Exxon Valdez Oil Spill Restoration Project Final Report

Stock Identification of Chum, Sockeye, Chinook, and Coho Salmon in Prince William Sound

Restoration Projects 93068 and 94137
 Final Report

Samuel Sharr
Carol J. Peckham
Daniel G. Sharp
Jodi L. Smith
T. Mark Willette

David G. Evans
Brian G. Bue
Seawan Gehlbach
Renate R. Riffe

Alaska Department of Fish and Game
Commercial Fisheries Management and Development Division
333 Raspberry Road
Anchorage, Alaska 99518

August 1996

Stock Identification of Chum, Sockeye, Chinook, and Coho Salmon in Prince William Sound

Restoration Projects 93068 and 94137

Final Report
Study History: This study originated as part of Natural Resource Damage Assessment Fish/Shellfish Study \#3 (F/S 3), entitled "Coded Wire Tag Studies on Prince William Sound Salmon, 1989-1991." The study was concerned with the estimation of contributions and survival rates of hatchery-reared fish in the commercial fisheries of Prince William Sound, and with the estimation of survival rates of wild populations of pink and sockeye salmon in contaminated and uncontaminated areas. Work on pink salmon continued under Restoration Projects 60A, 93067, 94320B, respectively entitled "Coded Wire Tag Studies on Prince William Sound Salmon, 1992," "Coded Wire Tag Recoveries from Pink Salmon in Prince William Sound Salmon Fisheries, 1993," and "Coded Wire Tag Recoveries from Pink Salmon in Prince William Sound Salmon Fisheries, 1994". Studies on sockeye, chum, coho, and chinook salmon were continued under studies 93068, 94137 and 95137 (closeout funding), and were a continuation of the work conducted under F/S 3. This document reports the findings of the latter studies and for the sake of completeness includes the pertinent results of F/S 3.

Abstract

Coded wire tags were applied to sockeye, chum, coho, and chinook salmon at three hatcheries in Prince William Sound, and also to three populations of wild sockeye salmon. Two of these populations were situated in contaminated areas of the Sound, while the other was located in an area distant from the trajectory of the oil plume. Contributions of different hatchery and wild release groups to specific harvest-district-week strata were estimated from recoveries of tags in the commercial fishery, and in the escapements of the wild sockeye populations. Tag-specific survival rates were also estimated where possible. As expected, the proportion of fish from wild populations in the commercial catches decreased with increasing releases of hatchery fish. Efforts to enhance natural sockeye salmon populations through remote releases largely failed. Significant relationships between release size and survival rates were detected for sockeye salmon. The comparison between survival rates of sockeye salmon from oiled and unoiled areas was compromised by incomplete scanning of escapements due to lack of funding and problems with enumeration of the sockeye salmon smolt outmigration at Coghill River.

Key Words: Chinook salmon, chum salmon, coded wire tag, coho salmon, hatchery, Onchorhynchus keta, Onchorhyncus kisutch, Onchorhynchus nerka, Onchorhyncus tshawytscha, Prince William Sound, sockeye salmon, stock.

Project Data: Description of data - the data consists of (1) numbers and origin of coded wire tags recovered from deliveries of chum, sockeye, chinook and coho salmon to Prince William Sound processors by harvest, district and week for 1989 through 1994; (2) associated catch and sample-size data; (3) numbers and origin of coded wire tags recovered
from hatchery brood stocks, and (4) code-specific tagging rates at release. Format - tag data: State of Alaska Coded Wire Tag and Otolith Laboratory database; Ancillary data:
R:Base $4.5++$ database. Custodians: Tag data-Karen Crandall, Commercial Fisheries Management and Development Division, State of Alaska Coded Wire Tag and Otolith Laboratory, Juneau (907) 465-3483; Ancillary data: Renate Riffe, Commercial Fisheries Management and Development Division, State of Alaska Department of Fish and Game, Cordova (907) 424-3212. Availability - Tag data-TagotoWeb Internet server http://tagotoweb.adfg.state.ak.us; Ancillary data - by arrangement.

Citation:

Sharr, S., C.J. Peckham, D.G. Sharp, J.L. Smith, T.M. Willette, D.G. Evans, B.G. Bue, S. Gehlbach, and R.R. Riffe. 1996. Stock identification of chum, sockeye, chinook, and coho salmon in Prince William Sound, Exxon Valdez Oil Spill Restoration Project Final Report (Restoration Projects 93068 and 94137), Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Anchorage, Alaska.

TABLE OF CONTENTS

Page
STUDY HISTORY/ABSTRACT/KEYWORDS/CITATION i
TABLE OF CONTENTS iii
LIST OF TABLES v
LIST OF FIGURES vi
LIST OF APPENDICES viii
EXECUTIVE SUMMARY 1
INTRODUCTION 2
OBJECTIVES 6
METHODS 7
Tagging 7
Hatchery Tagging 7
Tagging of Wild Sockeye Salmon 8
Tag Recovery 10
Commercial and Cost-Recovery Harvests 10
Brood-stock Harvests and Escapements 10
Estimation of Contributions and Survival Rates 12
RESULTS 15
Tagging 15
Hatchery Tagging Data 15
Wild-Stock Tagging Data 15
Tag Recoveries 18
Sampling Rates of Common Property and Cost-Recovery Fisheries 18
Sampling of the Eshamy, Coghill and Jackpot Escapements 18
Adjustment factors 18
Contributions and Survival Rates 18
Contributions and survival rates of sockeye salmon 18
Contributions and survival rates of chum salmon 29
Contributions and survival rates of coho salmon 33
Contributions and survival rates of chinook salmon 33
DISCUSSION 35
Contributions and Survival Rates 37
Sockeye Salmon 37
Main Bay Releases 37
Remote Releases 37
Wild Returns 40
Chum Salmon 40
Coho Salmon 42
Chinook Salmon 42
Adjustment Factors 42
Recommendations for future studies 43
CONCLUSIONS 44
LITERATURE CITED 45
APPENDICES 47

LIST OF TABLES

Table Page

1. Hatchery-stock tagging data by species, facility and year, Prince William Sound, Alaska 16
2. Wild stock tagging data for sockeye salmon by year and watershed system 17
3. Sampling rates of common property and cost-recovery fisheries 19
4. Estimated adjustment factors for sockeye, chum, coho and chinook salmon by origin and year of return (coho only) 20
5. Estimated contributions of sockeye salmon by release group to the common property fishery of 1989 through 1994 22
6. Estimated contributions of sockeye salmon by group to the cost-recovery fishery of 1992 through 1994 24
7. Estimated contributions of sockeye salmon by group to the escapement of the Eshamy(225) and Coghill(223) systems of 1991 through 1994 28
8. Survival rates of release groups of sockeye salmon reared at the Main Bay hatchery 28
9. Survival rates of wild release groups of sockeye salmon 31
10. Contributions of chum salmon to the common property fisheries of 1994 32
11. Estimated contributions of coho salmon to the common property fisheries of 1990 through 1992 34
12. Estimated contributions of chinook salmon to the common property fisheries of 1993 and 1994 36

LIST OF FIGURES

Figure Page

1. Fishing districts and hatcheries of Prince William Sound, Alaska 3
2. Trajectory of oil plume across Prince William Sound, Alaska, 1989 4
3. Sockeye (and pink) salmon weir sites, Prince William Sound, Alaska 94. Contributions by Coghill and Eshamy sockeye salmon stocks released fromthe Main Bay hatchery to the 1989 through 1994 common property catches24
4. Geographical distribution of the contributions of the major remote release groups to the common property fisheries of 1993 and 1994 25

LIST OF APPENDICES

Appendix Page
A. Derivation of standard errors of adjustment factor estimates 47
B. Tagcode-specific survival rates 51
C. Contributions to the sockeye, chum, coho and chinook salmon common property and cost-recovery harvests of 1989 through 1994 55

EXECUTIVE SUMMARY

This document fulfills the requirements for Restoration Studies 93068, 94137 and 95137 designed to restore the sockeye Oncorhyncus nerka, chum O. keta, coho O. kisutch and chinook salmon O. tshawytscha resource of Prince William Sound to its pre-spill status. Coded wire tags applied at the W. Noerenberg, Solomon Gulch and Main Bay facilities and to wild sockeye populations in Prince William Sound were recovered in commercial catches and escapements. Tagging rates were sufficiently high to allow adequate numbers of marks to be recovered in the fishery catches, brood stock, and streams. Coded wire tags were recovered from the commercial and costrecovery fisheries, from brood stock at the four hatcheries, and from salmon carcasses examined at the streams at which coded wire tags were applied. All tags were decoded at the Coded Wire Tag Processing Laboratory in Juneau.

Postseason analysis of recovered tags from sockeye salmon reared and released at the Main Bay facility revealed that the percentage of the common property catch attributable to the facility increased from 1.8% in 1989 to between 39% in 1993 and 91% in 1991. Survival rates of hatchery-reared and released sockeye salmon were found to be significantly related to release weights. While tagged remote-released sockeye salmon, designed to augment natural populations, returned to the Eshamy and Coghill Rivers, they were late and in poor condition. The ability of these fish to spawn effectively is debatable, and the program was not considered successful. A comparison of adult survival rates for fry stocked at Pass and Esther Pass Lakes showed the latter to be the more suitable disposal site for excess fry production at the Main Bay facility. Survival rates for both lakes were low, however. The ability of the coded wire tag program to estimate the total wild component in the returns of 1991 through 1993 was compromised by the presence of untagged hatchery-reared fish from remote releases at Davis, Esther Pass and Pass Lakes, although specific contributions by the Eshamy system were estimable in certain years. Problems with the enumeration of the outmigration at Coghill River prevented estimation of returns to this system. This was unfortunate given the severe shortfalls in the escapements in 1993 and 1994. The marine survival rates of fish from the Coghill system were substantially lower than those of fish from the Eshamy system. No estimation of the survival rates of fish from the Jackpot system was possible. With respect to chum salmon returns, some evidence was collected to suggest an influence of release size on survival rates, but the relationship was weak. No such relationship was found for coho and chinook salmon.

INTRODUCTION

In the early 1970's, failures of wild runs of pink salmon Oncorhynchus gorbuscha in Prince William Sound led to an aggressive enhancement program during which numerous hatcheries were built. By 1986 five facilities were operating (Figure 1): the Solomon Gulch hatchery, producing pink salmon, and later, chum O. keta, coho O. kisutch and chinook salmon O. tschawytscha, the A. F. Koernig hatchery, producing pink salmon, the W. Noerenberg hatchery, producing pink salmon, and later, chum, coho and chinook salmon, the Cannery Creek hatchery, producing pink salmon, and the Main Bay hatchery which produced chum and presently raises sockeye salmon O. nerka.

Parent stocks for Prince William Sound hatchery production were selected from native populations in the Sound with the consequence that the migratory timings of adult hatchery and wild returns coincide. Furthermore, virtually all these salmon stocks migrate to their natal streams or hatcheries through corridors in the southwestern and western areas of the Sound. The coincident timing and location of the large hatchery return and the considerably smaller wild returns lead to the danger of over-exploitation of the latter by the commercial fishery. A serious example of this occurs in the Eshamy district (Statistical District 225), which includes a hatchery releasing more than four million smolts annually and a major wild sockeye salmon run in the Eshamy River/Lake system. The district also lies directly in the migration path of wild sockeye salmon returning to the Coghill system. Recent declines in the productivity of the Coghill population, possibly due to overescapement in 1987, latent problems associated with saltwater lenses formed as a result of the 1964 earthquake or to problems associated with fertility of the lake, make commercial interception of fish en route to this system all the more undesirable. The sustainability of the wild salmon runs such as those from the Coghill and Eshamy systems must suffer if it is subjected to harvest rates appropriate for returning hatchery fish.

To protect wild stocks in a hatchery-dominated fishery, managers needed information pertaining to the temporal and spatial distributions of hatchery and wild fish. To meet this requirement, a coded wire tagging (CWT) program was initiated in the late 1980's for all five species of salmon released from hatcheries in the Sound. Tag recoveries made in the commercial and cost-recovery fisheries enabled managers to estimate hatchery and wild contributions to catches from different temporal and spatial strata within the fishery. The tagging program was developed for use in Prince William Sound by Peltz and Geiger (1990) and Geiger and Sharr (1990).

The March 24, 1989, Exxon Valdez oil spill (Figure 2) exacerbated the problems faced by fishery managers. The spill contaminated intertidal portions of streams in western Prince William Sound where up to 75% of wild chum and pink salmon spawn, and also the marine waters traversed by juvenile salmon on their migration seaward through the Sound. Work by Sharr et al. (1994) indicates that for pink salmon, at least, spawning success has been adversely affected by the oil spill, and Willette and Carpenter (1993) found that marine survival of juvenile pink salmon was reduced in areas influenced by the spill. The decisions made by fishery managers suddenly became more critical in as far as they affected the sustainability of wild populations, as did the need for the

Figure 1. Fishing districts and hatcheries of Prince William Sound, Alaska.

Figure 2. Trajectory of oil plume across Prince William Sound, Alaska, 1989.

CWT program and the catch-composition estimates it provided. Other key roles of the CWT program in the post-spill era were to monitor the success of various strategies designed to remediate the weakened wild sockeye salmon populations (remote releases, lake fertilizations), and to quantify oil-related damages to wild sockeye salmon runs.

The CWT program was funded under the damage assessment study F/S 3 through 1991 and continued to provide information pertaining to the nature of the commercial salmon catch. Also during this period, wild pink and sockeye salmon were tagged at a number of streams in the western portion of the Sound. The intention was to monitor the effects of oiling on the survival rates of specific wild populations, and for sockeye salmon, to determine the impact of the intercept fisheries upon the escapements of the endangered Eshamy and Coghill runs.

This report documents the activities and results of the CWT program from 1989 through 1994, as it pertains to sockeye, chum, coho, and chinook salmon, with emphasis placed on the 1993 and 1994 recovery years. It focuses primarily upon hatchery contributions to the different fisheries, survival rates of different hatchery release groups, contributions of Eshamy and Coghill sockeye salmon to intercept fisheries, survival rates of wild sockeye salmon, and the efficacy of various remediation measures designed to augment the weakened Coghill and Eshamy runs. Although some hatchery contribution data from 1989 through 1991 were reported in F/S 3, they were often comprised of data aggregated over recovery strata, and no access to the component strata was made available. In the current report, contribution data from all district-period strata from 1989 to 1994 are provided in appendices. Aggregated data is presented in the main body of the document. It is believed that such a reporting policy presents the data in a more universally useful way.

OBJECTIVES

1. Use CWT data to estimate contributions of sockeye, coho, chum and chinook salmon from three hatcheries in Prince William Sound to the common property and private-nonprofit (cost-recovery) fisheries
2. Use CWT data and release information to estimate survival rates of tagged sockeye, chum, coho and chinook hatchery release groups.
3. Use CWT, smolt outmigration and escapement data to estimate survival rates of tagged groups of wild sockeye salmon originating from the Jackpot, Eshamy (oil-contaminated estuaries) and Coghill systems (uncontaminated estuary).
4. Use CWT data to assess the impact of different intercept fisheries on the weakened Eshamy and Coghill wild sockeye salmon populations, and make such information available to fishery managers on a real-time basis.
5. Use CWT data to determine the efficacy of different strategies designed to remediate the weakened sockeye salmon runs of the Eshamy and Coghill systems. These strategies include remote releases of hatchery fry or smolt into Eshamy Lake and the Coghill and Eshamy River estuaries, and a lake fertilization program at Coghill Lake.

METHODS

Tagging

Hatchery Tagging

Tagging of chum salmon fry occurred at the Prince William Sound Aquaculture Corporation (PWSAC) W. Noerenberg facility and at the Valdez Fisheries Development Association (VFDA) Solomon Gulch facility. Tagging and recovery efforts were such that contribution estimates were sufficiently precise to allow fishery managers to make meaningful inseason decisions and to allow detection of oil-induced effects. Tagging rates were often dependent on available effort, timing of releases, and other hatchery-related factors. They were, however, kept at levels which would allow equal or greater precision than that obtained for the pink salmon studies of Peltz and Miller 1990, Peltz and Geiger 1990, and Geiger and Sharr 1990, given equal or greater sampling rates. A different tag code was given to each release group, a release group representing a batch of fish subjected to a certain feeding regimen (early feeding, late feeding or no feeding) and release timing.

Chum salmon fry to be tagged were randomly selected as they emerged from incubators. Fry were anesthetized in a 1 ppm solution of MS-222 prior to removal of adipose fins and application of tags. Half-length CWTs were applied with a Northwest Marine Technology tag injector (model MKI). Adipose fin-clipped and tagged fish were passed through an electronic quality control device to test for tag retention. Rejected fish were held and retested later. If rejected a second time, they were sacrificed to minimize the number of untagged clipped fish in the release. Fry which retained tags were held overnight to determine short-term mortality and tag-loss. Overnight mortality rates were determined by counting the number of dead fish 24 hours after tagging. An overnight tag-loss rate was estimated by randomly selecting 200 fish and testing them with the quality control device before release into saltwater rearing pens. Tag placement was checked periodically, but not quantified.

The number of fry released with tags of tag code $t\left(T r_{t}\right)$ was estimated for each release group by deducting both the overnight tagging and saltwater rearing mortalities from the number of fry initially tagged, and then adjusting the result with an overnight tag-loss estimate:

$$
\begin{equation*}
\hat{T r} r_{t}=\left(T_{t}-M o_{t}-M s w_{t}\right)\left(1-\hat{L} o_{t}\right) \tag{1}
\end{equation*}
$$

where
$T_{t}=\quad$ total number of tagged (t) fish,
$M o_{t}=\quad$ number of deaths during overnight holding period among tagged (t) fish, $M s w_{t}=\quad$ number of deaths during saltwater rearing period among tagged (t) fish, and $L o_{t}=\quad$ proportion of tagged (t) fish that lost tags during the overnight holding period.

The inclusion of $M s w_{t}$ is appropriate for those facility/year instances where such a parameter could be estimated/determined. Immediately prior to release, chum salmon fry mortalities were estimated visually, and were applied equally to tagged and untagged fish to obtain final release estimates.

Tagging practices for sockeye, coho and chinook salmon were identical to those of chum salmon except that full length CWTs were used due to the larger size of fish being tagged. After tagging, smolt were returned to freshwater raceways before being transferred to either saltwater pens or remote-release locations.

Tagging of Wild Sockeye Salmon

Wild sockeye salmon populations residing in the Jackpot, Eshamy and Coghill systems (Figure 3) were tagged over the period 1989 through 1991. The intertidal areas adjacent to the Eshamy and Jackpot watersheds were contaminated with oil spilled from the Exxon Valdez while those adjacent to the Coghill watershed were not contaminated. Wild fish were tagged at a considerably higher rate than hatchery fish. The tagging rate was a function of the rates at which field crews worked.

An incline plane trap was used to trap smolt at Coghill and Jackpot and a $1.22 \mathrm{~m} \times 1.22 \mathrm{~m}$ fyke net was used at Eshamy. Half-length CWTs were used at Coghill during 1989 and Jackpot during 1990 due to the small size of the outmigrating smolt. A quality control device was used to test all smolt for tag presence immediately after tag application; this test was repeated on 200 smolt after a 24 hour holding period. The number of tagged and clipped fish actually released was estimated using Equation 2. Tag codes referred to stream identity.

The number of wild stock smolts released with tag code $t\left(\operatorname{Trw}_{t}\right)$ was estimated as:

$$
\begin{equation*}
\hat{T r} w_{t}=\left(T_{t}-M o_{t}\right)\left(1-\hat{L} o_{t}\right) \tag{2}
\end{equation*}
$$

where
$T_{t}=\quad$ total number of tagged (t) fish,
$M o_{t}=$ number of overnight deaths among tagged (t) fish, and
$L o_{t} \quad=\quad$ proportion of tagged (t) fish that lost tags during the overnight holding period.

Figure 3. Sockeye (and pink) salmon weir sites, Prince William Sound, Alaska.

Tag Recovery

Commercial and Cost-Recovery Harvests

Tag recoveries for all species were stratified by district, week, and processor. This stratification was chosen as a result of the findings of Peltz and Geiger (1990), who detected significant differences between the proportions of some tag codes among such strata. The differences indicate that processors tend to receive catches from only certain parts of a district. These are believed to be the result of traditional tendering patterns.

Recoveries of tags from commercial and cost-recovery harvests were made after each fishery opening as fish were dumped onto processing tables from totes at land-based processors located in Cordova, Valdez, Seward, Anchorage, Whittier, Kenai, Kodiak, and aboard floating processors. Fish were sampled by one or two technicians standing alongside the table. In the case where two technicians scanned the belt, measures were taken to ensure that fish were not sampled twice. Each sampled fish was subjected to a visual and tactile examination for a missing adipose fin. In most cases technicians were unable to census a complete tender load. A complete census of some tenders was possible, however, and when this occurred, a chi-square test of independence was used to compare the rate of occurrence of adipose fin clips in the census with that observed in a random sample from the load. In this way a technician's bias was assessed.

Data recorded for each tender included harvest type (i.e. commercial or cost-recovery catch), fishing district(s) from which the catch was taken, catch date, processor, and the number of fish examined. Catch data associated with each tender were later obtained from fish tickets. Heads of fin-clipped fish were excised, identified with a uniquely-numbered cinch tag, bagged, frozen and shipped along with sample data to the Alaska Department of Fish and Game, Coded Wire Tag Processing Laboratory (Tag Lab) in Juneau. Tag Lab staff processed the heads and entered tag code and sample data into a database that was accessible to biologists in Cordova.

Brood-Stock Harvests and Escapements

Tag shedding from release to return and differential mortality between tagged and untagged fish can lead to discrepancies between marking rates at release and recovery. Hatchery salmon brood stocks (and escapements in the case of the tagged wild sockeye releases) were scanned for tags in order to estimate adjustment factors which could be used to adjust marking rates at release and hence to account for the loss of tags from the population. For some brood samples, few fish were scanned and/or age-class data needed to account for the presence of untagged release groups were unavailable so that calculation of annual adjustment factors for each hatchery for each species was impossible. The brood data were consequently pooled over years and different adjustment factors were only calculated for each species, and where possible for each site of origin (specific hatchery or wild location). Attempts to account for the possibility that returning fish of different ages have different tendencies to lose tags were also thwarted by scarcity of ageclass data for the brood stocks.

Inherent in the assumed utility of the adjustment factors developed herein are the assumptions that a) the brood stock consists solely of fish reared at the hatchery, b) the tendency for a tagged fish to lose a tag is not different for fish of different marine residencies released in the same year from the same hatchery, c) the tendency for a fish to lose its tag is constant for fish released in different years from the same hatchery, and d) for a specific tag code, the marking rate in the commercial fishery is the same as that in the brood stock. For a given species, the adjustment factor estimate $a \hat{f}_{h}$ for hatchery h is calculated as the ratio of number of fish sampled from the brood stock which originate from tagged release groups (estimated from age-class data in the event that untagged release groups are present in the brood stock) to the total contribution of tagged release groups in the brood sample, based on tagging rates at release:

$$
\begin{equation*}
\hat{a} f_{h}=\frac{\sum_{i=1}^{N_{h}} s_{h i} \hat{m}_{h i}}{\sum_{i=1}^{N_{h}} \sum_{j=1}^{T_{h i}} \frac{x_{h i j}}{p_{j}}} \tag{3}
\end{equation*}
$$

where

N_{h}		N
$S_{h i}$		Number of fish scanned for tags in the $i^{\text {th }}$ year in hatchery h,
$m_{h i}$		Proportion of brood stock in $i^{\text {th }}$ year at hatchery h which derives from tagged release groups,
$T_{h i}$	=	Number of uniquely tagged release groups which may return to hatchery h in year i,
$x_{\text {hij }}$	$=$	Number of tags of $j^{\text {th }}$ code found in brood sample of $i^{\text {th }}$ year at hatchery h, and
p_{j}	$=$	Tagging rate at release for tag code j (defined as number of tagged fish released with $j^{\text {th }}$ code divided by the total number of fish in the $j^{t h}$ release group).

The adjustment factor was then used to adjust contribution estimates (Equation 4) if it could be shown that it was significantly greater than 1.0 at the 90% level. Estimated standard errors of $a \hat{f}_{h}$ were derived through simulation (Appendix A).

Brood-stock samples were taken during hatchery egg-take operations, where possible. Approximately 95% of the brood stock was examined through visual and tactile means for missing adipose fins. When these were found, the heads of the fish were removed and shipped to the Tag Lab where detected tags were extracted and decoded. The Eshamy, Coghill and Jackpot escapements were scanned for missing adipose fins at the weirs

The contribution of release group t to the sampled common property, cost-recovery, brood stock, escapement and special harvests, C_{t}, was estimated as:

$$
\begin{equation*}
\hat{C}_{t}=\sum_{i=1}^{L} x_{i t}\left(\frac{N_{i} \hat{a} f_{h(t)}}{s_{i} p_{t}}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
x_{i t} & =\quad \text { number of group } t \text { tags recovered in } i \text { th stratum, } \\
N_{i} & =\text { total number of fish in } i \text { th stratum, } \\
s_{i} & =\text { number of fish sampled from ith stratum, } \\
p_{t} & =\text { proportion of group } t \text { tagged, } \\
a \hat{f}_{h(t)} & =\text { adjustment factor associated with hatchery or watershed } h, \text { and } \\
L & =\begin{array}{l}
\text { number of recovery strata associated with common property, cost-recovery, brood } \\
\text { stock, special harvests and escapement in which tag code } t \text { was found. }
\end{array}
\end{aligned}
$$

The contribution of release group t to unsampled strata, $C u_{t}$, was estimated from contribution rates associated with strata which were sampled from the same district-week openings as the unsampled strata:

$$
\begin{equation*}
\hat{C} u_{t}=\sum_{i=1}^{U}\left[N_{i} *\left(\frac{\sum_{j=1}^{s} \hat{C}_{t j}}{\sum_{j=1}^{s} N_{j}}\right)\right] \tag{5}
\end{equation*}
$$

where
$U=$ number of unsampled strata,
$N_{i}=\quad$ number of fish in ith unsampled stratum,
$S=\quad$ number of strata sampled in the period in which the $i^{t h}$ unsampled stratum resides,
$C_{i j}=$ contribution of release coded with tag t to the sampled stratum j, and
$N_{j}=$ number of fish in the j th sampled stratum.
When a district-week opening was not sampled at all (an infrequent occurrence), the catch from that opening was treated as unsampled catch of the subsequent opening in the same district.

For any given year, hatchery-specific contributions were only estimated when all returns to the hatchery in question were tagged. Furthermore, estimates of wild contributions through
calculation of differences between total catches and hatchery contribution estimates were only made when all returning release groups to all hatcheries were tagged.

A variance approximation for $V\left(\hat{C}_{t}\right)$ derived by Clark and Bernard (1987) and simplified by Geiger (1990) was used:

$$
\begin{equation*}
\hat{V}\left(\hat{C}_{t}\right)=\sum_{i=1}^{L} x_{i t}\left[\frac{N_{i} \hat{a} f_{h(t)}}{s_{i} p_{t}}\right]\left[\frac{N_{i} \hat{a} f_{h(t)}}{s_{i} p_{t}}-I\right] \tag{6}
\end{equation*}
$$

Assuming that covariances between contributions of different release groups to a stratum could be ignored, summation of variance components over all tag codes provided an estimate of the variance of the total hatchery contribution. Inspection of the formula given by Clark and Bernard (1987) for the aforementioned covariances shows them to be negligible for large N and s, and to be consistently negative, so that when ignored, conservative estimates of variance are obtained. Variances associated with contribution estimates made for unsampled strata are believed to be small (Sharr et al., 1995a).

The survival rate of the release group coded with $\operatorname{tag} t\left(S_{t}\right)$, was estimated as:

$$
\begin{equation*}
\hat{S}_{t}=\frac{\hat{C}_{t}+\hat{C}_{t}}{R} \tag{7}
\end{equation*}
$$

where
$C_{t}=\quad$ contribution of release coded with tag t to sampled strata,
$C u_{t}=$ contribution of release group coded with tag t from unsampled strata, and
$R_{t} \quad=\quad$ total number of fish in release group coded with tag t released from hatchery.
Only survival rates of those tagged release groups which had completed their marine residencies were calculated.

