
Exxon Valdez Oil Spill State/Federal Natural Resource Damage Assessment Final Report

Injury to Demersal Rockfish and Shallow Reef Habitats in Prince William Sound, 1989-1991

> Subtidal Study Number 6 (Fish/Shellfish Study Number 17) Final Report

> > Andrew Hoffmann Patricia Hansen

Alaska Department of Fish and Game Division of Sport Fish 333 Raspberry Road Anchorage, Alaska 99518-1599

September 1994

Injury to Demersal Rockfish and Shallow Reef Habitats in Prince William Sound, 1989-1991

Subtidal Study Number 6 (Fish/Shellfish Study Number 17) Final Report

Study History: Subtidal Study Number 6 was initiated as Fish/Shellfish Study Number 17 (Injury to Prince William Sound Rockfish) as part of the State/Federal Natural Resource Damage Assessment (NRDA) Plan in 1989 and 1990, as necropsies of dead demersal rockfish collected immediately after the spill indicated mortality due to exposure to hydrocarbons. In 1991, the project was included in the Damage Assessment Plan as Subtidal Study Number 6 (Injury to Demersal Rockfish and Shallow Reef Habitats in Prince William Sound and along the Lower Kenai Peninsula).

Abstract: Demersal rockfish tissues were collected at four sites (two oiled and two unoiled) in Prince William Sound in both 1990 and 1991 and at four sites (two oiled and two unoiled) along the outer Kenai Peninsula in 1990. Analysis of hydrocarbon data showed that there was a significantly higher incidence of hydrocarbons in the bile of rockfish from oiled areas than unoiled areas in 1989 (P=0.005), however there were no significant differences in 1990 (P=0.933) or 1991 (P=0.844). In 1990, nine histopathologic lesions were scored by pathologists, and in 1991, 26 different lesions were scored, indicating there were significant differences between unoiled and oiled sites in two of the nine lesion scores, liver lipidosis (P=0.0086) and liver glycogen depletion (P=0.0005) in 1990; and two of the 26 lesion scores, liver lipidosis (P=0.0006) and kidney lymphocytes (P=0.0005) in 1991. No differences in lesion scores were seen between sites on the outer Kenai Peninsula in 1990. After histopathologic examination, the pathologists accurately "predicted" which sites were oiled based on qualitative analysis of semiquantitative lesion scores for all four sites in Subsequent principal component analysis Prince William Sound. indicated differences in oiled and unoiled sites in both 1990 and 1991. Differences were more definitively indicated in 1991 than in 1990 using this analysis.

<u>Key Words</u>: Demersal rockfish, <u>Sebastes</u> spp., histopathological analysis, lesion scores, *Exxon Valdez*, Prince William Sound, outer Kenai Peninsula.

<u>Citation</u>:

Hoffmann, Andrew, and Patricia Hansen. 1994. Injury to demersal rockfish and shallow reef habitats in Prince William Sound, 1989-1991, Exxon Valdez Oil Spill State/Federal Natural Resource Damage Assessment Final Report (Subtidal Study Number 6, Fish/Shellfish Study Number 17), Alaska Department of Fish and Game, Division of Sport Fish, Anchorage, Alaska.

TABLE OF CONTENTS

<u>Page</u>

STUDY HISTORY/ABSTRACT/KEY WORDS/CITATION	i
LIST OF TABLES	iii
LIST OF FIGURES	iii
LIST OF APPENDICES	iii
EXECUTIVE SUMMARY	1
INTRODUCTION	3
OBJECTIVES	4
METHODS	4
RESULTS	10
DISCUSSION	13
CONCLUSIONS	15
ACKNOWLEDGEMENTS	16
LITERATURE CITED	17
APPENDICES	24

.

LIST OF TABLES

Table	<u>Page</u>
1. Locations of study sites sampled in Prince	
William Sound and on the lower Kenai Peninsula, 1989-1991	20

LIST OF FIGURES

<u>Figure</u>

<u>Page</u>

1.	Map of 1989 rockfish sampling locations	21
2.	Map of 1990 and 1991 rockfish sampling locations	22
3.	Summary of the hydrocarbon analysis of bile from rockfish in Prince William Sound and the Kenai Peninsula, 1989 - 1991	23

LIST OF APPENDICES

Appe	endix Pa	ige
Α.	Hydrocarbon data from Auke Bay, 1989, 1990, & 1991	25
в.	Rockfish age, length and weight data, 1989 - 1991	43
c.	Histopathology data from UC Davis, 1990	58
D.	Erythrocyte Micronuclei data from JoEllen Hose, 1990	82
E.	Histopathology data from UC Davis, 1991	86
F.	Mixed Function Oxidase data from Woods Hole, 1991 1	.19

.

