools at that lat and long and
	,	_	SIZE
9	shape	Type :	TEXT 4
10		Comment:	school shape descripter
10	species	Type :	TEXT 4
		Comment:	text code for species
ΤT	distsnore	Type :	TEXT 4
10			
12	aititude	Commont:	INIEGER Altitudo at gighting in foot
13	length		PENT.
тJ	Tengen	Comment.	length (diameter) of school(m)
14	breadth		REAL
11	Dicadell	Comment.	width of school (or cross diameter) (m)
15	SA	Type ·	REAL
10		Comment:	surface area of school (a/2*b/2)PI elipse (m^2)
16	TotSA	Tvpe :	REAL
_ 2		Comment:	Total surface area of all schools at location
Cı	irrent number of row	ws: 812	5
Та De	able: Valid escr: Validations	No	b Lock(s)
----------	---------------------------------------	-----------	--
No.	Column Name	Attribute	es
	datecode		чехт 8
Ŧ	datecode	Comment:	Code for year and month of validation
2	filename	Type :	TEXT 13
2	1	Comment:	Filename of raw data file
3	latitude	Comment:	REAL lat of sighting
4	longitude	Type :	REAL
		Comment:	longitude of sighting
5	GMTdate	Type :	DATE
0 7	ASTTime	Type :	
,	110 1 1 1 110	Default:	00:00:00
		Comment:	Alaska Standard Time
8	Schlref#	Type :	INTEGER
		Comment:	Reference number for mapped schools
9	Altitude	Type :	INTEGER
10	NumSchool	Type :	INTEGER
	1101110 0110 01	Comment:	Number of schools at that location
11	Size	Туре :	TEXT 4
		Comment:	Size category of school
12	tickdiam	Type :	REAL
13	tickedge	Type ·	REAT.
10	ereneage	Comment:	Width of school in tube ticks for oblong
			schools
14	Shape	Type :	TEXT 4
1 -	(maging	Comment:	Shape of aerial school
15	Species	Comment:	TEXT 4 Species identified from the air
16	Validate	Type :	TEXT 4
		Comment:	Sighting coded as validated in real time y
		_	or n
17	DistShore	Type :	TEXT 4 Distance in motors from water line
18	Vcode	Type	TEXT 4
ŦO	· · · · · · · · · · · · · · · · · · ·	Comment:	Validated by catch, video or diver
19	Species2	Type :	TEXT 4
		Comment:	Actual species by validation observation
20	Agel	Type :	TEXT 3
		connerre:	abundant
21	Avelen1	Type :	REAL
		Comment:	Average length of most abundant mode
22	Age2	Type :	TEXT 3
		Comment:	Length mode or species of second most
23	Avelen2	Type ·	REAL
20		Comment:	Ave. length of second most abundant mode or
			species
24	Age3	Type :	TEXT 3
		Comment:	Length mode or species of third most
			abundant III Ca
25	Avelen3	Туре :	REAL
		Comment:	Ave. length of third most abundant mode or
			species