Assuming the total release of fish associated with a tag code is known with negligible error, and that the cumulative variance contributions associated with contribution estimation for unsampled strata are small, a suitable variance estimate for \hat{S}_{t} is given by:

$$
\begin{equation*}
\hat{V}\left(\hat{S}_{t}\right)=\frac{\sum_{i=1}^{L} x_{t t}\left[\frac{N_{i} \hat{a} f_{h(t)}}{s_{t} p_{t}}\right]\left[\frac{N_{i} \hat{a} f_{h(t)}}{s_{i} p_{t}}-1\right]}{R^{2}} \tag{8}
\end{equation*}
$$

RESULTS

Tagging

Hatchery Tagging Data

Chum salmon fry were released from the W. Noerenberg and Solomon Gulch hatcheries (Table 1). Releases ranged from 1.7 million at the Solomon Gulch facility in 1991 to 108 million at the W. Noerenberg hatchery in 1993, with a median of 17 million. Tagging rates used for chum salmon fry ranged from 0.016 at the Solomon Gulch hatchery in 1992 to 0.002 at the W. Noerenberg hatchery in 1993. The median tagging rate was 0.0023 .

Coho salmon smolt were released from the Solomon Gulch and W. Noerenberg hatcheries (Table 1). Releases ranged from 787 thousand from Solomon Gulch in 1990 to 4.3 million from the W. Noerenberg hatchery in 1993, with a median release of 1.48 million. Tagging rates ranged from 0.043 to 0.0078 . The median tagging rate was 0.031 .

Sockeye salmon smolt were released only from the Main Bay hatchery with releases ranging from 2.7 million in 1990 to 4.8 million in 1994 (Table 1), with a median of 4.2 million. Tagging rates ranged from 0.05 in 1990 to 0.024 in 1992, with a median of 0.029 .

Chinook salmon smolt were released from the W. Noerenberg hatchery in 1990 through 1994, and from the Solomon Gulch facility in 1991 and 1992 (Table 1). Releases ranged from 95 thousand to 642 thousand fish, with tagging rates ranging from 0.25 to 0.036 . The median tagging rate was 0.053 .

Wild-Stock Tagging Data

Seaward migrations of sockeye salmon in 1989 ranged from 245 thousand from the Coghill system to 388 thousand from the Eshamy system (Table 2). Tagging rates were 0.179 and 0.12 , respectively. In 1990, the seaward migration from the Eshamy system was 682 thousand, while that from the Jackpot system was 20 thousand. Tagging rates were 0.030 and 0.227, respectively. In 1991, three, one and two tag codes were applied at the Eshamy, Jackpot and Coghill systems, respectively. Tagging rates ranged from 0.37 to 0.066 during 1991.

Table 1. Hatchery-stock tagging data by species, facility and year, Prince William Sound, Alaska'.

	Relense Year	Released	Number Tagged	Tagging Rate
SOCKE YE SALMON				
Main Bay	1989	3,925,026	100,434	0.026
	1990	2,744,595	138,663	0.051
	1991	4,133,421	135,621	0.033
	1992	4,370,557	107,523	0.025
	1993	4,370,252	114.899	0.026
	1994,	4,833,612	123,170	0.025
CHUM SALMON				
Solomon Gulch	1989	2,921,414	28,991	0.0010
	1990	3,104,288	35,820	0.0115
	1991	1,736,374	20,720	0.0119
	1992	2,690,414	42,961	0.0161
	1993	17,670,584	36,327	0.0021
	1994	6,088,063	19,378	0.0032
W. Nocremberg			110,543	0.0023
	1991	76,834,313	178,392	0.0023
	1992	98,044,672	205,807	0.0021
	1993	108,026,724	215,474	0.0020
	1994	100,108,198	201.900	0.0020
COHO SALMON				
Soiomon Gulch	1989	980,000	30.561	0.031
	1990	787,137	33,957	0.043
	1991	1,006,869	36,379	0.036
	1992	1,226,044	48,785	0.040
	1994	915,087	24,240	0.026
W. Noerenberg	1989	2,599,937	100,529	0.038
	1990	2.460,620	69,783	0.029
	1991	2,223,626	72,588	0.033
	1993	4,303,077	33,387	0.008
	1994	1,484,936	37,447	0.025
CHINOOK SALMON				
Solomon Gulch	1991	192,945	10,326	0.053
	1992	94,748	5,091	0.053
W. Noerenberg	1990	141,939	36,84!	0.259
	1991	410,897	40.780	0.100
	1992	478,894	16,975	0.036
	1993	472,431	23,609	0.050
	1994	642,560	32,155	0.050

${ }^{2}$ Includes remotely-released fish
${ }^{b}$ Average tagging rate: rates for individual tag codes vary considerably

Table 2. Wild-stock tagging data for sockeye salmon by year and watershed system

Tagging Year	System	Date of Release	Seaward Migration	Tag Code	Number Tagged	Tagging Rate
1989	Eshamy	5/12-6/01	388,512	311840	46,771	0.12
	Coghill ${ }^{\text {P }}$	5/13-6/03	244,939	1301010403	43,935	0.18
1990	Eshamy	5/12-6/05	682,521	311910	20,794	0.03
	Jackpot	5/18-5/28	20,076	1301010911	4,601	0.23
1991	Eshamy	5/13-7/01	460,816	311951	46,152	0.10
				311957		
				311956		
	Jackpot	5/14-6/15	22,311	311955	8,384	0.37
	Coghill ${ }^{\text {a }}$	5/14-7/16	110,941	1301020102	7,347	0.07
				1301020101		

${ }^{2}$ Outmigration enumeration was problematic

Tag Recoveries

Sampling Rates of Common Property and Cost-Recovery Fisheries

Sampling rates associated with the sockeye salmon common property fisheries ranged from 0.19 in 1993 to 0.40 in 1991 and from 0.09 in 1993 to 0.90 in 1990 for the cost-recovery fisheries. The only years in which hatchery contributions of chum salmon were estimable were 1993 (Solomon Gulch) and 1994 (Solomon Gulch and W. Noerenberg). Common property fisheries targeting chum salmon were sampled at an average rate of 0.40 in 1993 and 0.48 in 1994. The chum salmon cost-recovery fisheries were sampled at rates of 0.31 and 0.41 for 1993 and 1994, respectively. Sampling rates associated with the coho salmon common property fisheries ranged from 0.20 in 1994 to 0.37 in 1991 and from 0.31 in 1991 to 1.0 in 1989 for the cost-recovery fisheries. The only years in which hatchery contributions of chinook salmon were estimable were 1993 and 1994. Common property fisheries targeting chinook salmon were sampled at an average rate of 0.20 in 1993 and 0.37 in 1994. The chinook salmon cost-recovery fisheries were sampled at rates of 0.34 and 0.32 for 1993 and 1994 respectively. Sampling data are presented in Table 3.

Sampling of the Eshamy, Coghill and Jackpot Escapements
Sampling of the Eshamy and Coghill escapements for missing adipose fins began in 1991 and continued through 1994. The Jackpot escapement was only sampled in 1991.

Adjustment factors

Adjustment factors were estimated for all species and for each facility from which the species originated. For coho salmon, year-specific adjustment factors were generated. Adjustment factors and associated standard errors are presented in Table 4.

Contributions and Survival Rates
Contributions and survival rates of sockeye salmon.
Tags applied at the Main Bay hatchery and at the Eshamy, Coghill and Jackpot Rivers were recovered in the common property, cost-recovery and brood-stock harvests, and also in the escapements of the Eshamy, Coghill and Jackpot systems. Tag recovery data associated with returning tagged wild Coghill fish could only be used for survival estimation, and not contribution estimation due to uncertainties over enumeration of the outmigration at Coghill River. Data pertaining to returning Jackpot tags could not be used because of incomplete sampling of the Jackpot escapement and the short duration of the tagging program (see Discussion). For 1989, 1990 and 1994, all returning sockeye salmon which had been reared at the Main Bay facility belonged to release groups which had been tagged. This permitted an estimation of the

Table 3. Sampling rates of common property and cost-recovery fisheries ${ }^{2}$.

Year	Species	Common Property	Cost- Recovery
1989	Sockeye	0.39	b
	Coho	0.27	1.00
1990	Sockeye	0.31	0.90
	Coho	0.35	0.68
1991	Sockeye	0.40	b
	Coho	0.37	0.31
1992	Sockeye	0.33	0.27
	Coho	0.26	0.43
1993	Sockeye	0.19	0.09
	Chum	0.40	0.31
	Coho	0.33	0.72
	Chinook	0.20	0.34
1994	Sockeye	0.32	0.16
	Chum	0.48	0.41
	Coho	0.20	0.36
	Chinook	0.37	0.32

${ }^{2}$ Only those rates associated with year/species combinations for which hatchery contributions were estimable are presented.
${ }^{b}$ No fishery

Table 4. Estimated adjustment factors for sockeye, chum, coho and chinook salmon by origin and year of return (coho only).

Species	Origin	Adjustment Factor	Standard Error ${ }^{\text {s }}$
Sockeye	Main Bay	1.20	0.028
	Wild	1.68	0.051
Chum	Solomon Gulch	2.09	0.166
	W. Noerenberg	1.70	0.146
	Main Bay ${ }^{\text {a }}$	1.90	0.111
Chinook	Solomon Gulch ${ }^{\text {b }}$	1.22	
	W. Noerenberg	1.22	0.091
Coho	Solomon Gulch ${ }^{\text {d }}$		
	1989	0.58	c
	1990	1.01	0.316
	1991	0.94	c
	1992	2.30	0.755
	1993	1.39	0.380
	W. Noerenberg ${ }^{\text {e }}$		
	1990	1.01	0.109
	1991	0.71	c
	1992	1.07	0.129

a Estimated as average of Solomon Gulch and W. Noerenberg factors (appropriate ageclass data unavailable).
b Estimate from W. Noerenberg used (brood-year 1989 and 1990 fish from Solomon Gulch were released remotely, and no suitable brood stock was available from which to estimate an adjustment factor).
c When the point estimate of the adjustment factor was <1.0, no statistical test was required (p-value >0.5), and a value of 1.0 was used.
d Releases from Solomon Gulch in 1993 were not tagged and therefore no adjustment factor was calculated for 1994.
e The first tagged releases from W. Noerenberg occurred in 1989 (first adjustment factor therefore calculated for 1990). In 1992, an outbreak of bacterial kidney disease prevented tagging and in 1993, only one release group was tagged and thus no adjustment factors were estimable for fish returning in 1993 and 1994.
f See Appendix A.
contributions by wild sockeye salmon populations to the commercial harvests. For 1991 through 1993, untagged returns from five remote releases were likely present, and no estimation of the total wild component of the catches was considered possible. Contributions by wild fish of Eshamy origin were estimated when it was determined that all or some of the Eshamy returns originated from outmigrations which had been tagged. Age-class data collected at the Eshamy weir were used to estimate contributions in instances where some but not all returning fish originated from tagged releases. Contributions of sockeye salmon originating at the Main Bay hatchery to the common property fishery of 1989 through 1994 are presented by release group in Table 5. Wild contributions and specifically, contributions by Eshamy fish, are also estimated where possible. Detailed district-week estimates of contributions by the Main Bay facility and wild populations are given in Appendix C. The majority of the contributions to the common property fishery by sockeye salmon released from the Main Bay facility were made in district 225. Total contributions increased dramatically from about 2,500 in 1989 and 12,000 in 1990 to a maximum of 460,000 in 1991. The contributions for 1992, 1993 and 1994 were all greater than 115,000. In 1993, the first significant Main Bay Eshamy stock returns were observed, which constituted about 11% of the common property catch, compared to 26% for Main Bay fish of Coghill stock. In 1994, the contribution of the Main Bay Eshamy stock to the common property catch had increased to about 44%, while that of the Main Bay Coghill stock had decreased to about 15%. While most of the Main Bay releases contributed to the catch in district 225, there were also significant contributions made to the common property catch in district 223. The proportion of the common property catch in district 223 which consisted of sockeye salmon released from the Main Bay facility ranged from 0 in 1989 to 76% in 1992. Contributions by Eshamy and Coghill stocks reared and released at Main Bay to the common property fisheries of 1989 through 1994 are depicted in Figure 4.

In 1993, the first returns associated with the tagged remote releases were observed. The major contributing remote release group in 1993 was of Eshamy stock which was released into Eshamy River as smolt (23% of the total common property catch). A much smaller contribution was made by the Coghill River remote release group (3% of total common property catch). A similar picture was observed for 1994. About 76% and 54%, respectively, of the contributions by the Eshamy River releases in 1993 and 1994 were observed in district 225, the remainder occurring in districts 223, 226 and 222. Approximately 77% and 81%, respectively, of the contributions by the Coghill River releases in 1993 and 1994 were observed in district 223, the remainder occurring in districts 225,222 , and 226 . The geographic distribution of the contributions for the two major remote releases for 1993 and 1994 is depicted in Figure 5. Other tagged remote releases of Eshamy stock sockeye fry into Eshamy, Esther Pass and Pass Lakes contributed only marginally to the common property catches of 1993 and 1994.

Attempts to estimate the total wild contribution to the common property sockeye salmon catch were only made for 1989,1990 and 1994, when all returning hatchery sockeye release groups were tagged. During 1989, it was estimated that about $134,500(98.2 \%)$ of the common property catch of about 137,000 sockeye salmon were of wild origin. In 1990, the number and proportion of wild fish in the common property catch dropped so that only $45,600(79 \%)$ of the common property catch of 57,500 was of wild origin, and in 1994, the proportion had dropped further

Table 5. Estimated contributions of sockeye salmon by release group to the common property fishery of 1989 through 1994.

Table 5. (Continued)

'Additional contributions to district 224: 406 wild fish in 1989, 93 Main Bay (Coghill/Smolt) and 941 wild fish in 1990. Additional contributions to district 228 : 146 wild fish in 1989, 9 wild fish in 1990.
${ }^{\text {b }}$ Other contributions may contain wild fish and/or untagged releases at Pass Lake (1988 release of 594,210 fry; 1989 release of 603,219 fry), Esther Pass Lake (1999 release of 153,031 fry, 1989 release of $154,644 \mathrm{fry}$)) and Davis Lake (1988 release of 657,287 fry).

Figure 4. Contributions by Coghill and Eshamy sockeye salmon stocks released from the Main Bay hatchery to the 1989 through 1994 common property catches.

Figure 5. Geographical distribution of the contributions of the major remote release groups to the common property fisheries of 1993 and 1994.
still, so that only $20.5 \%(51,600)$ of the common property catch was estimated to be wild. Estimates of wild Eshamy returns were made in 1991, 1992 and 1993, when returns to the Eshamy system were believed to have originated from tagged outmigrations. It was estimated that about $4 \%, 6.5 \%$, and 13%, respectively, of the total common property catches of 1991 through 1993 originated from the wild Eshamy population. In 1991, it was estimated that about 56% of the Eshamy fish caught in the common property were caught in district 226 , with 40% being caught in district 225 . In contrast, for 1992 and 1993, only 31% and 19%, respectively, of the Eshamy fish caught in the common property fishery were landed in district 226 , the majority being caught in district 225 .

A large percentage of the common property catch of 1992 (36\%) cannot be accounted for by tagged release groups. It is likely that this group of fish consists of a mixture of non-Eshamy wild fish, including Coghill River-bound fish, and returns of the untagged remote releases.

There were no cost-recovery fisheries on sockeye salmon at the Main Bay facility for 1989 through 1991. Contributions by the Main Bay facility and wild populations to the cost-recoveries of 1992 through 1994 are given in Table 6. The total catch during the cost-recovery effort of 1992 was about 159,000 fish. It was estimated that almost half of these originated from untagged release lots. The returning fish which originated from the Main Bay hatchery were all deemed to be of Coghill stock. Few fish from the wild Eshamy population were found. The total costrecovery for 1993 was about 109,000 fish. Unlike the situation for 1992, almost all (97%) was accounted for by sockeye salmon that had been released from the Main Bay hatchery. Of these, 81% were estimated to be of Coghill stock, the remainder being of Eshamy stock. In 1994, the cost-recovery catch was about 79,000 fish, and it was estimated that about $20,000(25 \%)$ of these fish originated from wild populations. About $59,400(75 \%)$ were estimated to have been released from the Main Bay hatchery. Of the hatchery fish, 52% were deemed to be of Coghill stock, while 43% were estimated to be of Eshamy stock, the remainder being of Main Bay and Eyak stocks. For all cost-recoveries, there was little contribution from any of the tagged remote release groups.

Contributions of tagged release groups to the escapements of the Coghill and Eshamy systems are presented in Table 7. The Jackpot system was scanned for tags in 1991 only, and none was found. No tags from sockeye salmon released at the Main Bay hatchery or from tagged wild Eshamy populations were found at the Coghill weir (District 223) in 1991. At the Eshamy weir (district 225) 1% of the 46,229 escapement of 1991 was estimated to have originated at the Main Bay hatchery. At the Coghill weir in 1992, no tags of Main Bay or Eshamy River origin were found. At the Eshamy weir in 1992, a small number of sockeye salmon of Main Bay origin were found ($<1 \%$). At the Coghill weir in 1993, the majority of sockeye salmon of Main Bay origin (9.6% of escapement) arose from a remote release of smolt in Coghill River. Again, no tags associated with wild Eshamy fish were found at the Coghill weir. At the Eshamy weir in 1993, returns from remote releases of smolt in Eshamy River were evident (6.2% of escapement), as were significant returns of tagged wild Eshamy fish (81% of escapement). In 1994, while small numbers of sockeye salmon released at Main Bay found their way into both the Coghill and Eshamy systems (0.9 and 0.05% of escapement, respectively), the most significant contributions

Table 6. Estimated contributions of sockeye salmon by group to the cost-recovery fishery of 1992 through 1994.

Year	Contributor(Stock/Type)	Release Site	District 225	\%
1992	Main Bay (Coghill/Smolt)	Main Bay Hatchery	84,925	53.4
	Main Bay (Eshamy/Smoit)	Main Bay Hatchery	0	0
	Total Main Bay		84,925	53.4
	Remote Release (Coghil/Smolt)	Coghill R. Est.	0	0
	Remote Release (Eshamy/Smolt)	Eshamy R. Est.	0	0
	Remote Release (Eshamy/Fry)		0	0
	Total Remote Release		0	0
	Other*		73,617	46.3
	Wild(Eshamy/Smoht)		349	0.2
	Total Catch		158,891	
1993	Main Bay (Coghil/Smolt)	Main Bay Hatchery	85,386	78.5
	Main Bay (Eshamy/Smolt)	Main Bay Hatchery	20,169	18.5
	Main Bay (Eyak/Fry)		0	0
	Total Main Bay		105,555	97.0
	Remote Release (Coghill/Smolt)	Coghill R. Est.	63	0.1
	Remote Release (Eshamy/Smott)	Eshamy R. Est.	381	0.4
	Remote Release (Eshamy/Fry)	Esther Pass Lake	0	0
	Remote Release (Eshamy/Fry)	Pass Lake	0	0
	Total Remote Release		444	0.5
	Other ${ }^{\text {a }}$		1,208	1.0
	Wild(Eshamy/Smolt)		1,610	1.5
	Total catch		108,817	
1994		Main Bay Hatchery	$31,106$	39.3
	Main Bay (Eshamy/Smolt)	Main Bay Hatchery	25,681	32.5
	Main Bay (Main Bay/Smolt)	Main Bay Hatchery	2,316	2.9
	Main Bay (Eyak/Fry)	Main Bay Hatchery	249	0.3
	Total Main Bay		59,352	75.0
	Remote Release (Coghil//Smolt)	Coghill R. Est	0	0
	Remote Release (Eshamy/Smott)	Eshamy R. Est.	0	0
	Remote Release (Eshamy/Fry)	Eshamy Lake	0	0
	Remote Release (Eshamy/Fry)	Esther Pass Lake	0	0
	Remote Release (Eshamy/Fry)	Pass Lake	0	0
	Total Remote Release		0	0
	Total Wild		19,779	25.0
	Total Catch		79,131	

${ }^{2}$ Other contributions may contain wild fish and/or untagged releases at Pass Lake (1988 release of 594,210 fry; 1989 release of 603,219 fry), Esther Pass Lake (1999 release of 153,031 fry; 1989 release of 154,644 fry)) and Davis Lake (1988 release of 657,287 fry).

Table 7. Estimated contributions of sockeye salmon by group to the escapement of the Eshamy(225) and Coghill(223) systems of 1991 through 1994.

YEAR	Contributor(Stock/ype)	Release Site	District			
			223	\%	225	\%
1991	Main Bay (Coghill/Smolt)	Main Bsy Hatchery	0	0	415	0.9
	Other ${ }^{\text {a }}$		9.752	100	0	5.0
	Wild(Eshamy/Smolt)		0	0	45,814	94.1
	Total Escapement		9,752		46,229	
1992	Main Bay (Coghill/Smoit)	Main Hay Hatchery	0	0	113	03
	Main Bay (Eshemy/Smott)	Main Bey Hatchery	0	0	0	0
	Total Main Bay		0	0	113	0.3
	Remote Release (Cogtill/Smolt)	Coghill R Est.	0	0	0	0
	Remote Release (Eshamy/Smolt)	Eshamy R. Est.	0	0	132	0.4
	Remote Release (Eshamy/Fry)	Esther Pass Lake	0	0	0	0
	Total Remote Relesse		0	0	132	0.4
	Other ${ }^{2}$		29,641	100	5,364	14.8
	Wild(Eshamy/Smolt)		0	0	30,627	84.5
	Total Escapement		29,641		36.236	
1993	Main Bay (Coghill/Smolt)	Main Bay Hatchery	134	1.1	102	0.23
	Main Bay (Eshamy/Smolt)	Main Bay Hatchery	0	0	0	0
	Main Bay (Eyak/Fry)		0	0	0	0
	Total Main Bay		134	1.1	102	0.23
	Remote Release (Coghill/Smolt)	Coghill R Est.	1,181	9.6	0	0
	Remote Release (Eshamy/Smolt)	Eshamy R Est.	0	0	2,643	6.2
	Remote Release (Eshamy/Fry)	Esther Pass Lake	0	0	6	0
	Remote Release (Eshamy/Fry)	Pass Lake	0	0	0	0
	Total Remote Release		1,181	9.6	2,649	6.2
	Other a		10,937	89.3	5,485	12.8
	Wild(Eshamy/Smolt)		0	0	34,657	80.8
	Total Escapement		12,252		42.893	
1994	Main Bay (Coghill/ ${ }^{\text {molt) }}$	Main Bay Hatchery	62	0.9	26	0
	Main Bay (Eshamy/Smolt)	Main Bay Hatchery	0	0	111	0.17
	Main Bay (Main Bay/Smolt)	Main Bay Hatchery	0	0	0	0
	Main Bay (Eyak/Fry)	Main Bay Hatchery	0	0	0	0
	Total Main Bay		62	0.9	137	0.2
	Remote Release (CoghillSmolt)	Coghill R Est.	3,416	47.0	0	0
	Remote Release (Eshamy/Smolt)	Eshamy R. Est	0	0	37,293	577
	Remote Release (Esharny/Fry)	Eshamy Lake	24	03	3.320	5.1
	Remote Release (Eshamy/Fry)	Esther Pass Lake	0	0	0	0
	Remote Release (Eshamy/Fry)	Pass Lake	0	0	0	0
	Total Remote Release		3.440	47.3	40,613	62.8
	Total Wild		3,762	51.7	23,910	37.0
	Total Escapement		7.264		64.660	

${ }^{\text {a }}$ Other contributions may contain wild fish and/or untagged releases at Pass Lake (1988 release of 594,210 fry; 1989 release of 603,219 fry), Esther Pass Lake (1988 release of 153,031 fry; 1989 release of 154,644 fry)) and Davis Lake (1988 release of 657,287 fry).
by tagged release groups were made by remote releases of smolt into the Coghill (47% of escapement) and Eshamy (62.8% of escapement) rivers, respectively.

Brood-stock harvests were made for 1991 through 1994 at the Main Bay facility. The harvests were $31,961,4,579,8,020$ and 4,951 , respectively.

Survival rates for tagged release groups of sockeye salmon were calculated only for those groups which had completed their marine residencies. The survival rates of the different kinds of hatchery-reared release groups are presented in Table 8. Survival rates were generally highest for groups released directly from the Main Bay facility. The lowest survival rates were associated with sockeye salmon released remotely as fry. Survival rates by tag code are presented in Appendix B. A significant linear relationship was found between survival rate of release group and average weight of fish in the release group at release (Survival rate(\%) $=2.22+0.84$ (Release weight (g)); $\mathrm{p}<0.0001$). A significant relationship persisted when the analysis was performed only on data associated with those groups released from the Main Bay facility as smolts and of Coghill stock, i.e. on groups whose release weights were more similar (Survival rate(\%) $=7.44+0.49$ (Release weight (g)); $\mathrm{p}=0.03$). Survival rates of tagged wild populations are presented in Table 9. The estimated survival rates of wild Eshamy fish are of a similar magnitude to those of the fish reared and released at the Main Bay facility. The survival rates of the Coghill wild fish, however, are significantly smaller than those of the wild Eshamy fish and those of any of the groups reared at the Main Bay hatchery.

Contributions and survival rates of chum salmon.

Tags applied at the Main Bay, Solomon Gulch and W. Noerenberg facilities were recovered in common property, cost-recovery and brood-stock harvests. Hatchery contributions to the common property fishery of 1994 are presented in Table 10. Wild contributions are also presented. Detailed district-week estimates of contributions by the Solomon Gulch and W. Noerenberg facilities and by wild populations are given in Appendix C. By far the largest catch of chum salmon in 1994 (approximately half a million) occurred in district 223. About 78% of this catch were estimated to have been reared at the W. Noerenberg facility, the remainder being predominantly of wild origin.

The next largest catch was much smaller (about 42,000) and was made in district 221, and was estimated to consist of 8% fish reared at the W. Noerenberg facility and 12% fish reared at the Solomon Gulch facility, the remainder being of wild origin. Catches of chum salmon were also made in district 225 (about 16,$500 ; 46 \%$ of wild origin), 226 (about 9,$000 ; 74 \%$ of wild origin) and 222 (about $1500 ; 58 \%$ of wild origin). Cost-recovery harvests of chum salmon were made in 1994 in districts 221 (2,881 ;estimated 100% wild and incidental to the pink salmon cost-recovery fishery), 223 (374,375 ; estimated 15% wild), and 225 (2,863 ; estimated 64% wild and incidental to the sockeye salmon cost-recovery fishery). The Solomon Gulch and W. Noerenberg facilities harvested 2,863 and 111,603 chum salmon as brood stock, respectively.

Significant fully-tagged returns of chum salmon reared at the Main Bay facility were present only in the common property fisheries of 1990 and 1991. Contributions by Main Bay chum salmon to

Table 8. Survival rates of release groups of sockeye salmon reared at the Main Bay hatchery.

Contributor(Stock/Type)	Brood Year	Release Site	Survival Rate $\%$	Standard Error
			5.3	0.21
Main Bay(Coghill/Smolt)	1986	Main Bay Main Bay	16.0	0.59
	1987	Main Bay 1988	Main Bay	9.9

Table 9. Survival rates of wild release groups of sockeye salmon.

Population	Release Site	Release Year	Tag code	Survival Rate $\%$	Standard Error	
	Eshamy weir	1989				
Eshamy Lake	Eshamy weir	1990	311840	15.5	0.51	
Eshamy Lake	Eshamy weir	1991	311910	11.1	0.56	
Eshamy Lake	Eshamy weir	1991	311951	3.2	0.36	
Eshamy Lake	Eshamy weir	1991	311956	20.6	0.91	
Eshamy Lake			311957	12.6	0.65	
	Coghill weir	1989				
Coghill Lake	Coghill weir	1991	1301010403	0.65	0.08	
Coghill Lake	Coghill weir	1991	1301020101	0.68	0.09	0.05
Coghill Lake						

Table 10. Contributions of chum salmon to the common property fisheries of 1994.