÷

EXECUTIVE SUMMARY

Demersal rockfish (<u>Sebastes</u> spp.) in Prince William Sound were studied from 1989 through 1991 to assess injury due to the *Exxon Valdez* oil spill. Injury was assessed by establishing the exposure of rockfish to petroleum hydrocarbons and then determining if any histopathological lesions occurred with increased frequency in fish from sites with oil-exposed fish.

Dead and dying rockfish were reported from several areas in the path of the Exxon Valdez oil spill. Twelve dead rockfish from sites of reported fish kills were examined at collection centers in Valdez and Cordova. Five of these rockfish were fresh enough to be necropsied and exposure to crude oil was found to be the cause of death of all five. These results prompted additional testing for hydrocarbon concentrations in rockfish. The 1989 hydrocarbon analyses showed that at least 11 of the 36 rockfish tested from oiled sites had been exposed to oil within the two weeks prior to collection, while none of the 13 fish in unoiled sites were exposed to oil. This information prompted the 1990 and 1991 studies to rockfish for continued exposure to hydrocarbon sample concentrations and to include histopathological evaluations of rockfish tissues.

Tissues were collected from several species of demersal rockfish for histopathological evaluation and hydrocarbon analysis. Rockfish were collected at four sites (two oiled and two unoiled) in Prince William Sound in both 1990 and 1991. Four sites (two oiled and two unoiled) were also sampled along the outer Kenai Peninsula in 1990, but not in 1991.

The proportion of fish from oiled sites with evidence of exposure to hydrocarbons was compared to the proportion of exposed fish from unoiled sites. Evidence of exposure to hydrocarbons was indicated by elevated concentrations of phenanthrene and naphthalene equivalent compounds in the bile, in concert with chromatographic patterns characteristic of hydrocarbons. Analysis of hydrocarbon data showed that there was a significantly higher incidence of hydrocarbons in the bile of fish from oiled areas than unoiled areas in 1989 (P=0.005), however there were no significant differences in 1990 (P=0.933) or 1991 (P=0.844).

In 1990, nine histopathologic lesions were scored by pathologists, and in 1991, 26 different lesions were scored. Analysis of these lesion scores from rockfish in Prince William Sound in 1990 and 1991 indicated that rockfish were potentially exposed to toxic agents. There were significant differences between unoiled and oiled sites in Prince William Sound in two of the nine lesion scores, liver lipidosis (P=0.0086) and liver glycogen depletion (P=0.0005) in 1990; and two of the 26 lesion scores, liver lipidosis (P=0.0006) and kidney lymphocytes (P=0.0005) in 1991. No differences in lesion scores were seen between sites on the outer Kenai Peninsula in 1990.

The histopathologic evaluation was conducted blind, that is, pathologists did not know if the tissues were from fish from oiled or unoiled sites. Upon completion of the histopathologic examination, the pathologists "predicted" which sites were oiled based on qualitative analysis of semiquantitative lesion scores. The speculated exposure history was accurate for all four sites in Prince William Sound. Subsequent principal component analysis indicated differences in oiled and unoiled sites in both 1990 and 1991. Differences were more definitively indicated in 1991 than in 1990 using this analysis.

INTRODUCTION

Demersal rockfish were studied as part of the Natural Resource Damage Assessment (NRDA) from 1989 through 1991 to assess potential injury due to the March 24, 1989 Exxon Valdez oil spill (EVOS). Evidence, documented by necropsies of dead demersal rockfish collected immediately after the spill, indicated mortality due to exposure to hydrocarbons (Moles 1990). This information prompted initiation of studies to sample rockfish for injuries resulting from the spill. Injury was assessed by determining the presence or absence of hydrocarbon concentrations and histopathological evidence of exposure in the tissues of rockfish that inhabit reefs located in oiled and unoiled sites in the study area. Additional components were added to the study to determine potential routes of hydrocarbon exposure in rockfish.