26	Validlat	Type : REAL
		Comment: Lat. of validation
27	Vallong	Type : REAL
		Comment: Longitude of validation
28	Setno	Type : TEXT 13
		Comment: Set or reference number of catch or
		validation
29	Catref#	Type : INTEGER
		Comment: Catch reference number for mapping
30	Coorproj	Type : TEXT 8
		Comment: Coordinating project on the ground
31	Settime	Type : TIME
		Comment: Time of validation set
32	Setdate	Type : DATE
		Comment: Date of validation set
	urrent number of rov	ws: 715
Cı		
Cı		
Cı		
Ci Ta	able: CASI	No Lock(s)
Ci Ta De	able: CASI escr: CASI sighting	No Lock(s)
Ci Ta De No.	able: CASI escr: CASI sighting Column Name	No Lock(s) s Attributes
C1 Ta Da No. 	able: CASI escr: CASI sighting: Column Name 	No Lock(s) s Attributes
C1 T3 D6 NO. 1	able: CASI escr: CASI sighting: Column Name Tape	No Lock(s) s Attributes Type : INTEGER Comment: Number of electronic CASI tape
C1 T2 D0 NO. 1 2	able: CASI escr: CASI sighting: Column Name Tape Lineno	No Lock(s) s Attributes Type : INTEGER Comment: Number of electronic CASI tape Type : INTEGER
C1 T2 D0 N0. 1 2	able: CASI escr: CASI sighting: Column Name Tape Lineno	No Lock(s) s Attributes Type : INTEGER Comment: Number of electronic CASI tape Type : INTEGER Comment: Line number within a specific tape
C1 T2 D0 NO. 1 2	able: CASI escr: CASI sighting: Column Name Tape Lineno	No Lock(s) s Attributes Type : INTEGER Comment: Number of electronic CASI tape Type : INTEGER Comment: Line number within a specific tape Type : REAL
C1 T2 D0 NO. 1 2 3 4	able: CASI escr: CASI sighting: Column Name Tape Lineno latitude longitude	No Lock(s) s Attributes Type : INTEGER Comment: Number of electronic CASI tape Type : INTEGER Comment: Line number within a specific tape Type : REAL Type : REAL
C1 T2 D0 NO. 1 2 3 4 5	able: CASI escr: CASI sighting: Column Name Tape Lineno latitude longitude GMTdate	No Lock(s) s Attributes Type : INTEGER Comment: Number of electronic CASI tape Type : INTEGER Comment: Line number within a specific tape Type : REAL Type : REAL Type : DATE
C1 T2 D0 NO. 1 2 3 4 5 6	able: CASI escr: CASI sighting: Column Name Tape Lineno latitude longitude GMTdate NumSchool	No Lock(s) S Attributes Type : INTEGER Comment: Number of electronic CASI tape Type : INTEGER Comment: Line number within a specific tape Type : REAL Type : REAL Type : DATE Type : INTEGER
C1 T2 D0 NO 1 2 3 4 5 6	able: CASI escr: CASI sighting: Column Name Tape Lineno latitude longitude GMTdate NumSchool	No Lock(s) S Attributes Type : INTEGER Comment: Number of electronic CASI tape Type : INTEGER Comment: Line number within a specific tape Type : REAL Type : REAL Type : DATE Type : INTEGER Comment: Number of schools at that coordinate
C1 T2 D0 NO. 1 2 3 4 5 6 7	able: CASI escr: CASI sighting: Column Name Tape Lineno latitude longitude GMTdate NumSchool	No Lock(s) S Attributes Type : INTEGER Comment: Number of electronic CASI tape Type : INTEGER Comment: Line number within a specific tape Type : REAL Type : REAL Type : REAL Type : DATE Type : INTEGER Comment: Number of schools at that coordinate Type : REAL
Cu Ta Do No. 1 2 3 4 5 6 7	able: CASI escr: CASI sighting: Column Name Tape Lineno latitude longitude GMTdate NumSchool SA	No Lock(s) S Attributes Type : INTEGER Comment: Number of electronic CASI tape Type : INTEGER Comment: Line number within a specific tape Type : REAL Type : REAL Type : REAL Type : DATE Type : INTEGER Comment: Number of schools at that coordinate Type : REAL Comment: Surface area of schools at that sighting
C1 T2 D0 NO. 1 2 3 4 5 6 7 8	able: CASI escr: CASI sighting: Column Name Tape Lineno latitude longitude GMTdate NumSchool SA	No Lock(s) Attributes Type : INTEGER Comment: Number of electronic CASI tape Type : INTEGER Comment: Line number within a specific tape Type : REAL Type : REAL Type : REAL Type : DATE Type : INTEGER Comment: Number of schools at that coordinate Type : REAL Comment: Surface area of schools at that sighting Type : INTEGER
C1 T2 D0 NO. 1 2 3 4 5 6 7 8 7	able: CASI escr: CASI sighting: Column Name Tape Lineno latitude longitude GMTdate NumSchool SA rownum	No Lock(s) Attributes Type : INTEGER Comment: Number of electronic CASI tape Type : INTEGER Comment: Line number within a specific tape Type : REAL Type : REAL Type : REAL Type : DATE Type : INTEGER Comment: Number of schools at that coordinate Type : REAL Comment: Surface area of schools at that sighting Type : INTEGER WS: 799