Contributor	221	District								\%	Total	\%
		222			223		225		226			
		\%		\%		\%		\%				
Solomon Gulch	4,990	12.0	0	0	335	0	796	4.9	854	9.1	6,975	1.1
W. Noerenberg	3,470	8.3	609	41.7	436,005	78.2	7,992	48.7	1,600	17.1	449,676	69.0
Total Hatchery	8,460	20.3	609	41.7	436,340	78.2	8,788	53.6	2,454	26.2	456,651	70.1
Wild	33,176	79.7	853	58.3	121,446	21.8	7,619	46.4	6,921	73.8	195,196	30.0
Total Catch	41,636		1,462		597,786		16,407		9,375		651,847	

the common property fishery of 1990 were restricted to the Coghill (estimated 44,741 to a catch of 312,400) and Eshamy (estimated 207,600 to a catch of 359,300) districts. Contributions by Main Bay chum salmon to the 1991 common property fishery were restricted to the Eshamy district (estimated 162,960 to a catch of 251,870). As a result of discontinuation of chum salmon production at the Main Bay facility, there were no brood-stock harvests of this species over the period covered by the current study.

Survival rates for tagged release groups of chum salmon were calculated only for those groups which had completed their marine residencies. They are presented by tagcode in Appendix B. Some evidence was found to indicate that survival rates of chum salmon released from the W . Noerenberg facility were related to release weights (Survival Rate $=-0.752+4.2$ (Release Weight (g)); $\mathrm{p}=0.103$).

Contributions and survival rates of coho salmon.

Tags applied at the Solomon Gulch and W. Noerenberg facilities were recovered in common property, cost-recovery and brood-stock harvests. The three-year life cycle of coho salmon allows estimation of hatchery contributions for most years. Exceptions are those from the W. Noerenberg facility in 1989 (tagging of coho salmon commenced only in 1989 at this facility) and 1993 (bacterial kidney disease in 1992 prevented tagging) and those from the Solomon Gulch facility in 1994 (fish were not tagged in 1993 at Solomon Gulch). Consequently, wild contribution estimates derived from differences between total catches and estimated hatchery contributions were made only for 1990, 1991 and 1992. Estimated contributions of coho salmon originating from the Solomon Gulch and W . Noerenberg facilities to the common property fisheries of 1990, 1991 and 1992 are presented in Table 11. Wild contributions are also presented. Detailed district-week estimates of contributions by the Solomon Gulch and W. Noerenberg facilities are given in Appendix C. Common property catches of coho salmon ranged from 93,000 in 1991 to 215,000 in 1990. In all years, the vast majority of the catch occurred in district 223 , and of this catch by far the most significant contributor was the W . Noerenberg facility. Over the period 1989 through 1994, cost-recovery harvests of coho salmon were made in districts 221 and 223. The Solomon Gulch harvests ranged from 11,201 (estimated 67\% Solomon Gulch fish; 25% wild) in 1990 to 55,515 (estimated 60% Solomon Gulch fish) in 1989. The W. Noerenberg harvests ranged from 13,230 (estimated 100% W. Noerenberg fish) in 1991 to 46,700 (estimated 98% W. Noerenberg fish; 2% wild) in 1992 . The Solomon Gulch facility harvested $12,231,1,465$ and 1,179 coho salmon for brood-stock purposes in 1990 through 1992, respectively. The W. Noerenberg facility harvested $2,287,1,635$ and 2,986 coho salmon for brood-stock purposes in 1990 through 1992, respectively.

Survival rates for tagged release groups of coho salmon are estimable for all codes released from 1989 through 1993. They are presented by tagcode in Appendix B. An analysis of the effect of release size upon survival rate for the W. Noerenberg and Solomon Gulch facilities revealed no significant relationship ($\mathrm{p}=0.23$ for Solomon Gulch; $\mathrm{p}=0.35$ for W. Noerenberg).

Contributions and survival rates of chinook salmon

Tags applied at the W. Noerenberg facilities were recovered in the common property, costrecovery and brood-stock harvests. Only in 1993 and 1994 were all returning hatchery release

Table 11. Estimated contributions of coho salmon to the common property fisheries of 1990 through 1992.

Year	Contributor	221	222			223	224			225	\% 226		\%	Total	\%
			\%		\%		\%		\%						
1990	Solomon Guich	11,340	62.2	1,400	11.3	3,481	2.5	386	19.0	0	0	2,809	6.9	19,416	9.0
	W. Noerenberg	0	0	5,778	46.6	99,637	70.9	935	46.0	0	0	13,884	33.9	120,234	55.8
	Total Hatchery*	11,388	62.2	7,401	59.7	107,648	76.6	1355	66.7	0	0	18,222	44.6	146,014	67.8
	Wild	6,832	37.8	4,986	40.3	32,898	23.4	677	33.3	1,278	100	22,651	55.4	69,322	32.2
	Total Catch	18,220		12,387		140,546		2,032		1,278		40,873		215,336	
1991	Solomon Gulch	1,340	29.1	0	0	501	0.6			428	40.0	460	5.8	2,729	2.9
	W. Noerenberg	0	0	0	0	72,722	92.1			0	0	1,017	12.9	73,739	79.5
	Total Hatchery ${ }^{2}$	1,417	30.8	0	0	74.814	94.7			428	40.0	1,843	23.3	78,502	84.6
	Wild	3,187	69.2	207	100	4,170	5.3			641	59.9	6,062	76.7	14,267	15.4
	Total Catch	4,604		207		78,984		0		1,069		7905		92,769	
1992	Solomon Gulch	17	7.1	0	0	1,599	1.4			12	0.5			1628	1.4
	W. Noerenberg	0	0	1,744	76.3	111,712	97.8			1,939	85.8			115,395	96.9
	Total Hatchery'	17	7.1	1,744	76.3	113,311	99.1			1,951	86.4			117,023	98.3
	Wild	222	92.9	542	23.7	965	0.8			308	13.6			2,037	1.7
	Total Catch	239		2,286		114,276		0		2,259		0		I 19,060	

[^0]groups tagged. Consequently, wild contribution estimates derived from differences between total catches and estimated hatchery contributions were made only for 1993 and 1994. Contributions of chinook salmon originating from the W. Noerenberg facility to the common property fishery of 1993 and 1994 are presented in Table 12. Wild contributions are also presented. Detailed district-week estimates of contributions by the W . Noerenberg facilities and by wild populations are given in Appendix C. The only hatchery contributor for 1993 and 1994 was the W. Noerenberg facility. The largest catches of chinook salmon were made in district 223. Of the 727 chinook salmon caught in 1993 in district $223,349(48 \%)$ were estimated to be of hatchery origin, while $137(29 \%)$ of the 478 chinook salmon caught in 1994 were estimated to be of hatchery origin. Cost-recovery harvests of chinook salmon made in 1993 and 1994 in district 223 were 1460 (estimated 30% wild; incidental to the chum salmon cost-recovery fishery) and 835 (estimated 82% wild; incidental to the chum salmon cost-recovery fishery), respectively. The W. Noerenberg facility harvested 573 and 284 chinook salmon as brood stock in 1993 and 1994, respectively.

Survival rates for tagged release groups of chinook salmon were calculated only for those groups which had completed their marine residencies and only for those groups which were fully sampled upon their return, i.e. no survival rates were computed for releases designed to provide sport fisheries where much of the return was not sampled for tags. Survival rates by tagcode are presented in Appendix B.

Table 12. Estimated contributions of chinook salmon to the common property fisheries of 1993 and 1994.

DISCUSSION

Contributions and Survival Rates

Sockeye Salmon

Main Bay Releases

The influence of hatchery production of sockeye salmon on the common property fishery on this species is immediately evident upon inspection of the data in Table 5. In 1989, only three yearold fish from the first hatchery releases in 1988 had returned, and the majority of the catch was consequently of wild origin. In the following years, total catches increased dramatically because of returning hatchery fish. The composition of the returns to the Main Bay facility has also changed over time. When the Main Bay facility began operation, its brood stocks were taken from the Coghill River/Lake system. As the sockeye salmon fishery in district 225 developed, and the first signs that the Coghill sockeye population may be in danger were observed, a conscious effort was made to change the composition of the Main Bay releases. In an attempt to avoid interception of the declining Coghill stocks, the facility began using brood stock from the Eyak and Eshamy systems, whose runs are generally earlier and later, respectively, than that of the Coghill system. The influence of this action on the returns to the Main Bay hatchery was first noticed in 1993, when the first returns of the Eshamy stock were observed (Figure 4). With respect to contributions to the cost-recovery harvests, the lion's share was made by Main Bay releases, although in 1992 and 1994, there were significant other components. Reassuringly, there was little contamination of the escapements of the Eshamy and Coghill systems with sockeye salmon released from the Main Bay facility.

Survival rates of sockeye salmon released from the Main Bay facility were quite variable (Table 8, Appendix B). While year and other experimental factors confounded the analysis to some extent, a regression of survival rate on release weight yielded a significantly positive slope of between 0.49 and 0.84 percentage points per g of release weight The practical significance of this result is unknown.

Remote Releases

In 1990 and 1991, only 15% of the escapement goal for sockeye salmon returning to the Coghill Lake system was satisfied. Further, partially enumerated smolt outmigrations in 1989, 1990 and 1991 were well below expected levels, as were hydroacoustic estimates of fry rearing in the lake The reason for this decline is unknown, although some hypotheses have been formulated. It is possible that the system experienced an overescapement in 1985 and 1987, when more than three times the desired number of fish entered the river. Another hypothesis is that the 1964 earthquake caused the formation of a saltwater lens in the lake which disrupted nutrient flow, plankton populations, and ultimately the carrying capacity of the lake. Limnological evidence supports the contention that the nutrient cycle and plankton populations have been disrupted, and a Forest Service project is underway to fertilize the lake and reverse some of the trends in the lake's nutrient status. The development in the mid-1980's by the State of Alaska and PWSAC of new
hatchery sockeye and chum salmon fisheries which coincided both spatially and temporally with returning Coghill sockeye stocks is also probably a contributing factor to the declining run.

The low returns in 1990 and 1991, and the low numbers of smolt detected leaving Coghill river in 1989 through 1991 suggested that few sockeye salmon would return to this system in 1992, 1993 and 1994. A number of measures were taken to improve the chances that wild Coghill sockeye salmon would successfully run the gauntlet of the intensively-fished migratory corridors. In 1992, a scale-pattern discrimination study was conducted in which wild Coghill fish were distinguished from Main Bay hatchery fish in the commercial catch. Fishery managers used this information to decide whether opening certain areas to fishing would likely result in significant numbers of wild fish being caught. In an attempt to bolster the returns of 1993 and 1994, a remote release program was implemented, whereby smolt reared at the Main Bay hatchery were released into the Coghill River Estuary. The idea was that the smolt would imprint on the water at the release site, and would thus manage to navigate back to the river to spawn and contribute to the escapement. While returns to the Eshamy system had been relatively healthy, the newly developed hatchery chum and sockeye fisheries posed an interception threat to the run, and a remote release program was also initiated for this system. Hatchery-reared smolt were released into the Coghill and Eshamy Rivers in 1991, 1992 and 1993. Hatchery-reared fry were also released into Eshamy Lake in 1991, in an attempt to compare different methods of remote releases.

In general, returns of the Coghill remote releases were lower than those of the Eshamy releases. This was because fewer fish were released into the Coghill River as remote releases, and also because the survival rate of the Coghill releases (1989 brood year) was about half that of the Eshamy releases (Table 8). The reason for the large difference in survival rates is unknown. Both remote release groups were reared in the same hatchery and were released on the same day, removing timing and fish-husbandry practices as explanatory factors. Neither can the difference be explained in terms of the size of fish at release. The Eshamy releases were in fact smaller than the Coghill releases. Significant contributions by both Coghill and Eshamy remote release groups were made to the common property fishery in 1993 and 1994 (Fig.5, Table 5).

The contribution of the Eshamy remote release group to the escapement at the Eshamy weir in 1993 was minimal. It became evident during the season that the escapement goal would be met by late August, and the Eshamy Lagoon was opened to harvest late-arriving sockeye salmon. Coded wire tag data indicated that the large majority of the escapement consisted of lake-reared fish (Table 7). The late-arriving sockeye salmon are thought to have originated predominantly from the remote release groups and their harvest by the commercial fleet is reflected in the large remote release contribution to district 225 in 1993 (Table 5). Since most of the remote released fish were caught by the fleet, it is difficult to determine whether these fish would have eventually ventured up the river. The catch was reported to contain large numbers of darkened fish, and it is speculated that even if the remote releases had passed through the weir, they may have been poor substitutes for their (usually) ocean-bright wild counterparts.

The return to the Eshamy system in 1994 was skewed, and was extremely late, with 50% of the run having passed the weir on September 23, as compared to the historic mean date of August 13. From daily weir counts and CWT tag data obtained from sampling the escapement, it was
apparent that remote-released fish dominated the return after September 22, and were therefore responsible for the late mean return date. While high water temperatures and low stream discharge were believed to have been responsible for slowing entry of lake-reared fish into Eshamy River, the late entry of the remote-released fish was more a consequence of their late arrival into the area. By the time the remote releases had appeared, the commercial fleet had largely ceased to operate, and were unlikely to renew their efforts to harvest fish which were darkened and of poor quality. Consequently, the lateness of the remote releases removed the ability of fishery managers to control the escapement into the river, with the consequence that 66,000 fish escaped, about 25,000 fish over the goal. Whether the remote-release members of the escapement spawned successfully is debatable, however, as many of the fish which passed through the weir were lethargic and in poor condition. Since 40,600 fish in the escapement were estimated to be of remote-release origin, it is possible that in the extreme case where none of the remote release fish spawned successfully, that the effective escapement was 19,400, far short of the 40,000 goal.

The contribution by Coghill remote releases to the Coghill River escapement in 1993 was small (13% of escapement). In 1994, the contribution constituted 47% of the escapement. As with the Eshamy remote releases, the remote-released fish were late, and displayed an imprecise homing ability.

In summary, the remote release program has not achieved its objectives, i.e. that remotelyreleased slamon would contribute to escapements in a manner akin to wild fish. The delayed runtiming, the darkened nature of the fish, and the imprecise homing seen at both the Eshamy and Coghill Rivers, have conspired to create more problems for management than they have solved. Fisheries managers do not know whether sockeye salmon found in the vicinities of these systems will migrate up the river, and if they do, whether they will be effective spawners. Even if the returning remote releases were known quantities, with respect to their homing and spawning abilities, the late nature of the returns coincidental with cessation of fleet activities, effectively removed the ability of the manager to control escapement levels.

In addition to the program designed to enhance escapements at the Coghill and Eshamy Rivers, another remote release program concerned the assimilation of excess fry and/or pre-smolt production at the Main Bay facility. The idea behind the releases was to use various barriered lakes in the Sound as natural incubators, so that the only consequence of the program was the augmentation of the commercial fishery, and not the establishment or rehabilitation of any populations. A release of fry at Marsha Lake on Knight Island in the South Western district was tagged, but has not yet begun contributing to the commercial fishery. At Pass and Esther Pass Lakes, releases of tagged fry were a part of a study designed to compare the suitability of the lakes as receptors of excess fry production. Adult survival rates associated with both lakes were low (Table 8), with that pertaining to Esther Pass (3.4\%) lake surpassing that of Pass Lake (1.1%). From growth measurements taken from outmigrating smolts, it appears that some of the difference in adult survival rates, at least, occurred at the pre-smolt to smolt stage (Carpenter, pers. comm.).

Wild Returns

Total wild contributions are routinely calculated as the difference between estimated hatchery contributions and the total catch. As a result of incomplete tagging of releases of excess production of fry and/or presmolt at Pass, Esther Pass and Davis Lakes, estimation of total wild contributions during 1991 through 1993, in which the untagged releases returned, was not possible. The change in the importance of the wild component to the sockeye salmon fishery can still be seen, however, in that 98% of the total common property catch in 1989 was of wild origin, whereas in 1990 and 1994, this percentage fell to 79% and 21%, respectively.

For 1991 through 1993, returns of fish reared in Eshamy Lake to the Eshamy River were estimable from CWT recoveries and the dominance of the hatchery contributions to the common property fishery over those made by the Eshamy system is evident from Table 5. As a result of problems with the enumeration of the outmigration at Coghill River during the tagging process in 1989 and 1991, and the fact that the outmigration was not tagged in 1990, direct estimation of the returns of wild Coghill fish from tag-recovery data was not possible. This was to be unfortunate, given the severe shortfalls in the escapement levels at the Coghill weir in 1993 and 1994. The information would have been useful to fishery managers in determining the impact of the commercial fisheries in the Eshamy and Esther subdistricts upon the Coghill returns. This is especially true when considering the common property fishery in the Esther subdistrict in 1993, when contributions of wild and/or untagged remote releases, were about 25,000 fish. Similarly, the wild component of the common property fishery in 1994 in the same district was about 9,000 fish. These numbers are of sufficient magnitude that were they to represent wild Coghill fish, the Coghill escapement goals could have been achieved had the fishery in the Esther subdistrict not occurred.

Marine survival rates of tagged wild stocks varied widely within a watershed both between and within years. That fish migrating from the Coghill system did not survive as well as those migrating from the Eshamy system is evident, however (Table 9). It therefore appears that Coghill sockeye stock may not only be suffering at the lake-rearing stage, but that they also suffer reduced marine survival.

One of the original objectives of this study was to compare survival rates of sockeye salmon native to watersheds that lay in the path of the Exxon Valdez (Eshamy, Jackpot) to that of one that was distant from the oil trajectory. While the ability to calculate survival rates of fish migrating out of Jackpot River was lost because the escapement at this site was only scanned for tags in 1991, the direction of the Eshamy-Coghill survival rate difference is opposite to that expected under the hypothesis that oiling would reduce marine survival rates. In hindsight, the comparison is not a good one, because of the potential existence of confounding factors, such as the possible problem associated with the fertility of the lake.

Chum Salmon

Only in 1994 were all returning hatchery release groups tagged. This was a consequence of the relatively late start the W . Noerenberg facility experienced in tagging their chum salmon releases
(first chum salmon releases tagged in 1990) and of a 1988 release from the Solomon Gulch facility which was not tagged. Consequently, wild contribution estimates derived from differences between total catches and estimated hatchery contributions were made only for 1994. For some years data pertaining to the age-class structure of the hatchery brood stock was available and attempts were made to use this information to estimate the contribution of untagged hatchery returns. The variability of the resulting contribution estimates were so large, however, that they were of dubious value, and the practice was terminated. In addition, for unbiased estimation on a stratum by stratum basis, an inherent assumption is that within a certain stratum, the fish returning to a given hatchery have the same age composition as those fish in the brood stock. This is improbable, with the result that such estimates will likely be biased. Another method of calculating wild contributions would have been to obtain an estimate of the overall marking rate in the brood stock of the hatchery in question, and use it for all tags recovered for that hatchery in the given year. This would have allowed estimation of the total wild return for a year in which tags of at least one release group were present in the return. Unbiased estimation on a stratum by stratum basis requires, however, that the within-stratum tag composition of fish returning to a given hatchery is the same as that in the brood stock. This is improbable, and biased estimation would again be the likely result.

The large production by the W . Noerenberg facility is clearly seen from Table 10. Almost half a million chum salmon were harvested in the Esther subdistrict common property fishery in 1994. As noted previously, a significant number of sockeye salmon were caught in this fishery, and it is possible that they were members of the depressed Coghill return. In an attempt to alleviate this potential problem, moves are afoot to relocate at least some of the W. Noerenberg chum salmon return, and hence the chum salmon common property fishery, to Port Chalmers on Montague Island through a remote release program. It is hoped that this will relieve some of the pressure from the migratory corridor of the Coghill sockeye stock. The cost-recovery fishery at W . Noerenberg harvested few wild chum salmon (12\%).

The chum salmon return to the Solomon Gulch facility in 1994 was significantly smaller than that to the W. Noerenberg facility. This difference is mainly a consequence of the much larger releases at the W. Noerenberg facility. The W. Noerenberg hatchery released 124.2 million fry, while the Solomon Gulch facility only released 4.8 million fry from the brood years which contributed to the 1994 common property fishery as four and five year-olds. Another less significant factor is the lower marine survival of chum salmon reared at the Solomon Gulch hatchery (Appendix B). The reason for the latter is unknown.

An analysis of the relationship between release weight and survival rate of chum salmon released from the W. Noerenberg hatchery revealed some evidence ($\mathrm{p}=0.1$) that higher survival rates were correlated with higher release weights although it was weaker than those obtained for the sockeye releases. The smaller range in the independent variable (release weight) associated with the chum salmon released from the W. Noerenberg facility in 1990, combined with fewer data points (Appendix B) contrived to make the statistical test of the slope of the regression less powerful.

Coho Salmon
The difference in the sheer capacity of the W . Noerenberg facility to produce fish over that of the Solomon Gulch facility is again reflected by its contribution of coho salmon to the common property fisheries of 1990 through 1992. Survival rates (Appendix B) were variable both within facility and year and between facility and year. There were no obvious differences in rates between facilities, however, and the greater contributions by the W. Noerenberg facility are believed to originate from the greater number of fish released from the hatchery. Unlike the situation for sockeye and chum salmon releases, there was no discernible effect of release size on survival rate ($\mathrm{p}=0.23$ for Solomon Gulch; $\mathrm{p}=0.35$ for W. Noerenberg). For the analysis of the data pertaining to the Solomon Gulch facility at least, the lack of ability to detect a relationship cannot be attributed to a low sample size, or to a small range of the independent variable. No hypothesis is offered to explain why a relationship between release weight and survival rate appears to exist for sockeye and chum salmon, but not for coho salmon.

Chinook Salmon

The chinook salmon component of the Prince William Sound salmon fishery is very small, and catches were made incidentally in the fishery which targeted the large W. Noerenberg hatchery chum salmon returns. In a manner similar to the returns of chum salmon, the presence of untagged hatchery chinook salmon compromised the ability of the CWT program to estimate contributions for certain years. The chinook salmon caught in 1993 and 1994 were found to consist of significant numbers of wild fish. There is little data at this time for assessment of the effect of release weight on survival rate.

Adjustment Factors

Estimation of the combined effects of tag loss and differential mortality of tagged fish upon the marking rates in returning fish is difficult even for pink salmon (Sharr et al, 1995b), which have a strict two-year life cycle. The main problem with pink salmon appears to be related to the assumption that the brood stock consists solely of hatchery-reared fish, although only circumstantial evidence exists to support this contention. Another possible problem is the effect of the magnetic steel tag upon homing fidelity, leading to an underepresentation of hatchery fish in the brood stock, and inflated adjustment factors. With multiple age-class species, there is the added question of whether the influence of tag loss and differential mortality is different for fish of different marine residencies. Questions relating to the purity of the pink salmon brood stock and the homing ability of returning tagged pink salmon may be answered with the coincidental operation of the CWT and otolith-marking programs. In the latter program, all hatchery-reared fish will have specifically-marked otoliths so that the wild component in the brood stock will be estimable, and a comparison of the CWT and otolith estimates of hatchery fish in the brood stock will be possible. An assessment of homing ability of CWT-marked fish could be conducted through a comparison of the ratio of tagged to untagged hatchery-released fish (determined through otolith marks) in streams near to the facility in question to that found in the brood stock. While the relevance of these findings to other species may be questionable, the tendency of pink
salmon to stray to a greater extent (Horrall, 1981) could be used to establish an argument that the degree of straying by wild pink salmon into a brood stock is a maximum. Further, since the potential damage to pink salmon fry by a CWT is probably much greater than to a smolt, any taginduced straying could also probably be considered a maximum.

Recommendations for future studies

Some parts of this program could have been performed more effectively had there been more communication between Divisions within the Department. A major example was the release of untagged sockeye fry at Pass, Esther Pass and Davis Lakes. These fish returned over a period of the study when estimation of the total wild component of the catches and escapements was desirable. In the presence of the untagged hatchery-reared fish, it was impossible to estimate wild fish from the difference between total catches or escapement, and estimates of hatchery contributions from returning tagged hatchery-reared fish. Further, the inability to estimate total wild contributions prevented an indirect estimation of the return to the Coghill system. In the event where an estimate of the Eshamy return was available, the Coghill return could have been estimated as the difference between the total wild return and the estimate of the Eshamy return.

Another factor that contributed to the failure of some experiments was a lack of forward funding. This is required when studies are anticipated to extend over several years. One example is the attempt to estimate the survival rates of fish migrating from the Jackpot watershed. Smolt were tagged at this system in 1990 and 1991, and yet the escapement was only scanned for tags in 1991, thus recovering tags from part of the return associated with the release of 1990, and none from the release of 1991. Consequently, estimation of survival rates for this system was impossible. Another example is the discontinuous nature of the tagging program at the Coghill weir, where the outmigration of 1990 was not tagged. This meant that during those years in which fish from the tagged years returned, fish from the untagged year were also present. Any estimation of the total contribution by the Coghill system to any stratum would then have required use of age-class data. As well as adding variability to the estimate, use of age-class data would have meant that the estimate would not have been available inseason.

Finally, improved co-ordination between tag application and tag recovery personnel would alleviate some of the problems stemming from differential tagging rates among releases, such as that associated with estimation of contributions when untagged release groups of chum and chinook salmon returned with tagged release groups.

CONCLUSIONS

As expected, the proportion of fish from wild populations in the commercial catches decreased with increasing releases of hatchery fish. Postseason analysis of recovered tags from sockeye salmon reared and released at the Main Bay facility revealed that the percentage of the common property catch attributable to the facility increased from 1.8% in 1989 to between 39% in 1993 and 91% in 1991. Significant relationships between release size and survival rates were detected for sockeye salmon. Efforts to enhance natural sockeye salmon populations through remote releases largely failed. While tagged remote-released sockeye salmon, designed to augment natural populations, returned to the Eshamy and Coghill Rivers, they were late and in poor condition. The ability of these fish to spawn effectively is debatable, and the program was not considered successful. A comparison of adult survival rates for fry stocked at Pass and Esther Pass Lakes showed the latter to be the more suitable disposal site for excess fry production at the Main Bay facility. The comparison between survival rates of sockeye salmon from oiled and unoiled areas was compromised by incomplete scanning of escapements due to lack of funding and problems with enumeration of the sockeye salmon smolt outmigration at Coghill River. The ability of the coded wire tag program to estimate the total wild component in the sockeye salmon returns of 1991 through 1993 was compromised by the presence of untagged hatchery-reared fish from remote releases at Davis, Esther Pass and Pass Lakes, although specific contributions by the Eshamy system were estimable in certain years. The marine survival rates of fish from the Coghill system were substantially lower than those of fish from the Eshamy system. With respect to chum salmon returns, some evidence was collected to suggest an influence of release size on survival rates. No such relationship was detected for coho and chinook salmon

LITERATURE CITED

Bailey, J.E. 1966. Effects of salinity on intertidal pink salmon survival In Proceedings of the 1966 Northeast Pacific Pink Salmon Workshop Oct. 3, 1966 pp. 12-15.

Clark, J.E. and D.R. Bernard. 1987. A compound multivariate binomial-hypergeometric distribution describing microwire tag recovery from commercial salmon catches in southeast Alaska. Alaska Department of Fish and Game, Division of Commercial Fisheries, Information Leaflet 261 Juneau.

GAUSS System, Version 3.0, 1992. Aptech Systems, Inc., 23804 S.E. Kent-Kangley Road, Maple Valley, WA 98038.

Geiger, H, J. 1990. Parametric bootstrap confidence intervals for estimating contributions to fisheries from marked salmon populations. American Fisheries Society Symposium 7:667676.

Geiger, H.J. and Sharr, S. 1990. The 1988 tag study of pink salmon from the Solomon Gulch Hatchery in Prince William Sound, Alaska, In Pilot studies in tagging Prince William Sound hatchery pink salmon with coded-wire tags. Alaska Department of Fish and Game, Division of Commercial Fisheries, Fishery Research Bulletin No. 90-02 Juneau.

Horrall, R.M. 1981. Behavioural stock-isolating mechanisms in Great Lakes fishes with special reference to homing and site imprinting. Canadian Journal of Fisheries and Aquatic Sciences38:1481-1496.

Kirkwood, J.B. 1962. Inshore marine and freshwater life history phases of pink salmon (Oncorhynchus gorbuscha) and chum salmon (O. keta) in Prince William Sound, Alaska. Ph.D. Thesis. University of Louisville, 300 pp . Louisville, Kentucky.

McCurdy, M.L. 1979. Prince William Sound general districts 1979 pink and chum salmon forecasts, background, methods, and thoughts. Alaska Department of Fish and Game, Prince William Sound Management Area Data Report No. 14-1979.

Morrison J, and Zajac, D. 1987. Histologic effect of coded-wire tagging in chum salmon. North American Journal of Fisheries Management 7:439-441.