Demersal rockfish usually take up residence near a rocky reef or boulder field. The potential impact of the oil spill on various nearshore assemblages is dependent upon the location of various rockpiles relative to the route of the oil. The potential uptake of various contaminants could be related to the level of oil contamination and food web characteristics of these reefs. Of primary importance are questions of transport of oil to subsurface habitats and the potential for residual persistence of this contamination. Khan (1987) reports that crude oil can contaminate sediments and persist for long periods of time in the environment. According to Rubin (1988), in areas where fresh oil becomes trapped in sediments and is later released after subsequent disturbance, as occurred in the Amoco Cadiz spill, impacts as described below may result:

"The ultimate fate of sunken oil depends upon the energy regime, sedimentation rates, quantities of sunken oil, bioturbation, and substrate properties. Petroleum associated with sediments persists for years or perhaps decades, undergoing slow biodegradation. Stranded petroleum is often buried, but may be introduced to the water column during seasonal erosion cycles especially on high energy beaches. In stable nearshore sediments and offshore regions, sedimented petroleum may be dispersed laterally by currents, biodegraded, and incorporated into Eventually, a substantial amount of the food chain. sedimented oil may be buried deep in stable sediments, effectively preventing further interaction with biological agents. Quantitative pathways for sunken petroleum before its ultimate isolation in deep sediments and time scale for these processes are largely unknown".

Under these conditions, the petroleum hydrocarbons can exert a broad range of effects on animals, from impaired feeding, growth, reproduction, and behavior to tissue and organ damage and changes in parasite densities (Khan 1986; Khan 1987; Kiceniuk and Khan 1986; Rice 1985; Wennekens et al. 1975; Malins et al. 1977; Rice et al. 1977; Hose et al. 1987; Gundlach et al. 1983). These possible effects are especially critical to demersal rockfish since they are long-lived, recruitment is low, and the potential for long-term stock decline due to chronic exposure to crude oil is high. This study was initiated to determine long term histopathological effects on the fish and quantify the extent to which hydrocarbons persist in the environment.

In 1989, samples were collected for analysis of hydrocarbons in various rockfish tissues. Studies were expanded in 1990 and 1991 to better document injuries through the addition of histopathological evaluation and to attempt to determine the route of hydrocarbon exposure in rockfish. To help determine the route of exposure, rockfish food (stomach contents) and surroundings (sediment and sessile invertebrates) were collected for hydrocarbon analysis. This document constitutes a final report of studies related to evaluating the effects of the EVOS on demersal rockfish and shallow reef habitats in Prince William Sound (PWS) following the third year of study.

OBJECTIVES

- 1. Determine the exposure of demersal rockfish to oil through hydrocarbon analysis of the bile and tissues.
- Determine the occurrence of injury in demersal rockfish resulting from oil exposure through histopathological examination of tissues, mixed function oxidase enzyme system activity in liver tissue, and circulating erythrocyte micronuclei in blood.
- 3. Determine potential routes of rockfish exposure to oil through hydrocarbon analysis of stomach contents, sediments and benthic suspension feeders collected from the same sites.
- Determine the feasibility of using microstructure of otoliths from juvenile rockfish to evaluate depressed growth as a result of oil exposure.

METHODS

The Alaska Department of Fish and Game (ADF&G) collected the samples for this project, however most analyses were conducted by contractors specializing in each specific type of analysis. The various contractors are identified as each type of analysis is discussed. This section describes the methods used to secure the samples and a description of how samples were processed by ADF&G for transfer to the various contractors. As contractors completed analyses, the results were returned for statistical analysis by the ADF&G biometrician. In 1989, tissue samples were collected from all species of rockfish that were captured. In 1990, only demersal species were sampled in order to focus on the more bottom dwelling species which were the species found dead immediately after the spill. In 1991, only tissues from the three most common species of demersal rockfish, copper Sebastes caurinus, quillback S. maliger, and yelloweye S. rubberimus, were collected in order to reduce potential variation due to species. In 1989, rockfish tissues were collected for hydrocarbon analysis only. In 1990 and 1991 rockfish tissues were collected for hydrocarbon analysis and histopathological evaluation. Also, in 1990 and 1991, rockfish stomach contents, unconsolidated benthic sediments, and sessile suspension feeders were collected at each study site for analysis of hydrocarbons.