Та	able: gridlist	No I	Lock(s)
D	escr: Gridded data	for CASI/Vis	sual Analysis; scale study
No.	Column Name	Attributes	
1	Таре	Type : IN	VTEGER
		Comment: ta	ape number CASI image is from
2	Lineno	Type : IN	NTEGER
		Comment: Li	ine or transect number for image within tape
3	latitude	Type : RH	EAL
		Comment: de	ec. degrees of center of grid block
4	longitude	Type : RH	EAL
		Comment: de	ec. degrees of center of grid block
5	GMTdate	Type : DA	ATE
6	NumSchool	Type : IN	VTEGER
		Comment: nu	umber of schools identified within the block
7	SA	Type : RH	EAL
		Comment: to	otal surface area of schools within block
8	Rownum	Type : IN	NTEGER
		Comment: ro	ow number of sighting
9	region	Туре : ТІ	EXT 10
		Comment: re	egion number for grid
10	gridsize	Type : IN	NTEGER
		Comment: si	ize of grid in km lineal length
11	gridnum	Type : IN	ITEGER
		Comment: nu	umber of individual grid
12	stlat	Type : RI	EAL
	_	Comment: st	carting latitude of grid
13	stlong	Type : RH	CAL
		Comment: st	carting long. of grid
14	enlat	Type : RI	SAL
		Comment: er	nding lat. of grid
No.	Column Name	Attributes	
12	enrong	Commont: ar	1AL ading longitudo of grid
C	urrent number of ro	3467	lating tongtcude of grid

Coding Information and Keys:

Note: many columns are shared between tables; keys for each column are given only once.

GPS Data Collected continuously using NMEA 183b from 1995-1997, NMEAc from 1998-1999

Weather Table:

Seastate	<0-Calm, 0.5-Slight, 1, 2-Choppy>
Wind Direction	<n,s,e,w,ne,></n,s,e,w,ne,>
Wind speed (MPH)	
Cloud cover; percentage cover	<1100>
Visibility	<distance in="" miles="" nautical=""></distance>
Tidestage	<sl-slack high,f-flood="" low,e-ebb,sh-slack=""></sl-slack>