Munk, K.M. and W.W. Smoker. 1990. Temperature-induced marks in otoliths of pink salmon embryos. Juneau School of Fisheries and Ocean Sciences Report 90-01. University of Alaska, Juneau, Alaska.

Peltz, L. and Geiger, H.J. 1990. A tagging study of the effects of hatcheries on the 1987 pink salmon fishery in Prince William Sound, Alaska, In Pilot studies in tagging Prince William

Sound hatchery pink salmon with coded wire tags. Alaska Department of Fish and Game, Division of Commercial Fisheries, Fishery Research Bulletin No. 90-02 Juneau.

Peltz, L. and Miller, J. 1990. Performance of half-length coded wire tags in a pink salmon hatchery marking program. American Fisheries Society Symposium 7:244-252.

Rbase Version 4.0a, 1992. Microrim, Inc., 15395 S.E. 30th Place, Bellevue, WA 98007.
Sharr, S., B.G. Bue, S.D. Moffit, A.K. Craig, and D.G. Evans. 1994. Injury to salmon eggs and preemergent fry in Prince William Sound, Exxon Valdez Oil Spill State/Federal Natural Resource Damage Assessment Final Report (Fish/Shellfish Study Number 2), Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Cordova, Alaska.

Sharr, S., C.J. Peckham, D.G. Sharp, J.L. Smith, D.G. Evans and B.G. Bue. 1995a. Coded wire tag studies on Prince William Sound salmon. Exxon Valdez Oil Spill State/Federal Resource Damage Assessment Final Report (Restoration Study R60A), Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Cordova, Alaska.

Sharr, S., R. Riffe, S. Gehlbach, D.G. Evans and B.G. Bue. 1995b. Coded wire tag recoveries from pink salmon in Prince William Sound salmon.fisheries. Exxon Valdez Oil Spill Restoration Project Annual Report (Restoration Project 94320B), Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Cordova, Alaska

Willete, T.M., G. Carpenter, P.Shields, and S.R. Carlson. 1994. Early marine salmon injury assessment in Prince William Sound, Exxon Valdez Oil Spill State/Federal Natural Resource Damage Assessment Final Report (Fish/Shellfish Study Number 4A), Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Cordova, Alaska

APPENDICES

Appendix A. Derivation of standard errors of adjustment factor estimates

The adjustment factor for hatchery h for a given species is calculated by (Equation 3, Methods):

$$
\hat{a} f_{h}=\frac{\sum_{i=1}^{N_{h}} s_{h i} \hat{m}_{h i}}{\sum_{i=1}^{N_{h}} \sum_{j=1}^{T_{h i}} \frac{x_{h i j}}{p_{j}}}
$$

where
$N_{h} \quad=\quad$ Number of years for which brood samples were collected from hatchery h, $s_{h i} \quad=\quad$ Number of fish scanned for tags in the $i^{t h}$ year in hatchery h,
$m_{h i} \quad=\quad$ Proportion of brood stock in $i^{\text {th }}$ year at hatchery h which derives from tagged release groups,
$T_{h i}=\quad$ Number of uniquely tagged release groups which may return to hatchery h in year
i,
$x_{h j} \quad=\quad$ Number of tags of $j^{\text {th }}$ code found in brood sample of $i^{t h}$ year at hatchery h, and
$p_{j} \quad=\quad$ Tagging rate at release for tag code j (defined as number of tagged fish released with $j^{\text {th }}$ code divided by the total number of fish in the $j^{\text {th }}$ release group).

The derivation of an approximate standard error for the adjustment factor estimate for chum salmon released from the W . Noerenberg facility is described to demonstrate general methods. Data from the 1993 and 1994 brood stock sampling program at the W . Noerenberg facility were available to estimate the adjustment factor ($N_{\text {GN }}=2, s_{W N 1}=107030, s_{W N 2}=106383$, $\sum_{j=1}^{T_{\text {NN1 }}} \frac{x_{\text {KN1 } 1 j}}{p_{i}}=22091, \sum_{j=1}^{T_{\text {WN2 } 2}} \frac{x_{\text {WN } 2 j}}{p_{j}}=45814$). Chum salmon have been released from the W . Noerenberg facility since 1984, but have only been tagged since 1990 (1989 brood year). Since chum salmon return to the facility as three, four, five and six year-olds, only three and four year-olds in the 1993 brood stock and only three, four and five year-olds in the 1994 brood stock originate from tagged release groups. Data pertaining to the age-class composition of the brood stock were therefore required to partition the sampled fish into those arising from the tagged and untagged release ($m_{\text {WNI }}=0.165, m_{\text {WN } 2}=0.92$).

The adjustment factor estimate for chum salmon originating at the W . Noerenberg facility ($\hat{a}_{w N}$) is then:

In order to derive an approximate standard error for $a \hat{f}_{W N}$ through simulation, the nature of the four random components A, B, C and D must be specified. Once this has been done, an appropriate algorithm can be formulated which will mimic the processes involved in the generation of $a \hat{f}_{W N}$. By examining the variation of many estimates generated by the algorithm, an approximate standard error can be obtained.

For component A, the estimated proportion of 3 and 4 year-olds in the 1993 W. Noerenberg brood stock is calculated from a realization of a hypergeometric random process, i.e. the number of 3 and 4 year-old fish found in an age-class sample taken without replacement from the brood stock. The sample taken was small compared to the size of the brood stock, and a binomial approximation to the hypergeometric is considered valid. The random nature of component B is similar to that of A.

Component C, the estimated contribution of three and four year-olds to the 1993 W. Noerenberg brood stock, is calculated from a realization of a compound multinomial-hypergeometric random process. The realization consists of the numbers of tags of different tag codes found in a sample taken without replacement from the brood stock. There is a hypergeometric quality in that there is sampling without replacement from the brood stock. The multinomial nature derives from the fact that the total number of tags of different codes in the brood stock is the result of a multinomial process, whereby the brood stock is seen as a random sample (taken effectively with replacement) from all the fish returning to the W . Noerenberg hatchery, with the multinomial parameters being the proportions of the various codes in the returning fish. Greater than 95% of the brood stock is routinely scanned for tags, and for the purposes of this simulation, it is assumed that all of the brood stock is sampled, so removing the hypergeometric sampling component. The tags in the brood stock are therefore assumed to be generated by a multinomial process. The origin of the random nature of component D is similar to that of C.

To simulate $a \hat{f}_{B N}$, values for the parameters of the above distributions are required. For the binomial approximations associated with components A and B, the proportions calculated from the age-class samples are taken as the binomial parameters. For the multinomial distributions associated with components C and D , the parameters are taken as the proportions of different tagcodes found in the scanned brood stock. The simulation is described below.

For each of 1000 iterations, the following was performed:

1) A simulated component-A, A^{\prime}, was generated according to :
where
$x_{A} \quad=\quad$ Simulated number of three and four year-old fish in age-class sample $\sim \operatorname{Binomial}\left(407, p_{34}\right)$, where $p_{34}=0.165$ is the estimated proportion of three and four year-old fish in the age-class sample from the 1993 brood stock.
2) A simulated component-B, B', was generated according to:

$$
B^{\prime}=106383_{\substack{\text { \# scarmod in ' } 94 \\
\text { brood for tags }}} * \frac{x_{B}}{796_{\begin{array}{c}
\text { \# sampled in age-classs } \\
\text { det or min ation of '94 }
\end{array}}}
$$

where
$x_{B} \quad=\quad$ Simulated number of three and four year-old fish in age-class sample \sim Binomial $\left(796, p_{345}\right)$, where $p_{345}=0.92$ is the estimated proportion of three, four and five year-old fish in the age-class sample from the 1994 brood stock.
3) A simulated component-C, C^{\prime}, was generated according to:

$$
C^{\prime}=\sum_{i=1}^{4} x_{C i} t_{C i}
$$

where
$x_{C i}=$ The $i^{\text {th }}$ element of the vector \underline{x} which is generated from a multinomial $\left(107030, p_{c}\right)$. The parameter vector p_{c} consists of the proportions of the different tag codes found in the scanned brood sample codes (four in 1993), concatenated by the compliment: $\left[0.196 \times 10^{-3}, 0.224 \times 10^{-3}, 0.0187 \times 10^{-3}, 0.037 \times 10^{-3}, 1-\left(0.475 \times 10^{-3}\right)\right]$.
$t_{C i}=T h e i^{t^{h}}$ element of the vector t_{C}, which contains the expansion factors corresponding to the four found tag codes [444, 436,387,385].
4) A simulated component-D, D^{\prime}, was generated according to:

$$
D^{\prime}=\sum_{i=1}^{10} x_{D i} t_{D i}
$$

where
$x_{D i}=\quad$ The $i^{\text {th }}$ element of the vector \underline{x} which is generated from a multinomial $\left(107030, p_{c}\right)$. The parameter vector p_{c} consists of the proportions of the different tag codes found in the scanned brood sample (ten in 1994), concatenated by the compliment: $\left[0.27 \times 10^{-3}, 0.32 \times 10^{-3}, 0.094 \times 10^{-3}, 0.085 \times 10^{-3}, 0.047 \times 10^{-3}, 0.038 \times 10^{-3}\right.$, $\left.0.019 \times 10^{-3}, 0.056 \times 10^{-3}, 0.038 \times 10^{-3}, 0.009 \times 10^{-3}, 1-\left(0.976 \times 10^{-3}\right)\right]$.
$t_{D i} \quad=\quad$ The $i^{\text {th }}$ element of the vector t_{D}, which contains the expansion factors corresponding to the ten found tag codes: $[444,436,387,385,679,438,411$, 424, 447, 487].
5) A simulated $a \hat{f} c_{\text {WN }}, a \hat{f} \mathcal{C}_{W_{N}}{ }^{\prime}$ was calculated:

$$
a \hat{f}_{w N}^{\prime}=\frac{A^{\prime}+B^{\prime}}{C^{\prime}+D^{\prime}}
$$

6) A simulated standard error, $\operatorname{se}\left(a \hat{f}_{W_{N}}\right)$ ' was calculated:

$$
\operatorname{se}\left(a \hat{f}_{w N}\right)^{\prime}=\sqrt{\sum_{i=1}^{1000}\left(a \hat{f}_{w N_{i}} '-a \overline{\hat{f}}_{W N}\right)^{2} * \frac{1}{999}}
$$

Appendix B. Tagcode-specific survival rates

Survival rates by tagcode of sockeye salmon reared at the Main bay facility.

Contributor(Stock/Type)	Brood Year	Release Year	Release Site	Tag code	Release Weight(g)	Survival Rate \%	Standard Error
Main Bay(Coghill/Smolt)	1986	1988	MainBay	311763	NA	2.9	0.33
Main Bay(Coghill/Smolt)	1986	1988	MaínBay	311801	NA	7.5	0.49
Main Bay(Coghill/Smolt)	1986	1988	MainBay	311802	NA	3.0	0.30
Main Bay(Coghill/Smolt)	1986	1988	MainBay	311803	NA	10.7	0.66
Main Bay(Coghill/Smolt)	1987	1989	MainBay	311812	13.84	16.4	1.34
Main Bay(Coghill/Smolt)	1987	1989	MainBay	311813	10.13	16.8	1.17
Main Bay(Coghill/Smolt)	1987	1989	MainBay	311814	9.80	15.9	1.15
Main Bay(Coghill/Smolt)	1987	1989	MainBay	311815	7.85	15.4	1.13
Main Bay(Coghill/Smolt)	1988	1990	MainBay	311841	13.35	14.4	0.80
Main Bay(Coghill/Smolt)	1988	1990	MainBay	311842	15.60	15.9	0.88
Main Bay(Coghill/Smott)	1988	1990	MainBay	311843	13.50	12.8	0.88
Main Bay(Coghill/Smolt)	1988	1990	MainBay	311844	16.96	12.3	0.80
Main Bay(Coghill/Smolt)	1988	1990	MainBay	311845	15.05	13.0	0.87
Main Bay(Coghill/Smolt)	1988	1990	MainBay	311846	16.85	16.1	0.93
Main Bay(Coghill/Smolt)	1988	1990	MainBay	311847	16.50	16.1	0.89
Main Bay(Coghill/Smolt)	1988	1990	MainBay	311848	16.10	16.9	1.01
Main Bay(Coghill/Smolt)	1989	1991	MainBay	311922	7.80	6.6	0.47
Main Bay(Coghill/Smolt)	1989	1991	MainBay	311923	6.10	6.0	0.43
Main Bay(Coghill/Smolt)	1989	1991	MainBay	311924	11.30	13.4	0.73
Main Bay(Coghill/Smolt)	1989	1991	MainBay	311925	14.30	12.9	0.87
Main Bay(Eshamy/Smolt)	1989	1991	MainBay	311920	7.54	6.8	0.57
Remote Release(Coghill L. /Smolt)	1989	1991	Coghill River	311921	10.30	3.7	0.24
Remote Release(Eshamy L./Smolt)	1989	1991	Eshamy River	311919	7.20	7.9	0.91
Remote Release(Eshamy L./Fry)	1989	1990	Esther Pass Lake	311927	1.99	3.4	0.45
Remote Release(Eshamy L./Fry)	1989	1990	Pass Lake	311926	1.99	1.1	0.19

Appendix B (Continued)

Survival rates by tagcode of chum salmon reared at the Main Bay, Solomon Gulch and W. Noerenberg facilities.

Contributor	Brood Year	Release Site	Tag code	Release Weight	Survival Rate \%	Standard Error
Main Bay	1986	Main Bay	B31503	NA	0.87	0.076
Main Bay	1986	Main Bay	B31504	NA	0.21	0.033
Solomon Gulch	1986	Port Valdez	B30107*2	1.60	0	
Solomon Gulch	1986	Port Valdez	B30200	1.60	0.12	
Solomon Gulch	1988	Solomon Gulch	1301010401	1.04	1.26	0.111
Solomon Gulch	1989	Solomon Gulch	1301010505	2.00	0.14	0.0154
W. Noerenberg	1989	Lake Bay	1301010703	0.77	3.83	0.224
W. Noerenberg	1989	Lake Bay	1301010704	1.23	4.04	0.237
W. Noerenberg	1989	Lake Bay	1301010705	0.56	1.14	0.143
W. Noerenberg	1989	Lake Bay	1301010706	0.62	1.05	0.118
W. Noerenberg	1989	Lake Bay	1301010910	0.64	2.26	0.273

Appendix B (Continued)

Survival rates by tag code of chinook salmon reared at the W . Noerenberg facility.

| Contributor | Brood Year | Tag code | Survival Rate \% | Standard
 .Error |
| :--- | :--- | :--- | ---: | ---: | :---: |
| W. Noerenberg | 1988 | 311905 | 1.44 | 0.127 |
| W. Noerenberg | 1989 | 311947 | 0.04 | 0.023 |

Appendix B (Continued)

Survival rates by tag code of coho salmon reared at the W. Noerenberg and Solomon Gulch facilities.

Contributor	Brood Year	Release Year	Release Site	Tag code	Release Weight	Survival Rate \%	Standard Ertor
Solomon Gulch	1986	1987	Solomon Gulch	311750	5.20	0	-
Solomon Gulch	1986	1988	Solomon Gulch	311809	15.40	5.66	0.46
Solomon Gulch	1986	1988	Solomon Gulch	311810	15.40	6.64	0.39
Solomon Gulch	1987	1989	Solomon Gulch	311833	23.18	3.19	0.16
Solomon Gulch	1987	1989	Solomon Gulch	311835	23.20	2.55	0.36
Solomon Gulch	1988	1990	Solomon Gulch	311908	18.37	5.17	0.75
Solomon Gulch	1989	1991	Solomon Gulch	311949	18.76	4.54	1.06
Solomon Gulch	1989	1991	Solomon Gulch	311950	15.51	0.84	0.24
Solomon Gulch	1990	1992	Solomon Gulch	312054	14.50	0.05	0.02
Solomon Gulch	1990	1992	Solomon Gulch	312055	19.30	1.69	1.01
W. Noerenberg	1987	1989	Lake Bay	311839	13.90	4.79	0.23
W. Noerenberg	1988	1990	Lake Bay	311903	7.40	1.28	0.24
W. Noerenberg	1988	1990	Lake Bay	311906	13.00	4.56	0.65
W. Noerenberg	1989	1991	Lake Bay	311961	10.16	0.67	0.08
W. Noerenberg	1989	1991	Lake Bay	311945	11.80	9.09	0.69
W. Noerenberg	1989	1991	Lake Bay	311946	11.80	4.98	0.34

Appendix C. Contributions to the sockeye, chum, coho and chinook salmon common property and cost-recovery harvests of 1989 through 1994

Appendix C 1.1 Estimated hatchery contributions (Contrib.) to the rockeye ralmon common property fiahery of 1989 by period and district

At \% of total catch over aill divtricts.

Appendix C 1.2 .1 Estimates of hatchery contributions (Contrib.)to the coho salmon common propety fishery of 1989 by period and district.

Week	Contributor	District												Total	$\%{ }^{\circ}$
		221		222		223		224		228		229			
		Contrib.	Var.	Contrib.	Yar.	Contrib.	Var.	Contrib.	V ¢	Contrib.	V ¢.	Contrib.	Vr.		
18-24 Jun	Solomon G.					0	0							0	0
	Sumpled Catch	0		0		15		0		0		0			
	Total Casch	0		0		15		0		0		0		is	
25 Jun -01 Jul	Solomion G.	12	0	0	0	0	0							12	54
	Sempled Catch	15		0		0		0		0		0			
	Total Catch	15		2		6		0		0		0		23	
02-08 Jul	Solomon G.	43	106	0	0	0	0							43	15
	Sampled Catch	60		0		183		0		0		0			
	Totul Catch	60		36		183		0		0		0		279	
09-15 Jul	Solomon G.	28	2											28	67
	Sampled Catch	42		0		0		0		0		0			
	Total Catch	42		0		0		0		0		0		42	
16-22 Jul	Solomon G.													0	
	Sampled Catch	0		0		0		0		0		0			
	Total Catch	0		0		0		0		0		0		0	
23-29 Jul	Solomion G.			0	0	2475	47961	0	0	0	0			2475	81
	Sampled Catch	0		497		2475		0		0		0			
	Total Catch	0		497		2475		78		15		0		3065	
$30 \mathrm{Ju-05}$ Aug	Solomon G.			0	0									0	0
	Sampled Catch	0		0		0		0		0		0			
	Total Catch	0		is		0		0		0		0		15	
06-12 Aug	Solomon G.	1695	97422	0	0					0	0	0	0	1695	56
	Sampled Catch	2576		128		0		0		0		0			
	Total Catch	2576		128		0		0		307		7		3018	

Appendix C 1.2.1 Estimates of hatchery contributions (Contrib.)to the cobo salmon common property fishery of 1989 by period and district (Continued)

		District												Totas	$\%{ }^{\circ}$
		221		222		223		224		228		229			
Week	Contributor	Contrib.	Var.	Contrib.	Var.	Contrib.	V H.	Contrib.	Ver.	Conluib.	V .	Conlub.	Vr .		

Appendix C 1.2.1 Continued.

Week Contributor		District												Total	\%*
		Contrib.	Var	Contrib.	Var.	Contrib.	Yar.	Contrib.	Vat.	Contrib.	Var.	Contrib.	Var.		
13-19 Aug	Solornon G.	4369	552854	0	0	0	0	0	0			0	0	4369	21
	Sampled Catch	5768		0		10495		0		0		,			
	Total Catch	5768		4529		10495		24		0		20		20836	
20-26 Aug	Solomon G.	777	796487	649	24866	2092	2872007	0	0					10512	18
	Sampled Catch	12342		1837		43336		1582		0		0			
	Total Catch	12342		1837		43336		1582		0		0		59097	
27Aug-02 Sept	ept Solomon G .	0	0			0	0							0	0
	Sampled Catch	99		0		26317		0		0		0			
	Total Cutch	99		0		26317		0		0		0		26116	
03-09 Sept	Solomon C .					0	0							0	0
	Sempled Catch	0		0		23178		0		0		0			
	Total Catch	0		0		23178		0		0		0		23178	
10-16 Sept	Solomon G.					0	0							0	0
	Semplod Catch	0		0		0		0		0		0			
	Total Catch	0		0		13424		0		0		0		13424	
17-23 Sept	Solomon G .					0	0							0	0
	Sampled Catch	0		0		0		0		0		0			
	Total Catch	0		0		761		0		0		0		761	
24-30 Sept	Solomon G.					0	0							0	0
	Sumpled Catch	0		0		0		0		0		0			
	Total Catch	0		0		100		0		0		0		100	
TOTAL SOLOMON G. TOTAL CATCH		13918		649		4567		0		0		,		19134	13
		20902		7044		120290		1684		322		27		150269	

Appendix C 1.2.2 Estimates of hatchery contribution (Contrib.) to the coho

Week	Contributor			\% ${ }^{\text { }}$
		221		
		Contrib.	Var.	
13-19 Aug	Solomon G.	187	11488	0
	Sampled Catch	265		
	Total Catch	265		0
20-26 Aug	Solomon G.	1595	76578	3
	Sampled Catch	1595		
	Total Catch	1595		3
27Aug-02 Sept	Solomon G.	1130	55090	2
	Sampled Catch	2322		
	Total Catch	2322		4
03-09 Sept	Solomon G.	2801	173474	5
	Sampled Catch	9718		
	Total Catch	9718		18
10-16 Sept	Solomon G.	11694	950547	21
	Sampled Catch	16211		
	Total Catch	16211		29
17-23 Sept	Solomon G.	11293	769849	20
	Sampled Catch	16520		
	Total Catch	16520		30
24-30 Sept	Solomon G.	4325	264630	8
	Sampled Catch	8884		
	Total Catch	8884		16
TOTAL SOLOMON G. TOTAL CATCH		33025		
		55515		

${ }^{6}$ As \% of total catch over all districts.

Appendix C 2.1. Estimatem of hatchery contributions (Contrib.) to the wockoyo allnon common property fishery of 1990 by period and diatrict.

Weck	Corraibutor	Distric																Toud	90
		221		222		223		224		275		226		128		229			
		Conerib.	Vr.	Cortrib.	Vx.	Comarib.	Vr.	Coxrrib.	Vr .	Conarib.	Vs.	Contrib.	Vr.	Contrib.	\mathbf{V}.	Contrib.	Vr .		
10.16 km	MB Hetchery (Cogbill Lekersmoly)					0	0			0	0							-	-
	Wild					312	0			651	0							96	100
17.23 km	Sumpled Cruch	0		0		0		0		651		0		0		0			
	Totu Cuth	0		0		312		0		651		0		0		0		963	
	MB Hechery (Cogaill Lakesmant)					0	0			129	880							129	3
	Wid					1118	0			2330	280							4148	97
24-30 ma	Sumpled Cuch	0		0		1818		0		2159		0		0		0			
	Toun Cult	0		0		1818		0		2459		0		0		0		4277	
		0	0	0	-	115	7640			469	6025							ser	*
	Wild	167	0	110	0	3314	7640			2995	6025							658	92
01-07 30l	Sempled Csuch	167		110		3429		0		3464		0		0		-			
	Toual Cuch	167		110		3429		0		3464		0		0		0		770	
	MB Huchery (Cophill Late/Smok)	0	-	0	0	109	246			895	52115							1003	23
	wild	286	0	55	0	1201	246			1896	5215							3138	7
	Sempled Cuch	286		0		1309		0		2791		0		0		-			
	Total Cuch	286		55		1309		0		2791		0		-		0		444	
09.14 14	MB Hzucrey (Cogtill 1-2ke/Smok)	0	0	0	0					1363	95401							1363	24
	Wild	294	0	8	0					3839	95401							4221	76
$15-21 \mathrm{ml}$	Sempled Cuch	294		8		0		0		5202		0		0		-			
	Toal Cench	294		88		0		0		5202		0		0		-		ssu	
	MB Hatcrery (Cogill Lake/Smok)	0	0							447	3784							447	0
	wid	100	-							0	3784							100	18
22-28 3us	Smpled Cath	100		0		0		0		44		0		0		0			
	Total Cath	100		0		0		0		447		0		0		\bullet		S47	
	MB Hechery (Cogtill LakeSmok)	0	0	0	0	1060	39564					0	0			0	0	1060	35
	Wud	80	-	532	0	1010	39564					280	0			74	-	1976	65
29 kut 04 A A88	Sempled Cuth	80		532		2070		0		0		280		-		0			
	Tound Cuch	0		532		2070		0		-		280		0		74		3036	
	MB Hechery (Cogtill Leke/Smok)	0	-	0	0	481	4556	40	0	3954	0	385	789			-	0	4860	36
	Wild	119	0	41	0	1347	4556	335	0	0	0	6058	7990			34	-	8754	6
	Sumpled Cuch	119		21		1828		0		0		643		0		-			
	Toat Cach	119		21.		1828		395		3954		6443		0		34		13614	

Appendix C 2.1. Estimates of hatchery contributions (Contrib.) to the sockeye salmon comman property fishery of 1990 by period and district (Continued)

Weat	Corrsituor	Paxility	Dixtria																		Toun	${ }^{\circ}$
			221		222		223		224		223		226		227		278		229			
			Contrik	VFIF	Contrib.	VE.	Cortrib	V .	Corter	VE.	Cortrib.	vr.	Corrint	$\mathrm{V}_{\mathrm{w} .}$	Comerib.	va.	Corarit.	ve.	Camit.	VE.		
65.11 Aus	Hexthay	Waly	${ }^{\circ}$	0	222	13992	1918	43372	249	11490	。	0	927	60286	10	0			,	0	3131	21
		Solamon 0.	574	29107	886	73207	566	12994	f	123)	0	0	60	${ }^{7177}$	7	-			21	-	2780	17
		F. Richurdorn *	0	0	13	134	47	9	0	0	0	0	0	0	0	-			0	0	62	-
		Toul	574	29107	1123	26933	2311	ssass	330	12775	0	0	1392	147463	17	-			27	-	6174	39
	Widd		15ss	29107	2501	86933	2031	s84s	39	1277	238	-	3028	147463	33	0			59	-	924	61
		Serpiod Cuch	2129		3624		442		726		0		4620		0		-		0			
		Town Cuch	2129		3624		44^{2}		726		238		4620		50		0		66		16015	
12-18 Aus	Hectary	Walis N .	0	0	3166	34294	4867	404251	401	22650	0	0	248	200056			1	-	22	0	13305	43
		Solemen 0 .	2651	107010	0	0	0	0	0	0	0	0	1064	73416			0	-	0	-	3715	14
		F. Ridurstona ${ }^{\text {- }}$	11	4	174	194	109	1132	,	12	-	0	698	181331			-	0	,	0	1000	,
		Toel	2662	107074	3340	343188	4976	405403	408	22662	0	0	4610	456803			2	0	23	-	16022	62
	Wid		1078	107074	7	343188	248	405403	60	22662	328	0	6048	456803			2	0	-	-	997	31
		Smupled Cuch	3740		3347		7424		468		0		10651		0		0		-			
		Toul Cach	3740		3347		7424		468		328		10658		-		4		23		25992	
19.23 Aus	Hextay	Wallys.	0	0	2357	12449	14161	2110873	217	17661	0	0	10595	5127651					9	0	27339	39
		Sotarcoa C .	7640	1115ss:	471	6578	746	48376	293	2989	0	0	1647	19994					2	-	10829	16
		F. Richumon *	37	562	30	30	519	3686	27	269	0	-	757	31318					0	-	1370	
		Town	767	1116120	2388	131057	15426	2162935	327	47819	0	-	13039	s359152					11	-	39338	57
	wise		2897	1116120	1724	133087	1079	2162935	133	4389	214	\bigcirc	14158	5359152					7	0	29902	43
		Smplod Cuch	10364		4582		26225		640		0		27197		0		0		-			
		Toul Cuch	10564		4382		2625		640		214		27197		0		0		18		6940	
26 Aus-01 sax himetry		Walb N .					20634	6623433			68	136\%	346	9395							21048	
		Solamon 0.					837	53878			0	0	.	0							${ }_{8} 137$	2
		F. Ricturdion -					1388	10598			0	24	24	74							1382	4
		Tow					22829	6689929			68	4392	370	946							23267	68
Wild							10561	6699929			61	4592	324	946							10946	32
		Smpled Crach	0		$\stackrel{0}{ }$		33390		0		129		69		0		0		0			
		Town Cuch	0		0		33390		0		129		69.		0		0		0		34213	

[^1]

Weak	Contributer Fxiliy		Dixict																		Toun	**
			221		222		223		224		223		226		227		228		229			
			cantrin.	V⿷匚.	Costric.	$\mathrm{V}_{\text {re }}$	Connerib.	V .	Corsib.	Vr.	Coxtrib.	V	Corstib.	Vr	Contic.	Vr.	Coatrin.	Vm.	Cansib.	Vr.		
30 Spp .06 Ot	Hethary	Wally N					151	\cdots													131	1
		Sotamon 0 .					4	0													4	2
		F. Ricturdent					3	0													3	2
		Toud					138	0													158	85
	Widd						28	0													29	15
		Smpled Cuch	0		0		0		0		0		0		0		0		-			
		Toull Cach	0		0		186		0		-		0		-		-		-		186	
		total hatchery	11388		7401		107648		1335		64		19764		17		2		61		147704	67
		total wid	6632		4986		32894		677		1223		23729		33		2		66		7246	33
		total catch	119220		12387		140546		2032		129		45493		so		4		127		220150	

Appendix C 2.2.2 Estimated hatchery contributions (Contrib.) to the coho salmon cost recovery fishery of 1990
by period and district.