Site Selection

Samples were collected at 30 sites during the 1989 study, 16 in PWS (10 oiled and six unoiled) and 14 from the outer Kenai Peninsula (10 oiled and four unoiled)(Table 1, Figure 1). In 1990, eight sites were sampled; four in PWS (two oiled and two unoiled) and four along the outer Kenai Peninsula (two oiled and two unoiled) (Table 1, Figure 2). Sites sampled in PWS during 1991 were the same as those sampled in 1990, however no samples were collected from the outer Kenai Peninsula in 1991 based on recommendations of the peer reviewers.

Criteria for choosing the sampling sites were based on: documented exposure or lack of exposure of surface waters to oil, locations of reported kills or potential exposure of demersal rockfish, occurrence of sampling by other oil spill assessment studies related to this study, and availability of pre-spill fish community information (Rosenthal 1980).

Sample Sizes

Target sample sizes varied based on the type of analysis. Tissues from a sample size of ten fish (NMFS 1989) were collected in all years for hydrocarbon analysis. Tissue samples for histopathologic evaluation from 15 rockfish were collected in 1990 (Meyers, 1989). This was increased to 30 in 1991 in order to increase the power of the statistical tests. Species identification of adult rockfish was verified using the methods of Kramer and O'Connell (1988) and Hart (1973). A goal of fifty juvenile demersal rockfish, for examination of otolith microstructure, was set for each site. This was determined given estimated proportions of otoliths with and without stress checks of 0.6 and 0.2, where $\alpha = 0.05$ (Zar 1984). Species identification of juveniles was accomplished using methods of Matarese et al. (1989).

Sample Collection Techniques

The rockfish were collected using one of three different techniques depending upon the water conditions and relative success of each technique. Techniques used were rod and reel jigging, SCUBA divers using spears (used only in 1990 and 1991), or longlining. Jigging was the preferred technique because it was the least damaging to the fish and allowed the fish to be sampled most quickly. It was important for histopathological analysis that the samples be as When a fish was on the line it was retrieved fresh as possible. slowly to allow the air bladder to equilibrate in order to reduce the occurrence of stomach extrusion and regurgitation of its When hook and line techniques did not yield results, contents. collect additional rockfish using tried to spears. divers Longlining was used when adequate numbers of fish could not be collected using the other two techniques. Juvenile rockfish were collected using the same capture techniques as used for adult rockfish, excluding longlining. All fish caught were measured (fork length) and following dissection, both sagittal otoliths were removed and stored dry in coin envelopes labeled with location, species, date, length and a project identification number.

Hydrocarbon Procedures:

Samples for hydrocarbon analysis were collected in accordance with procedures established by the NMFS, Analytical Chemistry Group (Manen 1989) as presented in the Natural Resource Damage Assessment sample collection training sessions held in May of 1990. The following procedures were used for each sample: (1) hands and sampling gear were washed with soap and water; (2) dissection tools were rinsed in methylene chloride; (3) samples of each tissue or sediment were individually stored in certified hydrocarbon-free sampling jars; and (4) samples were frozen immediately. Samples were not touched nor was there any contact with any petrochemical product (e.g., plastic).

Ten of the rockfish collected at each site were used for hydrocarbon analysis. Bile samples were collected first by removing the whole gall bladder and emptying the bile into 0.5-oz. amber sampling jars. Approximately ten grams each of liver, muscle, and gonad tissue and stomach contents were then collected from each All tissue samples were collected from freshly killed rockfish. fish and each tissue type was stored in separate 4 oz. sampling (Deviations from this procedure jars and frozen immediately. occurred in 1989; in some instances whole gall bladders were collected rather than just the bile and some fish were not Tissue samples from 206 rockfish were processed immediately). collected for hydrocarbon analysis at thirty sites in PWS and along the outer Kenai Peninsula during four sampling trips in 1989. Tissue types collected were: gall bladder (bile), stomach, pyloric caeca, liver, and muscle. In 1990 tissues of 79 rockfish from study sites in PWS and the outer Kenai Peninsula were collected for

hydrocarbon analysis (there was inadequate bile volume in nine samples). In addition, stomach content, sediment, and invertebrate samples from each site were also collected for hydrocarbon analysis. In 1991 tissue samples of 40 rockfish from study sites in PWS were collected for hydrocarbon analysis (there was inadequate bile volume in two samples). In addition, stomach content, sediment and invertebrate samples from each site were also collected for hydrocarbon analysis.