Sighting9597 Table

Size (if not null) Tickdiam; tickedge	< D 1-3.5m, S 3.5-6.5m, M 6.5-14m, L 14m in diameter, SP Spawn> <direct depends="" fromtube;="" measurements="" of="" on<br="" reading="" sizing="" tick="">altitude; first entry only if school is circular (diameter) second entry if school oblong (length X width)></direct>
Shape	<r-round, i-irregular,="" j-jumpers="" o-oblong,="" s-s="" shaped,="" st,<br="" u-ushaped,="">str-Streak, SP-Spawning Schools></r-round,>
Species	<h-herring, c-capelin,="" j-jellies,="" sa-salmon,="" sd-sandlance,="" uf-<br="">Unidentified Forage Fish, JS-Juvenile Salmon, PO-Pollock, E-Eulachon (candlefish)></h-herring,>
Validated	<y+ acoustic="" default="" id,="" measurement,="" n,="" negative="" not="" or="" positive="" validated="" y,="" y-="" ya=""></y+>
Distshore	<n-nearshore (="" (500-1800m),o-offshore="" (<500m),="" m-midshore="">1800m)>1996-1997 data, give actual distance estimate in meters</n-nearshore>
Bird1, bird2, bird3	<kw-kittiwake, duck,="" gull,="" se-specled<br="" ud-unknown="" ug-unknown="">Eider, CO-Comorants, SB-Shorebirds, GW-Glaucous wing, AL-Alcid or Diving duck, LWB-Little white birds, BE-Eagle, BH-Blue Heron, SL- Sealion, SO-Sea otter, OR-Orca or Killer whale, MW-Minke Whale,HW- Humpback Whale, UW-Unknown Whale, DP-Dahl Porpoise, SS-Salmon shark, UB-Unknown bird (not gull or duck), CG-Canada geese, CR- Cranes, AT-Arctic Tern, PJ - Parasitic Jaeger></kw-kittiwake,>
Act1, act2, act3	<bs-broad area="" foraging,="" or="" pl-plunging="" rs-rest<br="" search,="" tr-traveling,="">on shore, RW-Rest on water, TW-Tight aggregation on water, ML- Milling> note: in 98-99, these codes were combined in a single column when multiple behaviors were observed</bs-broad>
Feature Note	<tr-tide rip=""> note: this is in species column in 98-99 data <misc.,physical altitude="" change="" features,=""></misc.,physical></tr-tide>
Sighting9899 Table:	
Species	<now above="" all="" and="" birds="" codes="" fish,="" here;="" mammal="" see=""></now>
Numschool Act1	<numbers individuals="" of="" or="" schools="" species="" this=""> <behavior birds;="" codes="" common="" in="" most="" observed;="" of="" order="" see<br="">above></behavior></numbers>
Valid Table:	
Sch. Ref #	<1-1000> Reference to mapped sightings only
Validated	<y+ acoustic="" id,="" measurement,="" n="" not="" or="" or<br="" positive="" validated="" y,="" ya="">Default> y for 1998-99 means validations recorded in real time</y+>
Vcode	<c=catch, d="diver," scam="camera" skiff,="" v="video"></c=catch,>
Species2	Species of validation observation; primary or predominant in catch/observation
Age1	<1=size mode 1 (yoy), 2=size mode 2 (1+), 3=size mode 3 (adults), a=adults, j=juveniles>Primary size mode of 1 st predominant species
Avelen1	Avg length of 1 st predominant species
Age 2	Species of 2nd predominant species or secondary size mode of 1st predominant species
Avelen2	Avg length of 2 nd predominant species or size mode
Age3	Species of 3 ^{ra} predominant species or tertiary size mode of primary species
Avelen3	Avg length of 3 ¹⁰ predominant species or size mode
Validlat	latitude of validation
Vallong	longitude of validation

Setno. Catref # Coorproj Settime Setdate	Set number or reference number of catch/observation Reference to catches mapped only <apex, mamu,="" nvp,="" sea,="" uaf=""> AST time of catch AST date of catch10 chars</apex,>	
Flightpath Table		
Distkm Ttlkm Swath Area	Distance along the transect (calculated while processing flight path) in km Cumulative distance along the transect in km Area in m calculated by: (Tan(70)-Tan(50)) * Altitude) / 3.2808 ft/m Flightpath bin calculated by: Distkm * Swath / 1000 in km ²	
FishSurfaceAreas		
Length	Length or diameter of school in meters (measures and coverted from tube ticks)	
Breadth	Width or secondary diameter of oblong, rectagular or irregularly shaped schools	
SA	Surface Area caculated using formula for an elipse: (Length/2) * (Breadth/2) * PI	

APPENDIX IV. Geographic queries provided during the APEX project from the aerial survey database.

Name	Project	Month and Year
Tracey Gotthardt, USFWS	Harbor seals/Marine Mammals	Jan. 1998
Bill Ostrand, USFWS	Sand lance habitat project	Jan. 1998
Dan Rosenberg, ADFG	Scoter/sea duck query	Feb. 1998
Jenny Purcell, U Maryland	Jellyfish analysis/publication	May, 1998
Thomas Okey, UBC	Ecopath Project	Nov., 1998
Lee Hulbert, NMFS	Shark query	Nov. 1998
Kathy Kuletz, USFWS	Marbled murrelet foraging regions	Feb. 1999
Pam Seiser, UAF	Pigeon guillemot foraging regions	March 2000
Rob Suryan, USFWS	Kittiwake foraging regions/weekly	March 2000
Gail Blundell, UAF	River otter foraging regions	March 2000
Rob Suryan, Dave Irons, Jay Johnson	n, USFWS	
- · · · · ·	General APEX regions/block query	Sept. 2000

APPENDIX V. Identifying Seasonal Spatial Scale for the Ecological Analysis of Herring and Other Forage Fish in Prince William Sound, Alaska.

Brown, Wang, Vaughan and Norcross.