Week	Contributor	Facility	Dislrict				Total	\%
			Contrib.	Var.	Contrib.	Var.		
05-11 Aug	Hatchery	Wally N .	0	0	19	90	19	100
		Solomon G.			0	0	0	0
		F. Richardson ${ }^{\text {b }}$			0	0	0	0
		Total			19	90	19	100
	Wisd				0	90	0	0
		Sampled Catch	0		19			
		Total Catch	0		19		19	
12-18 Aug	Hatchery	Wally N .	0	0	8	16	8	7
		Solomon G.			0	0	0	0
		F. Richardson ${ }^{\text {b }}$			0	0	0	0
		Total			8	16	8	7
	Wild				107	16	107	93
		Sampled Catch	0		115			
		Total Catch	0		115		115	
19-25 Aug	Hatchery	Wally N.			70	775	70	76
		Solomon G.			0	0	0	0
		F. Richardson *			0	0	0	0
		Total			70	775	70	76
	Wild				22	775	22	24
		Sampled Catch	0		92			
		Total Catch	0		92		92	

- As \% of total catch over all districte.
${ }^{6}$ Sport-fish releases at Fleming Spit and Whittier Harbour.

Appendix C 2.2.2 Estimated hatchery contributions (Contrib.) to the coho salmon cost recovery fishery of 1990

> by period and district (Continued)

Week	Contributor	Facility	District				Total	\% ${ }^{\text {* }}$
			221		223			
			Contrib.	Var.	Contrib.	Var.		
26 Aus-01 Sept	Hatchery	Wally N .	0	0	1202	110	1202	64
		Sotomon G.	371	20715	0	0	371	20
		F. Richardson *	0	0	0	0	0	0
		Total	371	20715	1202	110	1573	83
	Widd		315	20715	0	110	315	17
		Sampled Catch	686		1202			
		Total Catch	686		1202		1888	
02-08 Sept	Hatchery	Wally N .	104	2620	0	0	104	2
		Solomon G.	2380	78162	0	0	2380	43
		F. Richardson *	13	30	0	0	13	0
		Total	2497	80812	0	0	2497	45
	Widd		1635	80812	1385	0	3020	Ss
		Sempled Catch	4132		1385			
		Total Catch	4132		1385		5517	
09.15 Sept	Hatchery	Waly N.	0	0			0	0
		Solomon G.	1508	56599			1508	71
		F. Richardson *	0	0			0	0
		Total	1508	56599			1508	71
	Wild		630	56599			630	29
		Sampled Catch	2138		0			
		Total Catch	2138		0		2138	

- As \% of total calch over all districts.
- Sport-fish reclesces at Fleming Spit and Whittier Harbour.

Appendix C 2.2.2 Estimated hatchery contributions (Contrib.) to the coho salmon cost recovery fishery of 1990
by period and district (Continued)

Week	Conlributor	Facility	District				Total	\% ${ }^{2}$
			221		223			
			Contrib.	Var.	Contrib.	Var.		
16-22 Sept	Hatchery	Wally N.	0	0			0	0
		Solomon G.	2955	136372			2955	77
		F. Richardson ${ }^{\text {b }}$	0	0			0	0
		Total	2955	136372			2955	77
	Wild		878	136372			878	23
		Sampled Catch	3833		0			
		Total Catch	3833		0		3833	
23-29 Sept	Hatchery	Wally N.	0	0			0	0
		Solomon G.	198	12906			198	85
		F. Richardson ${ }^{\text {b }}$	0	0			0	0
		Total	198	12906			198	85
	Wild		34	12906			34	15
		Sampled Catch	232		0			
		Total Catch	232		0		232	
30 Sept-06 Oct	Hatchery	Wally N .	5	0			5	3
		Solomon G.	104	0			104	58
		F. Richardson *	1	0			1	0
		Total	109	0			109	60
	Wild		71	0			71	40
		Sampled Catch	0		0			
		Total Catch	180		0		180	
		TOTAL HATCHERY	7638		1299		8937	64
		TOTAL WILD	3563		1514		5077	36
		TOTAL CATCH	11201		2813		14014	

*Sport-fish releases at Fleming Spit and Whittier Harbour

[^2]- Other contrib. may contuin wild fish and/or fish from untagged remote releases at Pass Lake (1988 rolease of 594,210 fry; 1989 reloase of 603,219 fyy). Eather Pass Lake (1988 rolosse of 153,031 fy, 1989 roleare of 154,644 fry) and Davis Lako (1988 releane of 657,287 fy).

Appendix C 3.1 Estimated hatchory contributions (Contrib.) Ko tho sockeye salmon cornmon property fishory of 1991 by pariod and district (Continued)

Woek	Contributor (StockType)	District												Total	$\%^{*}$
		221		222		223		225		226		229			
		Contrib.	Var.												
21-27 Jut	MB Hatchery (Coghill Lake/Smot)	0	0			2002	115751	57212	$6.911+\mathrm{E} 7$			0	0	59214	94
	Other *	128	0			1065	115751	2627	$6.911+E 7$			97	0	3917	6
	Sampled Catch	128		0		3067		59839		0		0			
	Total Catch	128		0		3067		59839		0		97		63131	
28 Jul-03 Aug	MB Hatchery (Coghill Lake/Smott)							21690	$1.258+E 7$			0	0	21690	95
	Other ${ }^{\text {• }}$							1176	$1.258+E 7$			21	0	1197	5
	Samplod Catch	0		0		0		22866		0		0			
	Total Cotch	0		0		0		22866		0		21		22887	
04-10 Aug	MB Hatchery (Coghill Lake/Smolt)			131	784	313	5212	3225	378582	558	5019	0	0	4227	48
	Other '			663	784	399	5212	1842	378582	1097	5019	538	0	4539	52
	Sampled Catch	0		794		712		5067		1655		538			
	Total Catch	0		794		712		5067		1655		538		8766	
11-17 Aug	MB Hatchery (Coghill Lake/Smolt)			0	0	54	273	0	0	607	36055	0	0	661	7
	Other *			140	0	555	273	2506	0	6004	36055	24	0	9229	93
	Sampled Catch	0		140		609		2506		6611		0			
	Total Catch	0		140		609		2506		6611		24		9890	
18-24 Aug				0		0	0			0	0			0	0
	Othor ${ }^{-}$			43	0	187	0			4977	0			5207	100
	Samplod Catch	0		43		187		0		4977		0			
	Total Catch	0		43		187		0		4977		0		5207	
25-31 Aug	MB Hatchary (Coghill Lake/Smolt)			0	0	0	0			0	0			0	0
	Oher *			1	0	192	0			1176	0			1369	100
	Sampled Catch	0		0		192		0		1176		0			
	Total Catch	0		1		192		0		1176		0		1369	

- As \% of total catch over all diatricta.

and Davis Lake (1988 release of 657,287 fy).

Appendix C 3.1 Estimatod hatchery contributions (Contrib.) to the sockeye malmon common property fishery of 1991 by period and district (Continued)

Weak Contributor (Stock/Typo)		District												Total	$\%^{*}$
		221		222		223		225		226		229			
		Contrib.	Var.												
01-07 Sept	MB Hatchery (Coghill Lake/Smolt)					0	0	0	0					0	0
	Other *					284	0	381	0					665	100
	Sampled Catch	0		0		284		0		0		0			
	Total Catch	0		0		284		381		0		0		665	
08-14 Sept	MB Hatchery (Coghill Lake/Smolt)					0	0	0	0					0	0
	Other *					20	0	107	0					127	100
	Sampled Catch	0		0		0		0		0		0			
	Total Catch	0		0		20		107		0		0		127	
15-21 Sept	MB Hatchery (Coghill LakdSmolt)					0	0	0	0					0	0
	Other *					3	0	63	0					66	100
	Sampled Catch	0		0		3		0		0		0			
	Total Catch	0		0		3		63		0		0		66	
22-28 Sopt	MB Hatchery (Coghill Lake/Smolt)					0	0							0	0
	Other *					1	0							1	100
	Sampled Catch	0		0		0		0		0		0			
	Total Catch	0		0		1		0		0		0		1	
	TOTAL HATCHERY	227		131		2369		459844		1165		0		463736	91
	TOTAL OTHER	694		847		3081		20531		13254		5388		43795	9
	TOTALCATCH	921		978		5450		480375		14419		5388		507531	

- As a \% of total catch ower all districts.
 and Davia Lake (1988 release of 657,287 fry).

Appendix C 3.2.1 Estimated hatchery contributions (Contrib.) to the coho salmon common property fishery of 1991 by period and district (Continued)

Week	Contributor	Facility	District												Toul	$\%$ *
			221		222		223		225		226		229			
			Contrib.	Var.	Contrib.	Var.	Contrib.	Vr.	Contrib.	Ver.	Contrib.	Var.	Contrib.	Var.		
07-13 Jul	Hatchery	Wally N .	0	0					0	0					0	0
		Solomon G.	0	0					0	0					0	0
		F. Richardson -	0	0					0	0					0	0
		Total	0	0					0	0					0	0
	Wild		6	0					137	0					143	100
		Sempled Catch	6		0		0		137		0		0			
		Total Catch	6		0		0		137		0		0		143	
$14-20 \mathrm{Jul}$	Hatchery	Wully N .	0	0					0	0					0	0
		Solormon G.	0	0					0	0					0	0
		F. Richardson -	0	0					0	0					0	0
		Total	0	0					0	0					0	0
	Wild		39	0					353	0					392	100
		Sampled Catch	39		0		0		353		0		0			
		Total Catch	39		0		0		353		0		0		392	
21-27 Jul	Hatchery	Wally N .	0	0			0	0	0	0					0	0
		Sotomon G.	0	0			136	8679	0	0					136	34
		F. Richurdson -	0	0			0	0	0	0					0	0
		Total	0	0			136	8679	0	0					136	34
	Wid		26	0			219	8679	14	0					259	66
		Sampled Catch	26		0		355		14		0		0			
		Total Catch	26		0		355		14		0		0		395	
28 JuL-03 Au8	Hatchery	Wally N .							0	0					0	0
		Solomon G.							0	0					0	0
		F. Richadison -							0	0					0	0
		Total							0	0					0	0
	Wid								14	0					14	100
		Surupled Catch	0		0		0		14		0		0			
		Total Catch	0		0		0		14		0		0		14	

Appendix C 3.2.1 Rstimated hatchery contributions (Contrib.) to the coho saltrion common property fishery of 1991 by period and district (Continued)

Week	Contributor	Facility	District												Total	$\%$ \%
			221		222		223		225		226		229			
			Contrib.	Var	Contib.	Var.	Contrib.	Var.	Contrib.	Var.	Contrib.	$\mathrm{V}_{\underline{\text { r }}}$	Contrib.	Vur.		
0410 Aug	Hatchery	Wally N .			0	0	0	0	0	0	0	0	0	0	0	0
		Solomon G.			0	0	289	826	0	0	0	0	0	0	289	29
		F. Richardson *			0	0	0	0	0	0	0	0	0	0	0	0
		Total			0	0	289	826	0	0	0	0	0	0	289	29
	Wild				116	0	315	826	14	0	258	0	2	0	705	7
		Sumpled Calch	0		116		604		14		258		0			
		Total Catch	0		116		604		14		258		2		994	
11-17 Aus	Hatchery	Waily N .			0	0	0	0	0	0	0	0	0	0	0	0
		Solomion G.			0	0	0	0	174	4970	292	13745	0	0	466	18
		F. Richardson -			0	0	0	0	0	0	195	19820	0	0	195	8
		Total			0	0	0	0	174	4970	487	33565	0	0	661	26
	Wid				63	0	572	0	0	4970	1244	33565	12	0	1891	74
		Sampled Catch	0		63		572		174		1731		0			
		Total Catch	0		63		572		174		1731		12		2552	
18-24 Aug	Hatchery	Wally N .			0	0	536	78458			240	10425			776	14
		Solomon G.			0	0	76	1122			168	5893			244	5
		F. Richardson *			0	0	24	125			136	844			160	3
		Total			0	0	636	79705			544	17163			1180	22
	Wild				28	0	466	79705			3709	17163			4203	78
		Sampled Catch	0		0		1102		0		4253		0			
		Total Catch	0		28		3102		0		4253		0		5383	
25-31 Aug	Hatchery	Wally N.	0	0			8926	5484507			m	101939			9703	79
		Solomon G.	0	0			0	0			0	0			0	0
		F. Richardson *	0	0			145	3673			35	797			180	1
		Total	0	0			9071	5488180			812	102716			9883	81
	Wid		1472	0			1	5488180			851	102716			2324	19
		Sampled Catch	0		0		9072		0		1663		0			
		Total Catch	1472		0		907		0		1663		0		12207	

As \% of total calch over all districts.

- Sport-fish releases at Fleming Spit and Whitier Harbour

Appendix C 3.2.1 Estimated hatchery contributions (Contrib.) to the coho almon common property fishery of 1991 by period and district (Continued)

Appendix C 3.2.1 Estimeted hatchery contributions (Contrib.) to the coho salnon common property fishery of 1991 by period end district (Continued)

Week	Contributor Facility		District												Tow	\% ${ }^{\text {c }}$
			221		222		223		225		226		229			
			Contrib.	Vra.	Contrib.	Ver.	Contrib.	Var.	Contib.	Vr.	Contrib.	Var.	Contrib.	Vr.		
29 Sept-05 Oct	Hatchery	Wally N .					0	0							0	0
		Solomon G.					0	0							0	0
		F. Richardson -					0	0							0	0
		Total					0	0							0	0
	Wid						393	0							393	100
		Sampled Catch	0		0		0		0		0		0			
		Total Catch	0		0		393		0		0		0		393	
		TOTAL HATCHERY	1417		0		74814		428		1843		0		78502	BS
		TOTAL WILD	3187		207		4170		641		6062		18		14285	15
		TOTAL CATCH	4604		207		78984		1069		7905		18		92787	

- As \% of totel cutch over all districts.
- Sport-ish releases at Fleming Spit and Whittier Harbour

'As \% total catch over all districts.
- Sport-fish releases at Fleming Spit and Whittier Harbour.

Appendix C 3.2.2 Estimated hatchery contributions (Contrib.) to the coho salmon cost recovery fishery of 1991 by period and district (Continued)

Weck	Contributor	Facility	District				Total	\%
			Contrib.	Var.	Contrib.	Var.		
18-24 Aug	Hatchery	Wally N .	0	0			0	0
		Solomon G.	10017	$2.49+\mathrm{E} 7$			10017	100
		F. Richardson ${ }^{\text {b }}$	0	0			0	0
		Total	10017	0			10017	100
	Wild		0	0			0	0
		Sampled Catch	10017		0			
		Total Catch	10017		0		10017	
25-31 Aug	Hatchery	Wally N .	0	0	724	0	724	7
		Solomon G .	9806	8580685	0		9806	93
		F. Richardson ${ }^{\text {b }}$	0	0	17	0	17	0
		Total	9806	8580685	741	0	10547	100
	Wild		0	8580685	0	0	0	0
		Sampled Catch	9806		0			
		Total Catch	9806		741		10547	
01-07 Sept	Hatchery	Wally N.	0	0	6621	4906335	6621	40
		Solomon G.	9527	602655	0		9527	57
		F. Richardson *	0	0	153	3969	153	1
		Total	9527	602655	6774	4910304	16301	98
	Wild		411	602655	1	4910304	412	2
		Sampled Catch	9938		6775			
		Total Catch	9938		6775		16713	

' As \% total catch over all districts.
${ }^{*}$ Sport-fish releases at Fleming Spit and Whittier Harbour.

Appendix C 3.2.2 Estimated hatchery contributions (Contrib.) to the coho salmon cost recovery fishery of 1991 by period and district (Continued)

Week	Contributor	Facility	District				Total	\% ${ }^{\text {- }}$
			221		223			
			Contrib.	Var.	Contrib.	Var.		
08-14 Sept	Hatchery	Wally N .	0	0	5339	1446619	5339	41
		Solomon G.	5882	280717	0		5882	45
		F. Richardson ${ }^{\text {b }}$	0	0	74	347	74	1
		Total	5882	280717	5413	1446966	11295	87
	Wild		1746	280717	1	1446966	1747	13
		Sampled Catch	7628		5414			
		Total Catch	7628		5414		13042	
15-21 Sept	Hatchery	Wally N .	0	0	300	14665	300	19
		Solomon G .	993	12294	0		993	62
		F. Richardson *	0	0	0	0	0	0
		Total	993	12294	300	14665	1293	81
	Wild		308	12294	0	14665	308	19
		Sampled Catch	1301		300			
		Total Catch	1301		300		1601	
22-28 Sept	Hatchery	Wally N .	0	0			0	0
		Solomon G.	211	3085			211	100
		F. Richardson ${ }^{\text {b }}$	0	0			0	0
		Total	211	3085			211	100
	Wild		0	3085			0	0
		Sampled Catch	211		0			
		Total Catch	211		0		211	
		TOTAL HATCHERY	36631		13228		49859	95
		TOTAL WILD	2766		2		2768	5
		TOTAL CATCH	39397		13230		52627	

[^3]

Weak	Conaributor (SLCNETYyo)	Remota Raleme Sine	Dixria												Towl	\% ${ }^{\circ}$
			221		22		22		225		226		29			
			Contrib.	VN.	Conuib.	VE.	Contrib.	Ve.	Contrib.	va.	$c_{\text {Onfrib. }}$	v .	Contuib.	Vm.		
24.1 man -0 / ful	MB Hathery (Coyhill Lete/Smok)						16781	\$205325	10544	3.956+E7			19	0	12213	${ }^{6}$
	MB Hewhery (Elhmy Lake/smok)						0	0	0	0			-	-	*	-
	Taull liwchery						16481	5205325	losss	3.936+E7			19	0	122131	12
	Remodo Releme (Coghill Lata/Smolk)	Coghill remuary					0	0	0	0			0	-	1	-
	Remoln Releme(Ehemy LakdSmol)	Eshany R EEstury					0	0	0	0			-	0	-	0
	Remoce Rutemon(Ethemy Lakefry)	Erchar Pras lake					0	0	0	0			0	0	-	0
	Toul Remoter Reless						0	0	0	0			0	-	0	9
	Other *						9287	5205325	15301	106619			998	0		
	Wid (Exhmy Lata/Smok)						0	0	6.7	106619			0	0	697	-
	Sempled Cuch		0		0		25768		121402		0		1194			
	Toull cuch		0		0		25768		121402		-		119		148364	
OS. 11 Iul	MB Henchery (Coshill Lakesmol)		0	0			13775	296374	64206	2.269467					7741	4
	MB fecthery (Exhmmy Lake/Smok)		0	0			0	0	-	0					-	-
	Toul ferchery		0	-			13275	296374	65206	$2.269+E 7$					7481	4
	Remote Reiome (Coghill Latersmolu)	Coghill R Examy	0	0			0	0	0	0					-	0
	Rernoth Relemen(Ehtumy Lemedsmoll)	Eshmny R.Estury	0	0			0	0	0	0					-	0
	Resiole Rabus(Ememy Leve/Fy)	Exher Pass Lake	0	0			0	0	0	-					-	0
	Town Remota Rolemo		0	-			0	0	0	0					-	-
	Other *		69	0			0	296374	95632	259228						
	Wild (Eahmuy Lake/Smolk)		0	0			-	-	1597	259228					1597	1
	semplod Cach		69		0		13275		161485		0		*			
	Toundexch		69		0		13275		161485		0		-		17482	

- A1 \% of colle cutch over all distridt.

Woet	Contributior (SlockiThpe)	Remote Releme Sita	Divtrict												Town	\%
			221		272		223		225		226		229			
			Contrib.	Vкs.	Connrib.	VE.	Contrib.	Ve.	Contrib.	Vr.	Contrib.	Vr.	Contrib.	Vm.		
12-18 Jul	Mes Hinchary (Coghill Latusmol)		0	0			10735	113370	53231	$2.568+$ E7			24	-	63990	61
	MB Hechery (Exhany Late/Smol)		0	0			0	0	\bigcirc	-			0	0	\cdots	0
	Totel limechery		0	0			10735	113370	\$3231	$2.568+$ E7			24	0	63990	61
	Rentele Releme (Cophill LakdSmol)	Coghill R. Estury	0	0			0	0	0	0			0	-	0	0
	Remole Rolemon(Exhemy LaxdSmol)	Eahmany R Extury	0	0			0	0	0	0			0	-	0	0
	Remiot Ralemo(Exturay LeteFry)	Ewhar Pmon lake	0	0			0	-	0	0			0	0	-	\cdots
	Tour Rerioce Relemo		0	0			0	0	0	0			0	\bullet	-	*
	Oher *		313	0			839	113370	39351	93514			123	-		
	Wid (Ehrany Lakersmok)		0	0			0	-	774	93514			-	0	774	1
	Smpled Catch		313		0		11574		93356		$\stackrel{ }{ }$		147			
	Toun Cuch		313		0		11574		93356		-		147		105390	
$19-25 \mathrm{Jul}$	MB Hathary (Coghill Leta/Smolk)		0	0					524	23846			7	-	5322	3
	MB Hechery (Ethemy Lakesmok)		0	0					0	0			-	0	\cdots	\bullet
	Toull Hachary		0	0					524	233646			78	-	5322	73
	Remoto Releno (Coghill Leke/Smok)	Cothill R Exumg	0	0					-	0			-	-	*	-
	Remota Releme(Eatheny Leta/Smok)	Eshmy R.Exumy	-	0					-	0			-	0	-	-
	Remole Relemo(Edheny LakelFry)	Exher Pman Lake	0	0					0	0			-	-	*	-
	Totel Remote Relews		0	0					0	0			-	0	-	-
	Other *		180	0					927	256701			396	0		
	Widd (Ethmy Lata/Smok)		0	0					43	23055			0	0	44	6
	Sumpled Cach		180		\bigcirc		\bigcirc		6614		0		474			
	Touterech		180		0		0		6614		0		474		7261	

[^4]

Weok Contibutor (StockTYpos)		Remote Rovere Sile	District												Toud	\%-	
		211	222		223		225		226		229						
		Contrib.	Vr.	Contrib.	Vr.	Contrib.	V .	Contrib.	VE.	Consrib.	Vr.	Contib.	Ver.				
$26 \mathrm{JuT}-0 \mathrm{~A}$ Aus	MB Hechery (Coghill LekeSmoh)					66	3138	3135	248050	4730	3946:	5133	83396	4	0	13413	32
	MB Hetchery (Edhumy LatedSmol)					58	1525	0	0	0	,	0	0	-	-	5	-
	Tow Hachery				124	4663	3435	248080	4730	398468	5133	833965	4	0	13471	32	
	Remote Release (Coghill Lata/Smoli)	Coghill R. Examay			0	0	0	0	0	0	113	1908	0	0	113	-	
	Remow Rateme(Eshmeny LakdSmol)	Eshany R.Exumy			0	0	0	0	0	0	0	0	-	-	0	0	
	Remola Relome(Estaray Lake/Fry)	Euther Pay Lake			0	0	0	0	0	0	0	0	-	0	0	0	
	Tous Remota Releme				0	0	0	0	0	0	113	1908	0	0	113	0	
	Other *				278	4663	125	39092	20736	414033	2371	221359	24	0			
	Wid (Echany Luta/Smol)				0	0	876	14884	174	1556	3159	137586	-	0	4509	14	
	Sempled Cuch		0		402		4436		25640		11076		29\%				
	Toun Cuch		0		402		446		25640		11076		296		41850		
02-08 Ans	MB Hechary (Coshill Lase/Smoll)				58	1525	142	226	3948	43964	1299	43025	7	4	544	19	
	MB Hechery (Eahemy Lake/Smol)				0	0	0	-	123	2664	0	-	-	-	123	-	
	Totel Hachery				58	1525	142	226	4071	442312	1299	63025	7	0	5567	19	
	Remote Releme (Coghill Lataismok)	Coghin remany			-	0	0	0	0	-	0	-	-	-	-	-	
		Etheny R.Esuury			0	0	0	-	0	-	114	6951	0	-	114	0	
	Remota Relemo(Eshmay Lak/Fty)	Exher Peal Lake			0	0	0	0	-	0	0	-	-	-	-	-	
	Toul Retwote Relemo				0	0	0	-	-	0	114	6951	-	0	114	0	
	Other -				824	1523	421	13217	8007	901845	5125	1035063	37	-			
	Whid (Estremy Latersmok)				-	0	1119	12991	3003	459533	449	965067	-	-	2620	30	
	Smiplod Cuch		0		882		1681		15006		11022		4				
	Toul Cach		0		882		1681		15036		11022		4		27715		

- As \% of butin cerch over ill diatrica

			Divriat												Town	\% ${ }^{\text {P }}$
			221		222		23		235		226		279			
week	Contributor (Stock/Type)	Remote Relowe Sive	Conatib.	V.	Comerib.	V.	Contrib.	V*	Contrib.	vec .	Contrib.	Vme.	Contrib.	VE.		
09-15 An5	MB Hatchery (Cophill Latersmok)				0	\cdots	0	0	2975	316183	469	41225	10	-	3393	17
	MB Hechery (Exhumy Latedsmok)				0	0	0	0	0	0	-	-	0	0	0	-
	Toxal liachery				0	0	0	-	2975	51688	408	4123	10	0	3393	17
	Remote Relemo (Coghill LakdSmol)	Coghill R. Exumy			0	0	0	0	0	0	0	0	0	*	\bullet	0
	Remota Ralemo(Exheny Latasmok)	Eehmy R.Exumy			0	0	0	0	0	0	0	0	0	0	0	0
	Remote Relomen(Eshmay Laterfy)	Esher Pras Lake			0	0	0	0	-	0	0	0	-	0	0	0
	Toul Remole Reieaso				0	0	0	0	0	0	0	0	0	0	-	-
	Other -				193	0	752	0	699	2530233	1687	42514	33	0		
	Wild (Elumy Late/Smoli)				0	0	-	-	9591	2013750	3534	384169	0	0	13125	66
	Sumpled Cuch		0		193		752		13265		5629		63			
	Toull Cuch		0		193		752		13265		5629		63		19902	
16-22 Ang	MB Hechury (Coshin Lake/Smok)				0	0	-	0	-	-	14	171	0	0	14	1
	MB Hechery (Exhemy Lete/Smol)				0	0	0	0	0	0	-	0	-	-	\bullet	*
	Tout Hachery				0	0	0	0	0	0	14	171	-	0	14	1
	Remole Releme (Coshill Late/Smol)	Coghill R. Eraury			0	0	0	0	0	0	0	0	0	0	0	0
	Remote Releme(Exheny Late/Smol)	Eahmy R.Exumy			0	0	0	0	0	0	0	0	0	\bullet	-	0
	Remoter Releme(Exhamy Late/Fr)	Exher Peos Lake			0	0	0	0	0	0	0	0	0	0	-	0
	Towl Remots Relema				0	0	0	0	0	0	0	0	0	0	-	0
	Other *				0	0	267	0	2050	2581334	1184	2495	1	0		
	Wild (Elymmy Lata/Smok)				67	0	0	0	6052	258134	733	26774	-	0	6 ET 2	65
	Smpled Cuch		0		67		267		3102		2081		0			
	Town Cuch		0		67		267		1102		2081		1		10518	

:As\% of loan canch ove all diatricts.