These samples were transferred to the NMFS Auke Bay Laboratory for analysis. The analysis strategy established by NMFS was to first analyze the bile, then, if hydrocarbon exposure was indicated, analyze the other tissues (Manen 1989). The hydrocarbon analysis was conducted at Texas A&M University, a subcontractor of Auke Bay Lab, using gas chromatography. Analysts at Auke Bay interpreted the concentrations of phenanthrene and naphthalene equivalent compounds in the bile in concert with chromatographic patterns characteristic of hydrocarbons and designated the status of each sample and forwarded this information to ADF&G (Appendix A). The proportion of oiled sites containing contaminated samples was

compared to the proportion of unoiled sites with contaminated samples using a two-sampled Z-test (Zar 1984), where:

$$Z = \frac{\hat{P}_c - \hat{P}_t}{\sqrt{\overline{P}\overline{q}\left(\frac{1}{N_c} + \frac{1}{N_t}\right)}}$$
(1)

 P_c = proportion of unoiled samples with evidence of exposure, P_i = proportion in oiled samples with evidence of exposure, N_c = number of unoiled samples, N_i = number of oiled samples,

$$\overline{p} = \frac{(N_c \hat{P}_c + N_t \hat{P}_t)}{(N_t + N_c)}, \text{ and:}$$
(2)

 $\overline{q} = 1 - \overline{p}.$

Histopathology Procedures:

Tissue samples were taken from all demersal rockfish collected at each site for histopathological analysis and processed under the guidelines outlined by the Histopathology Technical Group (Meyers One cubic centimeter sections of tissue were removed, 1989). stored in 10% buffered formalin and transferred to the University of California Davis, School of Veterinarian Medicine (UCD) for examination. Tissue types collected were based on recommendations from various peer reviewers. In 1990, liver, spleen, anterior kidney, eye, gonad and gill tissues were collected. In 1991, liver, spleen, anterior kidney, heart, and gill tissues were collected. All tissues were examined for histological evidence of exposure to hydrocarbons. In addition, sub-samples of the livers were made at UCD and shipped to Woods Hole Oceanographic Institute for analysis of the mixed function oxidase enzyme system (MFO) activity. Blood samples were collected from the caudal artery or the heart using a heparinized syringe. Smears were made on microscope slides and air dried for examination for circulating erythrocyte micronuclei (Hose et al 1987). Blood samples were sent to VANTUNA Research Group, Occidental College for examination.

Rockfish tissue samples collected in 1990 and 1991 were examined for histopathological abnormalities at UCD. The histopathological evaluations were conducted blind; that is, the pathologists did not know if the samples were from oiled or unoiled sites. A semiquantitative score was given for each lesion type based on the occurrence and severity: none (0), mild (1), mcderate (2), or severe (3). Therefore, each rockfish had a score for all lesion types examined: nine types in 1990 and 26 in 1991. Details of the methods used at UCD are presented in appendices B and C. Statistical analysis was conducted by both UC Davis and ADF&G. The analysis by UC Davis (Appendices B and C) was conducted to determine which lesions explained most of the variability. The ADF&G analysis, which is discussed here, was conducted to determine differences in lesions likely to be related to oil.

Categorical data analysis was used to test for significant differences in lesion scores between rockfish tissues collected from oiled and unoiled sites. A cumulative logit model was used to take into account the ordinal nature of the dependent variable (Agresti 1990). The CATMOD procedure in SAS (SAS 1987) was used to perform the analysis. A separate statistical analysis was performed for each lesion type. The level of significance was adjusted to maintain an overall probability of a type I error at 0.10 (Zar 1984). All species and sites within a treatment group were combined. A nonparametric correlation was used to test for a relationship between the concentration of hydrocarbon in the bile and the lesion score.

Age and Length Procedures:

Otoliths from adult rockfish were used to determine age using the break and burn procedures described by Chilton and Bemish (1982) and the Pacific Coast Groundfish Aging Technicians (1984). All age and length data are presented in Appendix B.