Appendix C 4.1.1 Eatmand hatchary contributions (Contrib.) to the sockeye admon soramon property firhory of 1992 by period med dirtrict (Continued)

Week Conributor (SloctuType)		Remole Ralomo Site	Ditriat														
		221	22		223		225		226		229						
		Consib.	Ver.	Contrib.	yr.	Contrib.	Vr.	Contrib.	VE.	Contrib.	V s.	Coonit.	Vax.	Toun	$\%$ -		
23-29 Aus	MB Hachery (Coghill (amosmol)							0	0	0	-	0	0			*	-
	MB Hemetary (Eahmay Lake/Smol)							0	0	0	0	0	0			0	-
	Toxil liachery						0	0	0	0	0	0			0	0	
	Remote Retame (Coghill Late Smok)	Coghill R Exumy					0	0	0	0	0	0			0	0	
	Remote Releementemmy Lakessmok)	Eshmy R.Exumy					0	0	0	0	0	-			-	0	
	Remote Relomen(Enhmy Lakefry)	Euther Pea Lato					0	0	18	280	-	0			18	1	
	Toces Remoter Releme						0	0	18	280	0	0			14	1	
	Onher						92	0	1054	156350	251	0					
	Wise (Exhmay LatalSmol)						238	0	1598	156070	0	0			1036	56	
	Smplod Cuch		0		0		330		2670		0		0				
	Toen Cuch		0		0		330		2670		231		0		3251		
	TOTAL HATCHERY		0		182		44068		299392		6974		372		350948	57.56	
	total rerelease		0		0		0		18		227		-		245	0.04	
	TOTAL WILDESHAMY		0		67		2232		24865		12240		\bullet		33404	6.462	
	total catch		\$62		1544		58083		513304		30059		2266		60918		

-A A of total cesch over all diatriota.

Appendix C 4.1.2 Estimated hatchery contributions (Contrib.) to the sockeye salmon cost recovery fishery of 1992 by period and district.

Weck	Contributor (Stock/Type)	Remote Relcase Site	District		\% *
			225		
			Contrib.	Var.	
21-27 Jun	MB Hatchery (Coghill Lake/Smolt)		8427	1568268	100
	MB Hatchery (Eshamy Lake/Smolt)		0	0	0
	Total Hatchery		8427	1568268	100
	Remote Retesse (Coghill Lake/Smolt)	Coghill R. Estuary	0	0	0
	Remote Release(Eshamy Lake/Smoit)	Eshamy R. Estuary	0	0	0
	Remote Release(Eshamy Lake/Fry)	Esther Pass Lake	0	0	0
	Total Remote Release		0	0	0
	Other *		0	1568268	
	Wild (Eshamy Lake/Smol)		0	0	0
	Sampled Catch		8427		
	Total Catch		8427		
28 Jun-04 Jul	MB Hatchery (Coghill Lake/Smott)		34728	$2.465+$ E7	100
	MB Hatchery (Eshamy Lake/Smolt)		0	0	0
	Total Hatchery		34728	$2.465+$ E7	100
	Remote Release (Coghill Lake/Smolt)	Coghill R. Estuary	0	0	0
	Remote Release(Eshamy Lake/Smolt)	Eshamy R. Estuary	0	0	0
	Remote Relcase(Eshamy Lake/Fry)	Esther Pass Lake	0	0	0
	Total Remote Release		0	0	0
	Other *		1	4002	
	Wild (Eshamy Lake/Smolt)		126	4002	0
	Sampled Catch		34855		
	Total Catch		34855		

- As \% of total catch over all districts.
- Other contrib, may contain wild fish and/or fish from untagged remole releases at Pass Lake (1988 release of $\mathbf{5 9 4 , 2 1 0}$ fry; 1989 release of 603,219 fry), Esther Pass Lake (1988 releasc of 153,031 and Davis Lake (1988 release of 657,287 fry). -Continued-

Appendix C 4.1.2 Estimated hatchery contributions (Contrib.) to the sockeye salmon cost recovery fishery of 1992
by period and district (Continued)

- As \% of total catch over all districts.
- Other contrib. may contain wild fish and/or fish from untagged remote releases at Pass Lake (1988 release of $\mathbf{5 9 4 , 2 1 0}$ fry; 1989 release of 603,219 fry), Esther Pass Lake (1988 release of 153,031 and Davis Lake (1988 release of 657,287 fry). -Continued-

Appendix C 4.1.2 Estimated hatchery contributions (Contrib.) to the sockeye salmon cost recovery fishery of 1992
by period and district (Continued)

Week	Contributor (Stock/Type)	Remote Relezse Site	District		\% ${ }^{\text {\% }}$
			225		
			Contrib.	Var.	
19-25 Jul	MB Hatchery (Coghill Lake/Smoll)		16135	2212178	63
	MB Hatchery (Eshamy Lake/Smolt)		0	0	0
	Total Hatchery		16135	2212178	63
	Remote Release (Coghill Lake/Smolt)	Coghill R. Estuary	0	0	0
	Remote Release(Eshamy Lake/Smolt)	Eshamy R. Estuary	0	0	0
	Remote Release(Eshamy Lake/Fry)	Esther Pass Lake	0	0	0
	Total Remote Release		0	0	0
	Other *		9481	2212178	
	Wild (Eshamy Lake/Smolt)		0	0	0
	Sampled Catch		25616		
	Total Catch		25616		
26 Jul-01 Aug	MB Hatchery (Coghill Lake/Smolt)		1109	2212178	63
	MB Hatchery (Eshamy Lake/Smolt)		0	0	0
	Total Hatchery		1109	2212178	63
	Remote Release (Coghill Lake/Smolt)	Coghill R. Estuary	0	0	0
	Remote Release(Eshamy Lake/Smolt)	Eshamy R.Estuary	0	0	0
	Remote Release(Eshamy Lake/Fry)	Esther Pass Lake	0	0	0
	Total Remote Release		0	0	0
	Other *		652	2212178	
	Wid (Eshamy Lake/Smolt)		0	0	0
	Sampled Catch		0		
	Total Catch		1761		
	TOTAL HATCHERY		84925		
	TOTAL R. RELEASE		0		
	TOTAL WILD ESHAMY		349		
	TOTAL CATCH		158891		

[^5]- Other contrib. may contain wild fish and/or fish from untagged remote releases at Pass Lake (1988 release of 594,210 fry; 1989 release of 603,219 fiy), Esther Pass Lake (1988 release of 153,031 and Davis Lake (1988 release of 657,287 fry)

Appendix C4.2.1 Estimated hatchery contributions (Contrib.) to the coho salmon common propesty fishery of 1992 by period and district

Week	Contributor	Facility	District												Total	$\%{ }^{\circ}$
			221		222		223		225		228		229			
			Contrib.	Vrr.	Contrib.	Var.	Contrib.	Var .	Contrib.	Var.	Contrib.	Var.	Contrib.	Var.		
14-20 Jun	Hatchery	Wally N.							0	0					0	0
		Solomon C .							0						0	0
		Total							0	0					0	0
	Wild								6	0					6	100
		Sampled Catch	0		0		0		6		0		0			
		Total Catch	0		0		0		6		0		0		6	
21-27 Jus	Hatchery	Wally N .							0	0					0	0
		Solomon G.							12						12	60
		Total							12	0					12	60
	Wid								8	0					8	40
		Sampled Catch	0		0		0		20		0		0			
		Total Catch	0		0		0		20		0		0		20	
28 Jun-04 Jui	Hatchery	Wally N .					0	0	21	0					21	54
		Solomon G.					0		0						0	0
		Toul					0	0	21	0					21	54
	Wid						12	0	6	0					18	46
		Sampled Catch	0		0		12		27		0		0			
		Total Catch	0		0		12		27		0		0		39	
05-il Jul	Hatchery	Wally N .	0	0			0	0	0	0					0	0
		Solomon G.	0	0			0	0	0	0					0	0
		Total	0	0			0	0	0	0					0	0
	Wild		17	0			18	0	110	0					145	100
		Sampled Catch	17		0		0		110		0		0			
		Total Cutch	17		0		18		110		0		0		145	
12-18 Jul	Hatchery	Wally N .	0	0			0	0	143	930					143	57
		Solomon G.	17	2			0		0						17	7
		Total	17	2			0	0	143	930					160	64
	Wild		10	2			69	0	12	930					91	36
		Sampled Catch	27		0		69		155		0		0			
		Total Catch	27		0		69		155		0		0		251	

Appendix C 4.2.1 Estimated hatchery contributions (Contrib.) to the coho salmon common property fishery of 1992 by period and distict (Continued)

Appendix C4.2.1 Estimated hatchery contributions (Contrib.) to the coho salmon commion property fishery of 1992 by period and district (Continued)

Week	Contributor	Facility	District												Totel	\% ${ }^{\circ}$
			221		222		223		225		228		229			
			Contrib.	Var.	Contrib.	Var.	Contrib.	Var.	Contrib,	Ver.	Contrib.	Var.	Contrib.	Ver.		
23-29 Aug	Hatchery	Wally N .					30894	35009816	394	9246					31288	100
		Solomon G.					0		0						0	0
		Total					30894	35009816	394	9246					31288	100
	Wild						0	35009816	0	9246					0	0
		Sampled Catch	0		0		30894		394		0		0			
		Total Catch	0		0		30894		394		0		0		31288	
30 Aug-05 Sept	Hatchery	Wally N .	0	0			45514	58850004	144	0					45658	100
		Solomon G.	0				0		0						0	0
		Total	0	0			45514	55850004	144	0					45658	100
	Wid		122	0			0	55850004	0	0					122	0
		Sampled Catch	0		0		45514		0		0		0			
		Total Catch	122		0		45514		144		0		0		45780	
06-12 Sept	Hatchery	Waly N .					16900	34624	30	0					16930	100
		Solomon G.					0		0						0	0
		Total					16900	34624	30	0					16930	100
	Wild						0	34624	0	0					0	0
		Serapled Catch	0		0		16900		0		0		0			
		Total Catch	0		0		16900		30		0		0		16930	
13-19 Sept	Hatchery	Wall N .					1687	0	3	0					1690	100
		Solomon G.					0		0						0	0
		Total					1687	0	3	0					1690	100
	Wild						0	0	0	0					0	0
		Surapled Catch	0		0		0		0		0		0			
		Total Catch	0		0		1687		3		0		0		1690	
20.26 Sept	Hitchery	Waly N .					372	0							372	100
		Solomon G.					0								0	0
		Total					372	0							372	100
	Wid						0	0							0	0
		Sarapled Catch	0		0		0		0		0		0			
		Total Catch	0		0		372		0		0		0		372	
		TOTAL HATCHERY	17		1744		11334		1415		0		0		117023	98
		TOTAL WILD	222		542		965		855		0		15		2063	2
		TOTAL CATCH	239		2286		114276		2270		0		15		119086	

Appendix C 4.2.2 Estimated hatchery contributions (Contrib.) to the coho salmon cost recovery fishery of 1992 by period and district.

Week	Contributor	Facility	District				Towl	9.
			221					
			Conlrib.	ver.	Contrib.	V_{5}		
21-27 Jum	Hatchery	Wally N .	0	0			0	0
		Solomon G.	0	0			0	0
		Total	0	0			0	
	Wid		18	0			18	100
		Sampled Catch	18		0			
		Tolal Catch	18		0		18	
28 Jun-04 Jul	Hathery	Wally N .	0	0			0	0
		Soiomen G.	0	0			0	0
		Toal	0	0			0	0
	Wid		2	0			2	100
		Sampled Catch	2		0			
		Total Cotch	2		0		2	
05-11 Jul	Hatchery	Wally N .	0	0			-	0
		Solomon G .	0	0			0	
		Toal	0	0			0	
	wid		4	0			4	
		Sampled Catch	4		0			
		Tolal Catch	4		0		4	
12.18 Jul	Hatchery	Wally N .					0	
		Solomon G.					0	
		Total					0	
	Wid						0	
		Sampled Catch	0		0			
		Total Catch	0		0		0	
19.25 Jul	Hatchery	Wally N .					0	
		Solomon G .					0	
		Total					0	
	Wild						0	
		Sampled Catch	0		0			
		Toual Catch	0		0		0	

Appendix C 4.2.2 Estimated hatchery contributions (Contrib.) to the coho selmon cost recovery fishary of 1992 by period and distrixt (Continued)

Week	Contributor	Pacility	District				Total	$\%$.
			Contrib.	Ver.	Contrib.	Ver.		
26 Jul-01 Aug	Hatchery	Wally N .			67	0	67	100
		Solomon G .			0	0	0	0
		Total			67	0	67	100
	Wild				0	0	0	0
		Sampled Catch	0		0			
		Total Catch	0		67		67	
02-08 Aug	Hatchery	Wally N .			3612	388519	3612	100
		Soloman G.			0	0	0	-
		Total			3612	388519	3612	100
	Wad				0	388519	0	0
		Sempled Catch	0		3612			
		Total Catch	0		3612		3612	
09-15 Aug	Hatchery	Wally N .			5238	279392	5238	100
		Solamon G.			0	0	0	0
		Total			5238	279392	5238	100
	Wild				0	279392	0	0
		Sampled Catch	0		5238			
		Total Catch	0		5238		5238	
16-22 Aug	Hatchery	Wally N .	0	0	11752	5114810	11752	87
		Solomon G.	1797	455389	0	0	1797	13
		Total	1797	455389	11752	5114810	13549	100
	Wid		0	455389	0	5148810	0	0
		Sampled Catch	1797		11752			
		Total Catch	1797		11752		13549	
23-29 Aug	Hatchery	Wally N .	0	0	15997	4572011	15397	78
		Solomon G.	4278	2760660	0	0	4278	22
		Total	4278	2760660	15397	4572011	19675	100
	Wild		0	2760660	0	4572011	0	0
		Sampled Catch	4278		15397			
		Toul Catch	4278		15397		19675	

Appendix C 4.2 .2 Estimated hatchery contributions (Contrib.) to the coho salmon cost recovery fishery of 1992 by period end district (Continued)

Weck	Contributor	Faxility	Distric				Total	\%
			22!		223			
			Contrib.	Var.	Contrib.	Var.		
04-100ct	Hatchery	Wally N .					0	
		Solomon G.					0	
		Total					0	
	Wild						0	
		Sumpled Calch	0		0			
		Toul Catch	0		0		0	
11-170t	Hetchery	Wally N .					0	
		Solornon G.					0	
		Toul					0	
	Wild						0	0
		Sampled Catch	0		0			
		Total Catch	0		0		0	
18-240ct	Hatchery	Wally N .	0	0			0	0
		Soloman G.	1824	0			1824	100
		Toun	1824	0			1824	100
	Wild		0	0			0	0
		Sampled Catch	0		0			
		Total Catch	1824		0		1824	
		total hatchery	27390		48831		73221	99
		TOTAL WILD	24		869		893	1
		TOTAL CATCH	27414		46700		74114	

As \% of total catch over all districts.

Appandix C 5.1.1 Eximatiod hatchery coatributions (Coatib) Io the nockeyo salmon commoa property finhery of 1993 by period and dirtrict

Weak	Contributar (SlockType)	Remote Relena Sita	District										Towd	\% ${ }^{\circ}$
			222		223		225		226		229			
			Contrib.	Ver.	Contrib.	Yer	Contrib.	Vr.	Contrib.	Var.	Contrib.	Ver.		
O6-12 han	MB Hatchery (Coghill Late/smoll)				0	0							0	0
	MB Hatchriy (Esheny LekeSmoll)				0	0							0	0
	MB Ilatchery (Eyid/Fry)				0	0							0	0
	Total Hatchary				0	0							0	0
	Reriote Relean (Coshill LakeSmoll)	Cogeill R. Estury			0	0							0	0
	Remote Redenox Eshany LakeSmolt)	Eshamy R. Entury			0	0							0	0
	Remote Reieum(Ehhury LakoFry)	Erther Pase inke			0	0							0	0
	Remota Ralease(Eahrmy Lake/Fry)	Pus Lake			0	0							0	0
	Total Remola Relece				0	0							0	0
	Othes -				338	0								
	Wild (Emhmy LakeSmolt)				0	0							0	0
	Sampled Cruch		0		0		0		0		0			
	Toul Calch		0		338		0		0		0		338	
13-19 Jun	MB Hatchery (Coyhill Lekersmolt)				71	1712	147	607			1	0	219	14
	MB Hetchery (Ehemy Lake(smoll)				0	0	0	0			0	0	0	0
	MB Hatchery (Eyak/fy)				0	0	0	0			0	0	0	0
	Total Hatchery				71	1712	147	607			1	0	219	14
	Remote Ratace (Cosphill Laketmolt)	Coghill R Ertusy			0	0	0	0			0	0	0	0
	Remoto Relene(Eshamy LakelSmoll)	Esheny R Estury			0	0	0	0			0	0	0	0
	Renota Releno(Eahamy Late/Fry)	Eother Paoel Lek.			0	0	0	0			0	0	0	0
	Remote Redeeno(Ehhemy Lakeriy)	Pmontak.			0	0	0	0			0	0	0	0
	Toul Remote Rolese				0	0	0	\bigcirc			0	0	0	0
	Obere ${ }^{\text {2 }}$				1025	1712	211	607			159	0		
	Wild (Eshamy LakeSmoll)				0	0	0	0			0	0	0	0
	Samplos Carch		0		1096		358		0		0			
	Totul Catch.		0		1096		338		0		156		1610	

 and Davie Lake (1988 relezwe of 657,287 fy).

Appendix C 5.1.1 Entimated hutchery conatibutions (Contrib.) to the nockeyo entmon common property finhery of 1993 by pariod and dintrict (Continued)

und Devis Lake (1988 rideun of 657,287 6y)

Appendir C 5.1 .1 Eatimated hatchary contributions (Coastrib.) to the nockeyo malmon commor property finhery of 1993 by period and dintrict (Continued)

As \% of toblal catch over ind diatricts.
 and Devin Lake (1988 releace of 657,287 fyy).

[^6]Appendix C 5.1.1 Entimaled hatchery contributions (Contrib.) to the oockoyo walmon common property fishery of 1993 by period and dirtrict (Costinued)

Week ____Contibutor (StockTYpo)		Remoto Releua Sile	Dintice										Towl	\% ${ }^{\text {c }}$	
		222	223		223		226		229						
		Contrib.	Vre.	Contrib.	Ver.	Contrib.	Vr.	Contrib.	Ver.	Coatrib.	Var.				
01.07 Aus	MB Hatchery (Coghill Lekedsmolt)					1733	42987	3831	288575	26	111	0	0	\$390	20
	MB Hacchery (Earumy Lakasmoll)					1293	89931	5641	2946118	797	28170	0	0	7731	28
	MB Hetchery (Eyllfry)				0	0	0	0	0	0	0	0	0	0	
	Total Helchery				3026	132918	9472	3234693	823	28281	0	0	13321	49	
	Rersote Redeno (Cothill Lake/smolit)	Coghill R Edumary			921	34839	48	2246	0	0	0	0	969	4	
	Reenoto Ralumentahemy LakeSmolt)	Eshamy R, Esturary			2287	284448	3194	\$242002	269	4196	0	0	5750	21	
	Remote Releure(Ehhmy LakdFry)	Ether Pan Leke			19	98	29	169	0	0	0	0	48	0	
	Remota Rolease(Edhuray Leke/Fy)	Pues lato			40	506	0	0	0	0	0	0	40	0	
	Total Remotu Relene				3267	319891	3271	1244417	269	4196	0	0	6807	25	
	Other *				740	462886	1754	4610078	1911	33669	338	0			
	Wid (Eahumy LakwSmott)				500	10077	1848	130968	184	992	0	0	2332	9	
	Sumplos Catch		0		7533		16345		3187		0				
	Total Catch		0		7533		16345		3187		338		27403		
08-14 Ang	MB Hatchery (Coghil LakuSmoli)				1276	57692	0	0	547	22768	0	0	1823	6	
	MB Hatchery (Emhamy LavuSmoll)				1801	220659	829	61119	1603	140684	0	0	4233	15	
	MB Hetchery (Eyb/Fiy)				0	0	4931	2546145	0	0	0	0	4931	17	
	Total Hatchery				3077	278351	5760	2607264	2150	163452	0	0	10987	38	
	Remote Release (Cophill Lake/smolt)	Cogrill R. Extuary			826	77216	0	0	0	0	0	0	826	3	
	Remole Relceson(Exhemy Lekelsmok)	Echemy R. Ettuay			4018	913160	2194	635839	2815	270880	0	0	9027	31	
	Remotu Releam(Eaheriy LakeFry)	Erther Pase Lake			78	1271	0	0	0	0	0	0	78	0	
	Remote Releane(Ehhamy Lakefry)	Pane Lako			31	197	0	0	130	2433	0	0	161	1	
	Toel Remote Relowe				1953	99214	2194	635839	2945	273313	-	0	10092	35	
	Ohere -				703	1437553	1124	3472427	285	545416	214	0			
	Wid (Ethmy Lekesmok)				1578	167058	2063	229324	1981	108651	0	0	5622	19	
	Senaplod Catch		d		10311		11141		7361		0				
	-T.T. Total Catch		0		10311		11141		7361		214		29027		

 and Davie Lake (1988 ruleseo of 657,287 fy).

	Whak	Contributor (Elack $/ T_{\text {Ypo }}$)	Remole Relemes Site	Contrib.	Var.	Contrib.	Ver.	Contrib.	Ver.	Contib.	Var.	Contrib.	Ver.	Totw	**
	15.21 Avs	MB Hetchery (Coshri' Lakedsmoth)		0	0	355	36403	119	7445	282	22540	0	0	936	2
		MB Hatchery (Eahamy Lakesmoll)		0	0	179	27455	7252	6419581	1804	340281	0	0	9235	18
		MB Hachery (Eybl/ry)		0	0	0	0	0	0	0	0	0	0	0	0
		Totel Hatchery		0	0	734	63860	3371	6427026	2086	362821	0	0	10191	20
		Rumota Relems (Coghill Leke/Smoly)	Coghill R Eatury	0	0	0	0	0	0	0	0	0	0	0	0
		Remote Ralease(Eshmay LakuSmoty)	Eshamy R. Retuary	0	0	1002	91247	14994	5370407	3470	605224	0	0	18965	38
		Remola Ralewe(Ehamy LekwFry)	Eother Pimutake	0	0	0	0	114	2525	52	621	0	0	166	0
		Remote Raceno(Ehhany Lake/Fy)	Pam Laks	0	0	0	0	172	7248	26	437	0	0	198	0
		Total Remotor Relens		0	0	1002	91247	14780	5380180	3548	606282	0	0	19330	39
		Other -		120	0	269	168370	6343	13941242	2788	минин	46	0		
		Wid (Eahamy Lakeksmot)		0	0	337	13263	7844	2134036	2818	154216	0	0	10999	22
		Sumplod Catch		0		2342		36338		11240		0			
		Total Catch		120		2342		36338		11240		46		50086	
	22-28 Aus	MB Hatchey (Cophill Lake/smoll)		0	0	0	0	0	0	0	0			0	0
		MB Hetchery (Ethenay Latedsmolt)		0	0	625	49238	1307	254420	2081	162143			4013	10
		MB Hatchery (Eyd/fry)		0	0	0	0	0	0	0	0			0	0
\cdots		Toull hatchery		0	0	625	49238	1307	254420	2081	162143			4013	10
$\underset{\boldsymbol{\omega}}{\mathbf{O}}$		Remote Retese (Costill Lakesmolk)	Coghill R Estury	0	0	0	0	0	0	0	0			0	0
		Remote Ralemen(Enheny Lake/Smoli)	Eshamy R. Eetuary	0	0	200	14845	22704	50s80000	1504	79211			24408	38
		Renote Relese(Esthmy Lake/Fy)	Erther Pam Lako	0	0	0	0	111	1287	0	0			111	
		Remoto Rolesee(Eshmay LakdFry)	Panctake	0	0	73	938	332	20756	0	0			405	1
		Toual Remote Releaso		0	0	273	15783	23147	50602043	1504	79211			29924	60
		Other *		34	0	628	78121	409	53335336	171	308958				
		Wid (ECheny Lake/Smolt)		0	0	498	13100	9043	2478873	2066	67604			11607	28
		Sempled Catch		0		2024		33906		5822		0			
		Tooul Catch		34		2024		33906		5822		0		41786	

-As $\%$ of tomel catch over ill dirtricto.
 and Devie Lake (1988 ruleano of 657,287 fy).

		Remole Reloeno Site	Dintrict										Toled	κ^{*}
			222		223		223		226		229			
$\frac{\text { Woak }}{29 \text { A } 85-04 \operatorname{sep}}$	Contribulor (Slock(Typo)		Contrib.	Var.	Contrib.	Ver.	Contrib.	$\mathrm{V}_{\mathbf{L}}$.	Contrib.	Ver.	Connib.	Vr.		
	MB Hatchary (Coghill Lekersmot)				0	0	0	0	0	0			0	0
	MB Inatchery (Eahuny Lakesmol))				1085	292102	1832	230964	0	0			2917	26
	MB Hathery (Eyul/ry)				0	0	0	0	0	0			0	0
	Towl Hatchery				1085	292102	1832	230964	0	-			2917	26
	Remole Ralease (Coghill Lakelsmoli)	Coghill R Etamary			0	0	0	0	0	0			0	0
	Remote Releme(Exhamy Lake/Smolt)	Eahemy R. Eatuary			163	19839	3459	1267680	295	582			3917	35
	Rentoto Reiesoo(Edhamy Leke/Fry)	Eother Pam Lako			34	1000	49	286	14	3			97	1
		Pus Lak			0	0	0	0	0	0			0	0
	Totel Reanoter Relens				197	20839	3508	1267966	309	585			4014	36
	Other -				395	327950	8	2094744	1	771				
	Wid (Eakmy Leke(Smolt)				423	15009	3369	598814	172	186			394	35
	Sampled Catch		0		2100		8717		482		0			
	Towl Catch		0		2100		8717		482		0		11299	
05-11 Sept	MB Hatchery (Coghill Lakersmoll)				0	0	0	0					0	0
	MB Hetchery (Eshmmy Lakesmoll)				86	493	438	0					524	22
	M ${ }^{\text {Helchery (Eyuf/ry) }}$				0	-	0	0					0	0
	Total Hetchary				86	493	438	0					524	22
	Remote Roveree (Cophill lakersmodi)	Coghill R. Eetancy			0	0	0	0					0	0
	Remote Releemerehamy Lakersmolt)	Eshumy R. Entuary			85	493	827	0					912	38
	Remotele Releso(Eahany Lekofry)	Esther Pus Lak*			0	0	12	0					12	1
	Remoto Relecer(Enhemy Lekeriry)	Pancoke			0	0	0	0					0	0
	Total Remoto Reloseo				85	493	839	0					924	39
	Other *				126	986	2	0						
	Wild (Eshany LakwSmolt)				0	0	806	0					806	34
	Sumplod Catch		0		297		0		0		0			
	Total Catch		0		297		2085		0		0		2382	

[^7]| | dix Cs. | imatod hatchery contribution (Coutrib.) 10 | oye mimoa common | perty fincer | 3 by | iod and dir | Contin | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | Contrib. | Ver. | Contrib. | Vor. | Contrib. | Vaf. | Contrib. | Vas. | Contrib. | Ver. | Total | $\%^{\circ}$ |
| | Weak | Contribulor (Slocketypo) | Remote Ralame Sito | Contrib. | Ve. | Conat. | 0 | 0 | 0 | | | | | 0 | 0 |
| | 12-18 Sopt | MB Hatchery (Coptill Lakesmoti) | | | | 15 | 0 | 70 | 0 | | | | | 115 | 24 |
| | | MB Hatchery (Eahemy LakeSmol) | | | | S | 0 | 0 | 0 | | | | | 0 | 0 |
| | | MB Hatchery (Eyll/Fry) | | | | 45 | 0 | 70 | 0 | | | | | 115 | 24 |
| | | Total Hatchery | | | | 4 | | | | | | | | | |
| | | | | | | 0 | 0 | 0 | 0 | | | | | 0 | 0 |
| | | Remote Ralease (Coghill LekeNsmoti) | | | | 44 | 0 | 132 | 0 | | | | | 176 | 36 |
| | | Remoto Release(Echany Lukusmolt) | Esherny R Eetury | | | 4 | 0 | , | 0 | | | | | 2 | 0 |
| | | Remote Relewo(Echamy Lata/Fry) | Eether Prow Lake | | | 0 | 0 | 0 | 0 | | | | | 0 | 0 |
| | | Remote Ralease(Enhemy Lakefry) | | | | 44 | 0 | 134 | 0 | | | | | 178 | 37 |
| | | Total Remoto Relecse | | | | | | | | | | | | | |
| | | Other * | | | | 62 | 0 | 0 | 0 | | | | | 132 | 27 |
| | | Wild (Echuny LakuSmoll) | | | | 3 | 0 | 129 | 0 | | | | | 132 | 27 |
| | | | | 0 | | 154 | | 0 | | 0 | | 0 | | | |
| | | Total Cutch | | 0 | | 154 | | 333 | | 0 | | 0 | | 487 | |
| | | | | | | | | | | | | | | 0 | |
| | 19.25 Sopt | MB Hetchery (Coghill Laka/Smoll) | | | | | | | | | | | | 0 | |
| | | MB Hetchery (Eahemy Lake/Smoth) | | | | | | | | | | | | 0 | |
| - | | MB Hischery (Eymb/Fy) | | | | | | | | | | | | 0 | |
| \bigcirc | | Total Hatchery | | | | | | | | | | | | | |
| G | | | | | | | | | | | | | | 0 | |
| | | Remote Releno (Coghill LakeSmoll) | Coghill R. Extury | | | | | | | | | | | 0 | |
| | | Remote Rulenes(Eahmy Lake/smoli) | Eshemy R. Ectunsy | | | | | | | | | | | 0 | |
| | | Remoth Rolowo (Ethemy Leke/Fry) | Esthet Pual Lake | | | | | | | | | | | 0 | |
| | | Romoto Relewer (Eshemy LekwFry) | Puas Lako | | | | | | | | | | | 0 | |
| | | Total Remote Releas | | | | | | | | | | | | | |
| | | Other * | | | | | | | | | | | | 0 | |
| | | Wild (Emany Lakedsmolt) | | | | | | | | | | | | | |
| | | | | 0 | | 0 | | 0 | | 0 | | 0 | | | |
| | | Sampled Catch
 Total Catch | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | |
| | | | | 0 | | 29756 | | 78684 | | 7140 | | 45 | | 115625 | 39 |
| | | total hatelery | | 0 | | 15373 | | 53769 | | 4575 | | 0 | | 77717 | 26 |
| | | TOTAL WILD ESHAMY | | 0 | | 3683 | | 27954 | | 7221 | | 0 | | 38858 | 13 |
| | | TOTAL CATCH | | 154 | | 72782 | | 182469 | | 28092 | | 14770 | | 298267 | |

- As $\%$ of total catch over an dirtricta.
 and Davis Lake (1988 selean of 657,287 fyy).