Otoliths from juvenile rockfish were examined to determine the feasibility of using microstructure to evaluate depressed growth as a result of exposure to hydrocarbons. Measurement of growth increments was attempted to detect changes in growth which could be correlated in time with the oil spill. Otoliths were prepared for examination following methods outlined by Secor et al (1991). Otoliths were ground on 400 grit silicon carbide sandpaper until the sulcus was removed, then polished on 600 grit silicon carbide sandpaper until the nucleus was visible. They were then etched with varying concentrations of Ethylene Diamine Tetraacetate (EDTA) or hydrochloric acid (HCl) for 45 minutes to 2.5 hours. Otoliths were mounted to scanning electron microscope (SEM) tabs and examined under low (30X) and high (1500X) magnification. Photographs were taken at each appropriate magnification. The photographs were digitized and analyzed by the ADF&G Commercial Fisheries aging lab.

RESULTS

Objective 1 - Exposure to Hydrocarbons

Results of the hydrocarbon analysis provided by Auke Bay Laboratory are included for all three years in Appendix A.

1989 Samples

Analysis was conducted on bile samples from 49 fish, 36 from oiled sites and 13 from unoiled sites. These samples were from only one of the four sampling trips. The bile samples collected during the other three trips were not usable because of improper sample collection or preservation methods. A degradation pattern on the chromatogram was present on eight bile samples, seven of the oiled site samples and one of the unoiled site samples. Therefore, no determination was made regarding the oiling status of those fish. Evidence of exposure to hydrocarbon was found in eleven of 29 usable oiled site samples. No evidence of exposure to hydrocarbons was found in the 12 usable bile samples from unoiled sites. There was a significant difference between proportions of exposed samples at unoiled and oiled sites for those samples analyzed (Z=2.82, P=0.005) (Figure 3). No subsequent tissue analyses were done.

1990 Samples

In PWS, indications of hydrocarbon exposure in the bile were shown in two out of the 17 fish from unoiled sites. Both positive bile samples were from the same site, Gravina Rocks. None of the 18 fish from oiled sites in PWS were positive for hydrocarbon exposure. There was no significant difference between unoiled and oiled sites in PWS (Z=-1.48, P=0.931). One fish, collected in Pony Cove, out of 16 fish from oiled sites along the outer Kenai Peninsula was exposed to hydrocarbons. None of the 19 samples from unoiled sites on the outer Kenai Peninsula indicated exposure to hydrocarbons. There was no significant difference between unoiled and oiled sites in the outer Kenai Peninsula (Z=1.06, P=0.289) (Figure 3). Because the results of the bile analysis did not indicate exposure to oil, none of the other samples (tissue, stomach content, sediment, or invertebrate) were analyzed.

1991 Samples

The bile was analyzed for the 38 fish for which bile samples were collected. Indications of hydrocarbon exposure was shown in one out of the 21 fish from unoiled sites. The positive sample was from Zaikof Bay, which had not tested positive in previous samples. None of the 17 fish from oiled sites in PWS were positive for hydrocarbon exposure. There was no significant difference between unoiled and oiled sites (Z=0.957, P=0.832) (Figure 3). Because the results of the bile analysis indicated that rockfish were not being exposed to oil, none of the other tissue, stomach content, sediment, or invertebrate samples were analyzed.

Objective 2 - Histopathological Analysis

1990 Samples

Tissues of 121 rockfish from study sites in PWS and the outer Kenai Peninsula were collected and sent to the UCD for histopathological evaluation and MFO analysis using the planned immunohistochemical detection. MFO analyses were not done because samples were inadvertently transferred to alcohol after receipt at UCD. This rendered the samples incompatible with MFO analysis using the planned immunohistochemical detection. Results of the 1990 histopathologic examination provided by the pathologists at UCD is presented in Appendix C.

Scores from a total of nine lesions types were reported by pathologists at UCD. Statistical analysis was done comparing the scores for each lesion between unoiled and oiled sites. In PWS two of the nine lesions had significantly higher scores for samples obtained in oiled areas (adjusted α =0.011). The two lesion types were liver lipidosis (P=0.0086) and liver glycogen depletion (P=0.0005). None of the lesion scores from oiled sites on the Kenai Peninsula were significantly greater than the unoiled sites. Graphics depicting mean lesion scores are presented on pages 114-117, as evaluated by Marty, et al. (1993).