Appendix C 5.1.2 Estirnted hatchery contributions (Contrib.) to the sockeye salmon cost recovery fishery of 1993 by by period and district.

Week	Contributor (Slock/Type)	Remote Release Site	District		$\%$ -
			225		
			Contrib.	Var.	
27 Jun-03 Jul	MB Hatchery (Coghill Lake/Smol)		4330	0	99
	MB Hatchery (Eshany Lake/Smolt)		0	0	0
	MB Hetchery (Eyak/Fry)		0	0	0
	Totel Hachery		4330	0	99
	Remote Release (Coghill Lake/Smoli)	Coghill R. Esturry	0	0	0
	Remole Release(Eshamy Leke/Smolt)	Eshmiy R. Estuary	0	0	0
	Remote Release(Eshamy Lake/Fry)	Esther Pass Lake	0	0	0
	Remote Release(Eshany Lake/Fy)	Pass Lake	0	0	0
	Total Renote Release		0	0	0
	Other ${ }^{\text {- }}$		33	0	
	Wild (Eshmy Leke/Smoll)		0	0	0
	Sumpled Catch		0		
	Totul Calch		4363		
04.10 Jul	MB Hatchery (Coghill Lake/Smolt)		12737	1330077	99
	MB Hatchery (Eshumy Lele/Smoll)		0	0	0
	MB Hutchery (EykN/Fy)		0	0	0
	Total Hatchery		12737	1330077	99
	Remote Release (Coghill Lake/Smoil)	Coghill R Estuary	0	0	0
	Remote Relemse(Eshany Lake/Srooll)	Eshamy R. Estuary	0	0	0
	Remote Release(Eshumy Lake/Fry)	Esther Pass Lake	0	0	0
	Remote Release(Eshamy Late/Fry)	Pass Lake	0	0	0
	Toud Remote Relesse		0	0	0
	Other -		87	1330077	
	Wild (Eshamy Lake/Smolt)		0	0	0
	Sampled Catch Total Catch		12824 12824		

- As \% of totel calch over all districts.
- Other contributions may contuin wild fish and/or fish from unlugged remote releases at Pass Leke (1988 release of 594,210 6y, 1989 release of 603,219 fiy), Esther Pass Lake(1988 release of 153,031 fyy; 1989 release of 154,641 fy)) and Davis Lake (1988 release of 657,287 fy). -continued-

- As \% of total catch over all districts.
- Other contributions may contuin wild fish and/oc fish fiom uniagged remote releases at Pass Lake (1988 release of 594,210 fyy, 1989

- As \% of total catch over all districts.
- Oher contributions may contain widd fish and/or fish from untagged remote releasea at Pass Lake (1988 rclease of 594,210 fy; 1989
redese of 603,219 fiy). Esther Pass Lake(1988 ralense of 153,031 fy, 1989 relesse of 154,644 fy)) and Davis Lake (9988 release of 657,287 fiy) -Continued.

Appendix C S.1.2 Estimated hatchery contributions (Contib.) W the sockeye salmon cost recovery fishery of 1993 by
by period and district (Continued)

[^8]- Other contributions may contrin widd fish vidior fish from untageed remole relesses at Pass Lake (1988 relense of 594,210 fy, 1989 release of 603,219 fyy), Esther Pass Lake(1988 release of 153,031 fyy, 1989 recense of 154,644 fyy) and Davis Lake (1988 rekease of 657,287 fy).

[^9]- Ober contributions may connuin wild fish andor fish from untagged renole relewes at Pase Lake (1988 release of 594,210 fyy,198s release of 603,219 fy), Esther Pass Lake(1988 release of 153,031 fyy, 1989 recesse of 154,644 fy)) and Davis Lake (1988 relesse of 657,287 fy).

Appendix C 5.2.1 Extimated hatchery contributions (Contrib.) No the colbo salinon common property fishery of 1993 by period and district.

Woek	Contributor	Faclity	District										Total	\% ${ }^{\circ}$
			222		223		225		226		229			
			Contri.	Ver.	Contrib.	Var.	Contrib.	Ver:	Contrib.	Var.	Contrib.	Var.		
06-12 Sm	Hatchery	Sotomon Gulch											0	
		Sampled Catch	0		0		0		0		0			
		Totul Catch	0		0		0		0		0		0	
13-19 Jun	Hatchery	Solomon Gulch			0	0							0	0
		Sampled Cutch	0		15		0		0		0			
		Total Catch	0		15		0		0		0		15	
20-26 Jun	Hetchery	Solomon Gulch			0	0							0	0
		Sempied Cancix	0		32		0		0		0			
		Totw Catch	0		32		0		0		0		32	
27 Jun-03 Jul	Hatchery	Solomon Guich			0	0	0	0					0	0
		Samplad Catch	0		159		98		0		0			
		Total Catch	0		159		98		0		0		257	
04-10 Jul	Hatchary	Soloman Gulch			0	0	0	0					0	0
		Sempled Catch	0		312		287		0		0			
		Total Catch	0		312		287		0		0		599	
11-17 Jul	Hotchery	Solomon Gulch			0	0	0	0					0	0
		Sampled Cutch	0		91		12		0		0			
		Total Catch	0		91		12		0		0		103	
18-24 Jul	Hetchery	Solomon Gulch									0	0	0	0
		Sampled Calch	0		0		0		0		0			
		Total Catch	0		0		0		0		4		4	
23-31 Jul	Hatchery	Solomon Gulch					0	0					0	0
		Sumpled Catch	0		0		10		0		0			
		Total Catch	0		0		10		0		0		10	

Appendix C S.2.1 Eleimaled halchery conaributions (Contrib.) to the coho salmon consurion property finhery of 1993 by pariod and district (Continued)

Weck	Contribulor	Facility	District										Total	\%*
			222		223		225		226		229			
			Contrib.	Var.	Contrib.	Ver.	Contib.	Var.	Contrib.	Var.	Contrib.	Ver.		
$01-47$ Aug	Hatchary	Solomon Gulch			100	5265	11	34	0	0			111	10
		Sampled Catch	0		604		36		528		0			
		Total Catch	0		604		36		528		0		1168	
08-14 Aug	Hatchery	Solomon Gulch			0	0	0	0	0	0			. 0	0
		Semplod Catch	0		1194		134		1359		0			
		Total Catch	0		1194		134		1359		0		2687	
15-21 Aug	Hatchery	Solomon Gulch	0	0	0	0	0	0	0	0			0	0
		Semplod Catch	17		441		117		1205		0			
		Totel Catch	17		441		117		1205		0		1780	
22-28 Aug	Hatchery	Solomon Gulch	0	0	0	0	0	0	0	0			0	0
		Sampled Catch	1		2605		634		515		0			
		Total Catch	1		2605		634		515		0		3755	
29 Aug-04 Sep	Heachery	Solomon Gulch			69	4239	0	0	0	0			69	1
		Sernpled Calch	0		8399		300		0		0			
		Total Cutch	0		8399		300		52		0		8751	
05-11 Sept	Hatchery	Solormon Guch			0	0	0	0					0	0
		Sampled Catch	0		10536		0		0		0			
		Total Catch	0		10536		147		0		0		10683	
12-18 Sept	Hetchery	Solomon Gukch			0	0	0	0					0	0
		Semplod Catich	0		0		0		0		0			
		Total Catch	0		9319		20		0		0		9339	
19-25 Sept	Hatchery	Solaman Gulch			0	D							0	0
		Samplod Catch	0		0		0		0		0			
		Total Catch	0		5876		0		0		0		5876	

Appendix C 5.2.1 Extimated hatchery contributiona (Contrib.) to the coho salmon common property fishery of 1993 by period and district (Continued)

Week	Contributor Facility		District										Total	$\%^{\circ}$
			222											
			Contrib.	Var.	Contrib.	Var.	Contrib.	Ver.	Contrib.	Var.	Contrib.	Vrr.		
26 Sept-02 Oct	Hatchery	Solomon Gulch			0	0							0	0
		Sampled Catch	0		0		0		0		0			
		Total Catch	0		484		0		0		0		484	
		TOTAL SOLOMON G.	0		169		11		0		0		180	0
		TOTAL CATCH	18		40067		1795		3659		4		45543	

'As \% of total calch over an districts.

	Appendix C 5.2.2 Estimated hatchery contributions (Contrib.) to the coho almon cost recovery fishery of 1993 by period and district.								
					Distr				
	Week	Contributor	Facility	Contrib.	Var.	Contrib.	Var.	Total	\% ${ }^{\text {+ }}$
	22-28 Aug	Hatchery	Solomon G.			0	0	0	0
			Sampled Catch	0		193			
			Total Catch	0		193		193	
	29 Aug-04 Sept	Hatchery	Solomon G.			0	0	0	0
			Sampled Catch	0		0			
			Total Catch	0		1339		1339	
	05-11 Sept	Hatchery	Solomon G.					0	
\cdots			Sampled Catch	0		0	.		
-			Total Catch	0		0		0	
	12-18 Sept	Hatchery	Solomon G.	1614	58056			1614	81
			Sampled Catch	1985		0			
			Total Catch	1985		0		1985	
	19-25 Sept	Hatchery	Solomon G.	132	4278			132	66
			Sampled Catch	201		0			
			Total Catch	201		0		201	
-		TOTAL	SOLOMON G.	1746 2186		$\begin{array}{r}0 \\ 1532 \\ \hline\end{array}$		1746 3718	47

Appendix C 5.3.1 Estimated hatchery contributions (Contrib.) to the chinook salmon common property fishery of 1993 by period and district

Week	Contributor	Facility	District								Toul	
			223		225		226		229			
			Contrib.	Var.	Contrib.	Var.	Contrib.	Var.	Contrib.	Var.		
06-12 Jun	Hatchery	Wally N .	156	2017							156	60
		Solomon O .	0	0							0	0
		Total	156	2017							156	60
	Wid		106	2017							106	40
		Sampled Catch	262		0		0		0		-	
		Total Catch	262		0		0		0		262	
13-19 Jun	Hatchery	Wally N .	80	0	15	6					95	65
		Solomon O .	0	0	0	0					0	0
		Total	80	0	15	6					95	65
	Wild		51	0	0	6					51	35
		Sampled Catch	131		15		0		0			
		Total Cutch	131		15		0		0		146	
20-26 Jun	Hatchery	Wally N .	46	154	9	34			0	0	55	62
		Solomon 0 .	0	0	0	0			0	0	0	
		Total	46	154	9	34			0	0	55	62
	Wild		25	154	8	34			1	0	34	38
		Sampled Catch	71		17		0		0			
		Total Catch	71		17		0		1		89	
27 Jun-03 Jul	Hatchery	Wally N .	34	368	7	0			0	0	41	53
		Soloman 0 .	0	0	0	0			0	0	0	
		Total	34	368	7	0			0	0	41	53
	Wid		28	368	6	0			2	0	36	47
		Smmpled Catch	62		13		0		0			
		Total Calch	62		13		0		2		77	

*At \% of lotal catch over all districts.

Appendix C S.3.1 Estimated hatchery contributions (Contrib.) to the chinook salmon common property fishery of 1993 by period and district (Continued)

Weak	Contributor	Facility	District								Total	\% ${ }^{\text {c }}$
			223		225		226		229			
			Contrib.	Var.	Contrib.	Var.	Contrib.	Var.	Contrib.	Var.		
04-10 \%	Hatchery	Wally N .	17	50	0	0			0	0	17	55
		Solomon O .	0	0	0	0			0	0	0	
		Total	17	50	0	0			0	0	17	55
	Wid		3	50	8	0			3	0	14	45
		Sampled Catch	20		8		0		3		.	
		Total Catch	20		8		0		3		31	
11-17 Jul	Hatchery	Wally N .	16	45	0	0			0	0	16	70
		Solomon 0.	0	0	0	0			0	0	0	
		Total	16	45	0	0			0	0	16	70
	Wild		2	45	3	0			2	0	7	30
		Sampled Catch	18		3		0		2			
		Total Catch	18		3		0		2		23	
18-24 Jul	Hatchery	Wally N .							0	0	0	
		Solomon 0.							0	0	0	
		Total							0	0	0	
	Wild								6	0	6	100
		Sumpled Catch	0		0		0		6			
		Total Catch	0		0		0		6		6	
25-31 Jul	Hetchery	Wally N .			0	0					0	
		Solomon 0.			0	0					0	
		Total			0	0					0	
	Wid				1	0					1	100
		Smpled Catch	0		1		0		0			
		Total Catch	0		1		0		0		1	

Appendix C 5.3.1 Estimated hatchery contributions (Contrib.) to the chinook relmon common property fishery of 1993 by pariod and district (Continued)

Week	Contributor	Facility	Districe								Tolal	\% ${ }^{\text {* }}$
			223		225		226		229			
			Contrib.	Var.	Contrib.	Var.	Contrib.	Var.	Contrib.	Var.		
01-07 Aug	Hatchery	Wally N .	0	0			0	0			0	
		Solomon O .	0	0			0	0			0	
		Total	0	0			0	0			0	
	Wild		30	0			2	0			32	100
		Sampled Catch	30		0		2		0		.	
		Total Catch	30		0		2		0		32	
08-14 Aug	Hatchery	Wally N .	0	0	0	0	0	0			0	
		Solomon C .	0	0	0	0	0	0			0	
		Total	0	0	0	0	0	0			0	
	Wild		120	0	1	0	6	0			127	100
		Sempled Catch	120		1		6		0			
		Total Catch	120		1		6		0		127	
15-21 Aug	Hetchary	Waly N .	0	0	0	0	0	0			0	
		Solomon O .	0	0	0	0	0	0			0	
		Total	0	0	0	0	0	0			0	
	Wild		3	0	3	0	2	0			8	100
		Sempled Catch	3		3		2		0			
		Total Catch	3		3		2		0		8	
22-28 Aug	Hatchery	Wally N .	0	0	0	0	0	0			0	0
		Solomon O .	0	0	0	0	0	0			0	0
		Total	0	0	0	0	0	0			0	0
	Wid		5	0	1	0	1	0			7	100
		Sampled Catch	5		1		0		0			
		Total Catch	5		1		1		0		7	

Appendix C 5.3.1 Extimated hutchery contributions (Contrib.) to the chirook aalmon common property fishery of 1993 by period and district (Continued)

Woak	Contributor Facility		District								Toual	\%*
			223		225		226		229			
			Contrib	Var.	Contrib.	Var.	Contrib.	Var.	Contrib.	Var.		
29 Aug-04 Sep	Hastchery	Wally N .	0	0	0	0					0	
		Solomon C .	0	0	0	0					0	
		Total	0	0	0	0					0	
	Wild		3	0	5	0					8	100
		Sampled Catch	3		0		0		0		,	
		Total Catch	3		s		0		0		8	
05-11 Sept	Hatchery	Wasly N .	0	0							0	
		Solomon C .	0	0							0	
		Total	0	0							0	
	Wild		2	0							2	100
		Sempled Cotch	2		0		0		0			
		Total Catch	2		0		0		0		2	
12-18 Sept	Hatchery	Wally N									0	
		Solomon O .									0	
		Total									0	
	Wild	d									0	
		Sampled Catch	0		0		0		0			
		Total Catch	0		0		0		0		0	
		TOTAL HATCHERY	349		31		0		0		380	46
		TOTAL WILD	378		36		11		14		439	54
		TOTAL CATCH	727		67		11		14		819	

- As \% of total catch over all districts.

Appendix C 53.2 Estinated hatchery contributions (Contrib.) to the chinook
satmon cost recovery fishery of 1993 by period and district

Wesk	Contributer	Facility	District		\% ${ }^{\text {* }}$
			223		
			Contrib.	Vv.	
23-29 May	Hatchery	Wally N.	11	0	30
	Wld		25	0	70
		Sampled Catch	0		
		Total Catch	36		
$30 \mathrm{May-05}$ Jun	Hatchery	Wally N.	78	1504	30
	Wid		183	1504	70
		Sampled Catch	261		
		Total Catch	261		
06-12 Jun	Hatchery	Wally N.	353	13063	100
	WId		0	13063	
		Sampled Catch	353		
		Total Catch	353		
13-19 Jun	Hatchery	Wally N.	256	2213	64
	Wad		145	2213	36
		Sempled Catch	401		
		Total Catch	401		
20-26 Jun	Hetchery	Wally N .	286	703	79
	Wid		75	703	21
		Sampled Catch	361		
		Total Catch	361		

Appendix C 5.3.2 Estimated hatchery contributions (Contrib.) to the chinook salimon cost recovery fishery of 1993 by period and district (Continued)

Week	Contributor	Facrity	District		\%
			223		
			Contrib.	Vat.	
27 Jun-03 Jul	Hatchery	Wuly N .	0	0	
	wid		8	0	100
		Sampled Catch	8		
		Total Catch	8		
04-10 Jul	Hatchery	Waly N .	3	1	50
	Wid		3	1	so
		Sampled Catch	6		
		Towl Catch	6		
11-17 Jul	Hatchery	Waly N .	20	s	100
	Wad		0	5	
		Sampled Catch	20		
		Total Catch	20		
18.24 Jul	Hatchery	Wally N .	0	0	
	Wid		7	0	175
		Sampled Catch	7		
		Total Cath	7		
25-31 Jul	Hatchery	Wally N .	4	17	57
	WId		3	17	0
		Sumpled Catch	7		
		Total Catch	7		
		TOTAL HATCHERY	1011		
		total wild	449		
		TOTAL CATCH	1460		

- As \% of total catch over ill districts.

WEEX Conaribut (StockThpol		Remote Relamer She	Dixtrig												
		221	22		223		225		224		Town	$\underline{6}$			
		Contiti	Vr.	Contrib.	Vm.	Conurib.	Ve.	Contrib,	V .	Connib.			ves.		
07.13 A48	MR futchary (Coquiris Lakersmok)					1043	30374	360	11536	271	23994			176	-
	MB Hachery (Exhemy Late/Smok)					3759	119683	83	117992	19548	583438			2145	57
	MB Huchery (Main Bay/Smoh)				0	0	0	-	0	0			-	-	
					0	0	0	0	-	-			-	-	
	Toul Hachery				142	1280057	1198	12957	19819	5908342			2505\%	61	
	Remiou Relemen (Coghill Lake/Smok)	Coghill r extury			0	0	415	9484	0	0			415	1	
	Remota Recemo(Etheny LekdSmok)	Eheny R Exumy			1579	30931	1635	3434	7907	2601232			11101	26	
	Remote Releme (Exhmay Lete/Fis)	Eshemy Lake			0	0	135	4954	237	20023			422	1	
	Remole Releem(Exheny Leterfy)	Exher Peralake			0	0	176	4157	0	0			176	-	
	Rexiote Releme(Ethemy Lekefry)	Pan Late			0	0	-	-	-	0			-	-	
	Town Remote Ralesw				1579	30931	231	9729	819	2621305			12114	29	
	rowal widd				366	1310989	1653	227307	2133	452964			4152	10	
	Smpled Cuch		0		6737		5192		30146		0				
	Toun cach		-		677		3192		30446		0		43125		
14-20 Ang	MB Hachery (Cozhill Latwsmok)				50	249	273	3120	726	221698			149	3	
	MB Hecthery (Ealumy Lakw/smok)				2091	751068	254	37002	12031	7255553			16659	47	
					0	0	0	0	-	-			-	-	
	MP Hatior (Ey $\mathrm{l}_{6} / \mathrm{Fry}$)				0	0	0	0	-	0			-	-	
	Toun Hachery				2131	751317	2320	4012	12757	747231			17708	so	
	Remole Releme (Coerhill Lake/Smoll)	Coshinl R Exumay			0	0	69	14378	0	0			6%	2	
	Remote Relamen(Ehtury Lek 4 Smoll)	Eshmay R. Emumy			205	3646	2150	42153	757	160304s			11012	3	
	Remole Ralemen (Fehmay Lateory)	Eshemy Lake			121	1406	-	-	-	-			121	-	
	Remote Releme(Ethmony LateFry)	Ember Pma Lake			-	0	57	38	-	-			37	-	
	Remote Relesee(Exheny Leke/Fry)	Pranlake			20	39	109	435	-	-			129	-	
	Toled Remode Releso				96	38091	3342	53066	$7 T^{2}$	4603085			12005	3	
	Toull wid				4145	78908	119	93164	411	12080336			5754	16	
	Sampled Cach		0		7 mm		7356		20925		0				
	Todul Cuch		0		722		736		20925		0		35503		

mepk		Remone Relemen Site	Distria											
			221		222		223		225		226		Toun	$6 \cdot$
			Contrib.	Yar.	сомй.	Vm.	Conurib.	Ve.	Conmer	v_{4}.	Contrit.	Ve.		
21-71 An8	MB Hetchery (Coghill lekw ${ }^{\text {a }}$ (mol)				0	0	0	-	9	124			1	-
	MB Hechery (Erhma lake/Smoll)				279	3186	3226	116903	16613	1911993			20124	6
	MB 1 luchery (Main Bay/Smok)				0	0	-	0	-	*			-	-
	MB Hanchet (Eyutfry)				0	0	0	0	0	\bigcirc			-	-
	Toxal fuchery				279	3486	3236	116903	16704	19923182			20213	65
	Remote Releme (Coghill LakdSmol)	Coghill r Exumy			0	-	705	379	-	0			705	2
	Remole Releme(Esmay Lekessmok)	Eahamy R Exumy			90	272	1209	228s ${ }^{\text {a }}$	-	4768			1299	4
	Resnoun Relemen (Eshmay Lake/Fy)	Erhemy Late			0	0	0	-	37	1315			37	-
		Exher Puselake			0	-	0	-	-	-			-	-
	Remote Raleme(Etheny Leke/Fy)	Paus Lato			-	0	0	-	-	\bigcirc			-	-
	Toul Remote Relena				90	272	1914	9144	37	6083			2041	7
	Toun wild				181	3788	1674	208351	5404	191326s			2919	${ }^{3}$
	Smapled Cach		0		2210		6834		22145					
	Toul Cuch		-		2210		6824		22145				317\%	
28 Ang-03 Sopt	MB Hechery (Coghill LakdSmol)						0	-	0	-			-	-
	ame Hechery (Fahmy Leka/Smoli)						3521	1445527	13060	49137			16s81	*
	MB Hachary (Main Bey/Smok)						0	-	0	0			-	-
	MB Hemer (EydF/Fy)						0	-	-	0			-	-
	Town Hechery						3521	1445327	13050	291378			16581	as
	Ramon Relemo (Coghill LendSmoll)	Cophill R Estory					0	-	-	-			0	-
	Remoln Releme(Esherny IntuSmol)	Elhemy R Exuay					674	10636	1726	-			2400	12
	Remoto Rolease (Ethemy LateFiy)	Erhemy Lakt					190	3511	0	271415			150	1
		Exher Patial					0	0	0	0			-	-
	Remocs Rutemo(Eshmy Letuefry)	Prosake					0	-	0	-			-	-
	Toul Remode Rolesen						864	15547	1726	27145			259	13
	Tout Wild						45	1560574	1	4762863			46	2
	Sempled Cutch		0		0		4030		14797		0			
-	- Toxectich		0		0		4830		1477				19617.	

week	Contributor (Sxckitypu)	Remote Relemen Sius	Distria											
			221		222		22		225		226		Tow	\%.
			Corurib.	vas.	Conrib.	Ve.	Conkrib.	V	Contrib.	VE.	Contrit.	Ve.		
-4-10 Sept							*	*	${ }^{1}$	+			*	-
	MB ILathery (Eahemy LakeSmoll)						632	5799	178	429959			2370	41
	MB temchery (Muin Bay/Smolu)						0	0	0	0			\bullet	-
	MB Hather (Eyd/Fy)						-	0	\bullet	0			\bullet	\bullet
	Towl hatbery						632	57999	173	42995			2370	4
	Remole Relemen (Coghill Lak/Smolk)	Corhill r. Emumy					1	0	-	-			-	-
	Remolu Raleme(Erhmixy LaldSmoll)	Eramy R. Etumy					107	2304	-	0			107	2
	Ramon Reless (Erhemy Lavofy)	Emhmy Lukt					0	0	0	-			-	-
	Remaco Releme(Etheny LateFry)	Exther Past lake					-	0	9	-			-	-
	Reanole Relemo(Etheny Lateofry)	Pasalake					0	-	-	0			-	-
	Tocal Remote Relemo						107	2304	0	0			107	2
	Town wid						45	60303	3276	429959			3321	57
	Smapled Cuch		0		0		m		5044		4			
	Toun Cach		0		0		7M		5014		-		5798	
11-17 Sept	ma Hacthery (Coyhill LakdSmok)						0	-	-	0			-	-
	MB Humbery (Exhemy LatedSrok)						191	-	276	-			467	45
	MB Hucchery (Mein Bay/Smol)						0	0	0	0			-	-
	UB Heacher (Eydility						0	0	0	0			-	,
	Tow Hathery						19	0	276	-			467	45
	Remonh Releme (Coghill Lakersmok)	Cophill R Etuary					-	-	6	9			-	-
	Remole Releme(Erheray Leke/3mok)	Ehtony R. Exumy					32	0	0	-			32	,
	Renoct Relomo (Exhmy Leta/Fry)	Erhmy Lake					-	-	-	-			-	-
	Reathote Raveme(Eshmay Lekefry)	Eather Paw Lake					0	-	-	0			-	-
	Remote Rolemestermany Lekefry)	Pesalate					0	0	-	0			-	-
	Total Ramsole Releme						32	0	\bullet	0			32	3
	Touth wid						13	-	521	0			536	52
	Sempled Cuch		0		0		-		0		-			
	Toul Cuch		0		0		239		797		-		1133	
	total hatchery		233	11	2665	46	14193	42	113950	71	12062	31	149103	39
	TOTAL R.RELEASE		0	0	3369	18	10976	32	25205	16	12156	32	31706	20
	total wild		1938	8	6816	36	819	26	20365	13	1445	37	52105	3
	TOTAL CATCH		2171		L8850		33986		159549		38367		229214	

[^10]Appendix C 6.1.2 Estimated hatchery contributions (Contrib), to the sockeye selimon cost tecovery fishery of 1994 by pariod and district

Week	Contributos (SlockTType)	Reinote Relense Sito	Distict		Tow	$\%$
			225			
			Contrib.	Var.		
19-25 Jun	MB Hatchery (Coghill Lake/Smolt)		0	0	0	0
	MB Hatchery (Eshumy Lake/Smoll)		0	0	0	0
	MB Hscthery (Main Bay/Smoll)		0	0	0	0
	MB Hatchery (Eywl/Fy)		220	0	220	66
	Towas Hatchery		220	0	220	66
	Remote Release (Coghill Leke/Smoll)	Cogrill R Estury	0	0	0	0
	Ranote Release(Eshamy Lake/Smoli)	Eshamy R. Estury	0	0	0	0
	Remote Relecse (Eshamy Lake/Fry)	Eshmy Lake	0	0	0	0
	Remote Relense(Eshamy Lake/Fry)	Esther Pass lake	0	0	0	0
	Remote Relesee(Eshamy Lake/Fry)	Pass Lake	0	0	0	0
	Tolal Remote Release		0	0	0	0
	Toual Wid		115	0	115	34
	Sampled Catch		335			
	Total Calch		335		335	
$26 \mathrm{Jun}-02 \mathrm{Jus}$	MB Hatchery (Coghill Lake/Smolt)		2535	235434	2535	79
	MB Hatchery (Eshmmy Lake/Smoli)		0	0	0	0
	MB Hatchery (Main Bay/Snolt)		131	17105	131	4
	MB Hatchery (Eyik/Fry)		29	817	29	1
	Toual Hatchery		2695	253356	2695	84
	Remote Release (Cogtinl Lake/Smoli)	Coghill R. Estung	0	0	0	0
	Remote Release(Eshamy Lake/Smoll)	Eshumy R. Estury	0	0	0	0
	Remote Relesse (Eshamy Lake/fry)	Eshany Lake	0	0	0	0
	Remote Release(Eshmmy Leke/Fyy)	Esther Puss Lake	0	0	0	0
	Remote Relesse(Eshamy Lake/Fry)	Pass lake	0	0	0	0
	Total Remote Release		0	0	0	0
	Total Wild		499	253356	499	16
	Sampled Catch		3194			
	Total Catch		3194		3194	

Appendix C 6.1.2 Extirnated hatchery contributions (Contrib.) to the sockeye salmon cost recovery fishery of 1994 by period and district (Continued)

Week	Contribulor (StockType)	Reinote Relcase Site	District		Tolal	\%
			225			
			Contrib.	Var.		
03-09 Jul	MB Hatchery (Coghill Lake/Smol)		5309	2181671	5309	78
	M8 Hatchery (Esthamy Lake/Smoll)		783	153240	783	12
	MB Hatchery (Main Boy/Smolt)		671	11267	671	10
	MB Hatchery (Eyak/Fy)	-	0	0	0	0
	Towi Hatchery		6763	2447588	6763	100
	Remole Release (Coghill Leke/Smolt)	Coghill R. Estury	0	0	0	0
	Rermote Release(Eshamy Lake/Smoll)	Eshumy R. Estarcy	0	0	0	0
	Remote Relcase (Eshamy Lake/Fry)	Eshamy Lake	0	0	0	0
	Remote Relcase(Eshamy Lake/Fry)	Esthet Pass Lake	0	0	0	0
	Remote Release(Eshumy Lake/Fry)	Pass Lake	0	0	0	0
	Tound Remote Release		0	0	0	0
	Total Wild		1	2447588	1	0
	Sampled Catch		6764			
	Total Catch		6764		6764	
10-16 Jul	MB Hitchery (Coghill Lake/Smott)		2720	1397535	2720	23
	MB Hatchery (Esharny LakdSmoll)		0	0	0	0
	MB Hatchery (Main Bay/Smoll)		0	0	0	0
	MB Halchery (Eyal/Fy)		0	0	0	0
	Totad Halchery		2770	1397535	2720	23
	Remote Release (Coghill Lake/Smoli)	Coghill R Estury	0	0	0	0
	Remote Release(Eshumy Lake/Smolt)	Esharny R. Estuary	0	0	0	0
	Remiote Release (Eshamy Luke/Fy)	Eshany Lake	0	0	0	0
	Remote Relese(Eshomy Lake/Fry)	Esthet Pass Lake	0	0	0	0
	Remote Relesee(Eshamy Lake/Fry)	Pass Lake	0	0	0	0
	Total Remote Relesse	.	0	0	0	0
	Total Wild		8942	1397535	8942	77
	Sampled Catch		11662			
	Total Calch		11662		11662	

Appendix C 6.1 .2 Estimated hatchery contributions (Contrib.) to the sockeye salmon cost recovery fishery of 1994 by period and district (Continued)

Week	Cortibutor (Stock/rype)	Remole Reloase Silo	District		Totel	$\underline{6}$
			225			
			Contuib.	Var.		
24.30 Jul	Mg Helchery (Coghill Lake/Smoll)		10169	1560376	10169	49
	MB Hatchery (Eshamy Lake/Smolt)		5201	19072	5201	25
	MB Hatchery (Main Bay/Smoli)		1038	133807	1038	5
	MB Hatchery (Eydi/Fry)		0	0	0	0
	Total Hatchery		16408	1884911	16408	80
	Renote Release (Coghill Lake/Smoty)	Coghill R. Estuary	0	0	0	0
	Remote Release(Eshany Leke/Smoll)	Eshany R Estuary	0	0	0	0
	Remole Release (Eshamy LakeFry)	Eshamy Lake	0	0	0	0
	Remote Release(Eshamy Leke/Fry)	Esther Pass Lake	0	0	0	0
	Remote Releaso(Eshemy Leve/Fry)	Pass Lake	0	0	0	0
	Toul Remote Recense		0	0	0	0
	Toun Wid		4215	1884911	4215	20
	Sampled Catch		20623			
	Toul Catch		20623		20623	
31 Jut-06 Aug	MB Hatchery (Coghill Lake/Smoll)		4279	437446	4279	28
	MB Hatchery (Eshumy Lake/Smoll)		8121	1381985	8121	54
	MB Hatchery (Main Bay/Smolt)		196	17403	19	1
	MB Hatchery (Eyak/Fy)		0	0	0	0
	Total Hatchery		125%	1836834	125\%	84
	Remote Release (Coghill Lake/Smoli)	Cophill R Estuary	0	0	0	0
	Ranote Release(Eshmy Lake/Smolt)	Eshamy R. Estuary	0	0	0	0
	Remote Relesse (Eshamy Leke/Fry)	Eshmy Lake	0	0	0	0
	Remote Release(Eshamy Lake/Fry)	Esther Pass Lake	0	0	0	0
	Remote Release(Eshmmy Lakefry)	Pass Lake	0	0	0	0
	Toul Remote Relesse		-	0	0	0
	Total Wid		2479	1836834	2479	16
	Sumpled Catch		15075			
	Total Catch		15075		15075	

Appendix C 6.1.2 Estimeted hatchery contributions (Contrib.) to the sockeye salmon cost recovery fishery of 1994 by period and district (Continued)

Week	Contributor (Stock/1ype)	Rembore Release Site	District		Toul	$\% \cdot$
			225			
			Contrib.	Vru.		
07.13 Aus	MB Hetchery (Coghill Lake/Smoil)		988	0	988	28
	MB Hatchery (Eshuny Lake/Smoll)		1875	0	1875	54
	MB Hatchery (Main Bay/Smoll)		45	0	45	1
	MB Hatchery (Eyal/ry)		0	0	0	0
	Total Hatchery		2908	0	2908	84
	Remote Release (Coghill Leke/Smolt)	Coghtill R Estung	0	0	0	0
	Remote Release(Eshamy Lake/Sunol)	Eshumy R. Estary	0	0	0	0
	Remote Release (Eshamy Lake\%Fry)	Eshamy Lake	0	0	0	0
	Retrote Relesse(Eshamy LakefFy)	Esther Pass Lake	0	0	0	0
	Rernote Release (Eshumy LakeFFy)	Pass Lake	0	0	0	0
	Total Remote Release		0	0	0	0
	Total Wild		574	0	574	16
	Sampled Calch		0			
	Total Calch		3482		3482	
14.20 Aug	MB Hatchery (Coghill Lake/Smoll)		1197	0	1197	28
	MB Hatchery (Eshumy Lake/Smoll)		2273	0	2273	54
	MB Hatchery (Mein Bay/Smoly)		35	0	ss	1
	M8 Hatchery (Eyal/Fry)		0	0	0	0
	Total Hatchery		3525	0	3525	84
	Remote Relense (Coghill Lake/Smoll)	Coghin R. Estuary	0	0	0	0
	Remote Release(Eshamy Lake/Smoty)	Eshamy R Estury	0	0	0	0
	Remote Relesse (Eshamy Lake/Fry)	Eshamy Lake	0	0	0	0
	Remote Relesse(Eshamy Lake/Fiy)	Esther Pass Lake	0	0	0	0
	Remote Release(Eshumy Lexe/firy)	Pass Lake	0	0	0	0
	Total Remote Relesse		0	0	0	0
	Total Widd		693	0	693	16
	Sampled Catch		0			
	Tolal Catch		4218		4218	

Apperdix C 6.1 .2 Estimaled hatchery contribuions (Contrib.) Io the sockeye salmon cost recovery fishery of 1994 by peciod and district (Continues)

Week	Contributor (Stock $/$ Ype)	Remote Release Site	District		Total	$\%$.
			225			
			Contrib.	Vr.		
21-27 Aug	MB Halchery (Coghill Lake/Smoli)		3194	0	3194	28
	MB Hatchery (Eshamy Lake/Smoll)		6069	0	6069	\$4
	MB Halchery (Main Bay/Smoll)		147	0	147	1
	MB Hatchery (Eyak/Fy)		0	0	0	0
	Tota Hachery		9410	0	9410	84
	Remote Release (Coghill Lake/Smot)	Coghill R. Estuary	0	0	0	0
	Remote Releese(Eshamy Leke/Smoli)	Eshamy R. Estary	0	0	0	0
	Remote Release (Eshany Lake/Fry)	Eshamy Lake	0	0	0	0
	Remote Release(Eshamy Lake/Fry)	Esther Pass Lake	0	0	0	0
	Remote Release(Eshamy Leke/Fry)	Pass Lake	0	0	0	0
	Toul Remote Release		0	0	0	0
	Total Wild		1847	0	1847	16
	Sampled Catch		0			
	Total Catch		11257		11257	
28 Aug-03 Sept	M8 Hatchery (Coghill Lake/Smoll)		715	0	715	28
	MB Hatchery (Eshamy Lake/Smoll)		1359	0	1359	54
	MB Hatchery (Main Bay/Smoll)		33	0	33	1
	MB Hatchery (Eyal/Fry)		0	0	0	0
	Total Hatchery		2107	0	2107	84
	Remote Release (Coghill Lake/Smoll)	Coghill R Estuery	0	0	0	0
	Remote Relcese(Eshamy Lake/Smot)	Eshany R. Estury	0	0	0	0
	Rernote Release (Eshamy Lake/Fry)	Eshamy Lake	0	0	0	0
	Remote Release(Eshamy Lake/Fry)	Esther Pass Lake	0	0	0	0
	Remote Release(Eslanny Leke/Fry)	Pass Lake	0	0	0	0
	Total Remote Release		0	0	0	0
	Total Wild		414	0	414	16
	Sampled Catch		0			
	Total Catch		2521		2521	
	total hatchery		59352	75	59352	75
	total r release		0	0	0	0
	TOTAL WILD		19779	25	19779	25
	total Catch		79131		79131	

- As \% of total calch over all districts.

Appendix C 6.2.1 Estimate hatchery contributions (Contrib.) to the chum salmon common property fishery of 1994 by period and district

Appendix C 6.2.1 Estimate hatchery contributions (Contrib.) to the chum salmon common property fishery of 1994 by period and district (Continued)

Week	ntributor	Facility	District										Tolal	\% ${ }^{\text {c }}$
			221		222		223		225		226			
			Contrib.	Var.	Contrib.	Var.	Contrib.	Var.	Contrib.	Var.	Contrib.	Yar.		
17-23 Jul	Hatchery	Wally N .	2740	1116491	0	0	17892	$2.414+E 7$	5358	2671405			25990	35
		Solomon O .	704	82958	0	0	335	109774	796	106799			1835	2
		Total	3444	1199449	0	0	18227	109774	6154	2778204			27825	38
	Wild		15118	1199449	15231	0	15886	109774	1	2778204			46236	62
		Sampled Catch	18562		15231		34113		6155		0			
		Total Catch	18562		15231		34113		6155		0		34061	
24-30 Jul	Hatchery	Wally N .	0	0	0	0	7131	$1.106+E 7$	0	0	1293	2550	8424	30
		Solomon C .	3615	745544	0	0	0	0	0	0	854	325361	4469	16
		Total	3615	745544	0	0	7131	0	0	0	2147	327911	12893	45
	Wild		6546	745544	2278	0	3622	0	647	0	2381	327911	15474	55
		Sampled Calch	10161		2278		10753		647		4528			
		Total Catch	10161		2278		10753		647		4528		28367	
31 Jul-06 Aug	Hatchery	Wally N.	0	0	0	0			0	0	307	1560	307	2
		Solomon G.	503	105333	0	0			0	0	0	0	503	4
		Total	503	105333	0	0			0	0	307	1560	810	7
	Wild		2005	105333	4072	0			883	0	4540	1560	11500	93
		Sampled Calch	2508		4072		0		883		4847			
		Total Catch	2508		4072		0		883		4847		12310	
07-13 Aug	Hatchery	Wally N.			0	0	0	0	0	0			0	
		Solomon C .			0	0	0	0	0	0			0	
		Total			0	0	0	0	0	0			0	
	Wild				3133	0	1764	0	447	0			5344	100
		Sampled Catch	0		3133		1764		447		0			
		Total Calch	0		3133		1764		447		0		5344	
14-20 Aug	Hatchery	Wally N .			609	37636	0	0	0	0			609	19
		Solomon G.			0	0	0	0	0	0			0	0
		Total			609	37636	0	0	0	0			609	19
	Wild				853	37636	1527	0	156	0			2536	81
		Sampled Catch	0		1462		1527		156		0			
		Total Catch	0		1462				156		0		3145	

- As \% of total catch over all districts.

Appendix C 6.2.1 Estimate hatchery contributions (Contrib.) to the chim salmon common property fishery of 1994 by period and district (Continued)

Week	neributor Facility		District										Tolal	\% ${ }^{*}$
			221		222		223		225		226			
			Conurib.	Var.	Contrib.	Ver.	Contrib.	Var.	Contrib.	Var.	Contrib.	Vr.		
21-27 Aug	Hatchery	Waly N .			0	0	0	0	0	0			0	
		Solomon G .			0	0	0	0	0	0			0	
		Total			0	0	0	0	0	0	.		0	
	Wild				467	0	444	0	83	0			994	100
		Sampled Catch	0		467		444		83		0			
		Total Catch	0		467		444		83		0		994	
28 Aug-03 Sept	Hatchery	Wally N .					0	0	0	0			0	
		Solomon G.					0	0	0	0			0	
		Total					0	0	0	0			0	
	Wild						232	0	43	0			275	100
		Sampled Catch	0		0		232		43		0			
		Total Catch	0		0		232		43		0		275	
04.10 Sept	Hatchery	Wally N .	0	0			0	0	0	0			0	
		Solomon G.	3	0			0	0	0	0			3	6
		Total	3	0			0	0	0	0			3	6
	Wild		11	0			30	0	4	0			45	94
		Sampled Catch	0		0		30		4		0			
		Total Catch	14		0		30		4		0		48	
11-17 Sept	Hatchery	Wally N											0	
		Solomon G .											0	
		Total											0	
	Wild												0	
		Sampled Catch	0		0		0		0		0			
		Total Catch	0		0		0		0		0		0	
	TOT	Al HATCHERY	8460		609		436340		8788		2454		456651	70
		TOTAL WILD	33176		26034		121446		7619		6921		195196	30
		TOTAL CATCH	41636		26643		557786		16407		9375		651847	

*As \% of total catch over all districts.

Appendix C 6.2.2 Extimated hatchery contributions (Contrib.) to the chum salmon cost recovery fichery of 1994 by period and districe

-Continued-

Appendix C6.2.2 Erimated hachery conaributions (Contrib.) Do the chum almon coat recovery fishery of 1994 by period and district (Continued)

- An \% of total catch over all districts.

Appendix C 6.3.1 Estimated hatchery contributions (Contrib.) to the coho salmon common property fishery of 1994 by period and district.

WEEK	Contribulor	Facility	District												Total	\% ${ }^{\circ}$
			221		222		223		225		226		229			
			Contrib.	$V_{\text {as. }}$	Contrib.	Ver.	Contrib.	Ves.	Contrib.	Var.	Contrib.	Var.	Contrib.	Var .		
12-18 Jun	Hatchery	Wally N .					0	0							0	0
		Sampled Catch	0		0		30		0		0		0			
		Toul Catch	0		0		30		0		0		0		30	
19-25 Jun	Hatchery	Wally N.					0	0							0	0
		Sampled Catch	0		0		18		0		0		0			
		Total Catch	0		0		18		0		0		0		18	
26 Jun-02 ful	Hatchery	Wally N .	0	0			0	0							0	0
		Sampled Catch	3		0		91		0		0		0			
		Total Catch	3		0		91		0		0		0		94	
03-09 Jul	Hatchery	Wally N.	0	0			0	0	0	0					0	0
		Sampled Catch	38		0		9		1		0		0			
		Total Catch	38		0		9		1		0		0		48	
10-16 Jul	Hatchery	Wally N .	0	0			0	0	0	0					0	0
		Sampled Catch	3		0		29		16		0		0			
		Toul Catch	3		0		29		16		0		0		118	
17-23 Jw	Hatchery	Wally N .	0	0	0	0	0	0	0	0					0	0
		Sampled Catch	286		23		83		19		0		0			
		Toun Catch	286		23		83		19		0		0		411	
24.30 Jul	Hatchery	Wully N .	0	0	0	0	0	0	0	0	0	0			0	0
		Sampled Catch	3928		135		86		114		1348		0			
		Total Catch	3928		135		86		114		1348		0		5611	
31 Jul-06 Aug	Hatchery	Wally N .	. 0	0	0	0			0		400	139839			400	11
		Sampled Catch	3ss		219		0		82		2753		0			
		Total Catch	- 535		219		0		82		2753		0		3609	

Appendix C 6.3 .1 Estimated tuthery contributions (Contrib.) to the coho salmon common property fishery of 1994 by period and district (Continued)

WEEK	Contributor	Facility	District												Tolel	\%*
			221		222		223		225		226		229			
			Contib.	Ver.	Contrib.	Vru.	Contrib.	$\mathrm{V}_{\mathrm{H} .}$	Contrib.	Var.	Contrib.	Ver.	Contrib.	Var.		
07.13 An4	Hachery	Waly c .			130	1762	-	\cdots	-	-					138	\cdots
		8 mplos Cuch	0		126		7		121		-		*			
		Toul Cath	-		126		71		121		\bullet		-		176	
14-20 Ans	Hendury	Waly N .			197	912	196	3675	-	-			16	-	2170	6
		smoded Cuct	-		31		2274		${ }^{12}$		1		\bullet			
		Towl Cuct	-		191		2274		128		-		4		133	
21-27 A48	Hetchy	Wally N .			0	0	4633	233433	87	1892			13	-	473	4
		2mplos Cuch	\bullet		90		9561		100		-		*			
		Tomesuch	0		40		9361		400		\bullet		38		1079	
24 ncseng sept	Henchry	Wally N .					11613	\%****	23	976					:1046	c
		Smplad cad	-		0		24117		233		-		-			
		Toul Cuch	-		0		2317		233		-		-		20350	
0-10 seps	Hecher	Wdly N	-	-			2036	munes	*	-					2054	71
		Seapled Cend	-		0		${ }^{2408}$		141		-		-			
		Tous Cuch	4137		0		2 man		141		0		-		3306	
11-17 30\%	Henctry	Walys.	-	-			93	-	-	-					239	${ }^{1}$
		memplod cat	${ }^{\circ}$		-		\bullet		-		-		-			
		Toun cach	42		0		1192		*		-		-		11460	
18-4 4 mex	Henctury	Walys.					4020	-							4020	4
		zemplod Cuch	${ }^{0}$		0		-		0		-		-			
		Toul Culd	*		-		47		-		-		-		47	
		total wallyn. total catch	\% 42		$\begin{array}{r} 347 \\ 274 \end{array}$		$\begin{aligned} & 3925 \\ & 3141 \end{aligned}$		$\begin{gathered} 320 \\ 1261 \end{gathered}$		$\begin{array}{r} 400 \\ 4101 \\ \hline \end{array}$		${ }^{202}$		$\begin{aligned} & 6033 \\ & 9,171 \\ & \hline \end{aligned}$	41

Appendix C 6.3.2 Extimated hatchery contributions (Contrib.) to the coho salmon coat recovery fiahery of 1994 by period and district.

Week	Contributor	Facility	District				Total	$\%{ }^{\circ}$
			Contrib.	Var.	Contrib.	Var.		
26 Jun-02 Jul	Hatchery	Wully N .	0	0			0	0
		Sampled Catch	0		0			
		Total Catch	2		0		2	
03-09 Jul	Hatchery	Wally N .	0	0			0	0
		Sampled Catch	15		0			
		Total Catch	15		0		15	
10.16 Jul	Hatchery	Wally N .	0	0			0	0
		Sampled Catch	2		0			
		Total Catch	2		0		2	
17-23 Jul	Hatchery	Wally N .					0	
		Sampled Catch	0		0			
		Total Catch	0		0		0	
24-30 Jul	Hatchery	Wally N .			0	0	0	0
		Samplod Catch	0		2			
		Total Catch	0		2		2	
31 Jul-06 Aug	Hatchery	Wally N .			0	0	0	0
		Sampled Catch	0		2			
		Total Catch	0		2		2	

Appendix C 6.3.2 Estimated hatchery contributions (Contrib.) to the coho salmon cost recovery fishery of 1994 by period and district (Continued)

Week	Facility	District				Tolal	$\%{ }^{\circ}$
		221		223			
		Contrib.	Var.	Contrib.	Ver.		
07-13 Aug	Hatchery Wally N .			0	0	0	0
	Sampled Catch	0		10			
	Total Catch	0		10		10	
14-20 Aug	Hatchery Wally N .			0	0	0	
	Sampled Catch	0		0			
	Total Catch	0		0		0	
21-27 Aus	Hatchery Wally N .			0		0	0
	Sampled Catch	0		4182			
	Total Catch	0		4182		4182	
28 Aug-03 Sept	Hatchery Wally N .			0		0	
	Sempled Catch	0		0			
	Total Catch	0		0		0	
04-10 Sept	Hatchery Wally N .	0	0	0		0	0
	Sampled Catch	13019		0			
	Total Calch	13019		874		13893	
11-17 Sept	Hatchery Wally N.			0	0	0	0
	Sampled Catch	0		0			
	Total Catch	0		4374		4374	
	TOTAL WALLYN.	0	0	0	0	0	0
	TOTAL CATCH	13038		9444		22482	

- As \% of total catch over all districts.

Appendix C 6.4.1 Estimated hatchery contributions (Conlrib.) to the chinook salmon common property fishery of 1994 by period and district

Week	Contributor	Facility	Districi				Total	\% ${ }^{\circ}$
			221		223			
			Contrib.	Vr.	Contrib.	Var.		
12-18 Jun	Halchery	Wally N .			38	1243	38	18
		Solomon 6.			0	0	0	0
		Total			38	1243	38	18
	Wild				175	1243	175	82
		Sampled Catch	0		213			
		Total Catch	0		213		213	
19.25 Jan	Hatchery	Wally N .			0	0	0	0
		Solomon C .			0	0	0	0
		Total			0	0	0	0
	Wild				26	0	26	100
		Sampled Catch	0		26			
		Total Catch	0		26		26	
$26 \mathrm{Jun}-02 \mathrm{Jul}$	Hatchery	Wolly N .	0	0	0	0	0	0
		Solomon G.	0	0	0	0	0	0
		Total	0	0	0	0	0	0
	Wild		15	0	26	0	41	100
		Sampled Carch	15		26			
		Total Catch	15		26		41	
03-09 Jul	Hatchery	Waly N .	0	0	70	343	70	82
		Solomion C .	0	0	0	0	0	0
		Total	0	0	70	343	70	82
	Wild		15	0	0	343	15	18
		Sampled Catch	15		70			
		Total Catch	15		70		85	

Appendix C 6.4.1 Estimeted hatchery contributions (Contrib.) to the chinook salmon common property fishery of 1994
by period and district (Continued)

Weck	Contributor	Facilily	District				Total	\% ${ }^{\circ}$
			221		223			
			Conlrib	Var.	Contrib.	Var.		
10.16 Jul	Halchery	Wally N .	0	0	13	42	13	20
		Solomon 0.	0	0	0	0	0	0
		Total	0	0	13	42	13	20
	Wild		10	0	41	42	51	80
		Sampled Catch	10		54			
		Total Catch	10		54		64	
17-23 Jul	Helchery	Wally N .	0	0	15	56	15	38
		Solomon G .	0	0	0	0	0	0
		Total	0	0	15	56	15	38
	Wild		16	0	9	56	25	63
		Sampled Catch	16		24			
		Total Catch	16		24		40	
24-30 Jul	Hatchery	Wally N .	0	0	0	0	0	0
		Solomon G.	0	0	0	0	0	0
		Total	0	0	0	0	0	0
	Wild		26	0	6	0	32	100
		Sempled Catch	26		6			
		Total Catch	26		6		32	
31 Jul-06 Aug	Hatchery	Wally N .	0	0			0	0
		Solomon G .	0	0			0	0
		Total	0	0			0	0
	Wild		3	0			3	100
		Sampled Catch	3		0		3	
		Total Catch	3		0		3	

Continued-

Appendix C 6.4.1 Estimated hatchery contributions (Contrib.) to the chinook salman common property fishery of 1994 by period and district (Continued)

Week	Contributor Facility		District					
			Contrib.	Var.	Contrib.	Ver.	Tolat	$\%$
07-13 Aug	Hatchery	Welly N .			0	0	0	0
		Solomion G .			0	0	0	0
		Total			0	0	0	0
	Wild				17	0	17	100
		Sampled Catch	0		17			
		Tolal Catch	0		17		17	
14-20 Aug	Hatchery	Wally N .			0	0	0	0
		Solomion 0.			0	0	0	0
		Total			0	0	0	0
	Wild				35	0	35	100
		Sampled Catch	0		35			
		Total Cetch	0		35		35	
21-27 Aug	Hatchery	Wally N .			0	0	0	0
		Solomon G.			0	0	0	0
		Total			0	0	0	0
	Wild				7	0	7	100
		Sampled Catch	0		7			
		Total Catch	0		7		7	
	TOTAL HATCHERY TOTAL WLD		0		136		136	24
			85		342		427	76
		TOTAL CATCI	85		478		563	

- As a \% of total catch over all districts.

Appendix C 6.4.2 Estimated hatchery contributions (Contrib.) to the chinook salmon cost recovery fishery of 1994 by period and district.

As a $\%$ of total catch over all districts.

[^0]: ${ }^{2}$ Includes estimated contributions from the Fort Richardson hatchery

[^1]:

[^2]: - As \% of total catch over wll dintrictes.

[^3]: As \% of total catch over all districts.

 - Sport-fish releases at Fleming Spit and Whittier Harbour.

[^4]:

[^5]: - As \% of total catch over all districts.

[^6]: -AE \% of tookl catch over all divtricta.
 and Davis Lake (1988 releane of 657,287 fy).

[^7]: - An \% of total catch over all dietrict

 and Davis Lake (1988 relene of 657,287 fy).

[^8]: - As \% of toulal celch over all districts

[^9]: - As \% of totel calch over all districts.

[^10]: - As \% of bolal cuch over inl ditricite.