Analysis was done to determine if there were correlations between the scores for the two significant lesions in PWS and the concentration of hydrocarbons found in the bile. There was no correlation between liver lipidosis scores and the concentrations of phenanthrene and naphthalene equivalent compounds (P=0.1483 and P=0.1664 respectively) and there was no correlation between liver glycogen depletion scores and the concentrations of phenanthrene and naphthalene equivalent compounds (P=0.512 and P=0.48 respectively)

Blood samples were collected from 78 rockfish in 1990 and sent to VANTUNA Research Group at Occidental College for erythrocyte micronuclei analyses. Results of this analyses are presented in Appendix D. Mean indices for all fish at each site ranged from 0.4/1000 red blood cells (RBC) at Granite Island to 0.1/1000 RBC from Pony Cove and Day Harbor. An analysis of variance indicated that there were no differences in the counts of erythrocyte micronuclei between unoiled and oiled sites.

1991 Samples

Tissue samples from 107 rockfish from four sites in PWS were sent to UCD for histopathological evaluation. Portions or slides of the liver from each fish were sent from UCD to Woods Hole for MFO analysis. Results of the 1991 histopathologic examination provided by the pathologists at UCD are presented in Appendix E.

A total of 26 different lesions types were scored in 1991. Statistical analysis was done comparing the score of lesions between unoiled and oiled sites. A separate statistical analysis was performed on each of the 26 lesion types. Tissues obtained from fish collected in oiled areas had significantly higher scores for two of the 26 lesions (adjusted α =0.0038). These two lesions were liver lipidosis (P=0.0006) and kidney lymphocytes (P=0.0005). Correlation analysis showed that lesion scores for liver lipidosis were positively correlated with concentrations of naphthalene equivalent compounds (r=0.281, P=0.08) but not with phenanthrene equivalent compounds (r=0.248, P=0.13). Lesion scores for kidney lymphocytes were not correlated with either naphthalene or phenanthrene equivalent compounds (P=0.647 and P=0.690 respectively). Graphics depicting mean lesion scores are presented on pages 114-117, as evaluated by Marty, et al. (1993).

Liver sections from 126 liver tissue samples were sent from UCD to Woods Hole Oceanographic Institution for mixed function oxidase enzyme system analysis. The proportion of oiled sites showing positive immunostaining for MFOs was compared to the proportion of unoiled sites with positive immunostaining samples using a two-sampled Z-test (Zar 1984). Staining was evaluated for liver hepatocytes and macrophage aggregates and positive staining did occur, however no significant differences were seen between unoiled and oiled sites (Z=1.33, P=0.1836 for liver hepatocytes and Z=-2.32, P=0.98 for macrophage aggregates). Results received from Woods Hole are presented in Appendix F, including a graphic depicting immunostaining results on page 121 and a summary of mean values on page 124, as evaluated by Stegeman (1992).

Objective 3 - Route of Exposure

The results of the bile samples indicated that rockfish were not being exposed to oil in 1990 and 1991, therefore the stomach content, sediment, and invertebrate samples collected in 1990 and 1991 were not analyzed.

<u>Objective 4 - Otolith Microstructure</u>

Otoliths from approximately 120 juvenile rockfish were collected during 1990-91. Eighteen of these otoliths were selected at random for initial evaluation and prepared for examination. Twelve of these were legible and scanning electron micrographs were made. The EDTA etching solution for two hours produced the best results. Various annuli, growth zones, and checks (microstructures) were visible on the micrographs, however no discernable stress checks or growth effects were noted. Digitizing and analysis of the micrographs showed the narrow bands ranged from nine to 20 microns and up to 70 microns for the wide spacing. These bands were too

•

wide to represent daily growth events; however, it was not possible to attribute them to other specific growth events. Evaluation of daily growth increments is necessary for the level of discrimination needed to measure somatic growth. Daily increments tend to stop forming as a fish ages. Ages of these juvenile rockfish ranged from three to six years. Rockfish of this age range are juvenile with respect to reproduction and other life history functions. Results of these examinations indicate, however, that three year old rockfish are too old for evaluation of daily growth increments. Otoliths from larval or very young juvenile fish would be required for evaluating stress or changes in growth relative to a specific event.

DISCUSSION

Results from this study show that, in addition to the initial mortality that occurred immediately after the spill, continued exposure of rockfish to oil spilled from the Exxon Valdez occurred and injury was indicated. The evidence of exposure consists of elevated concentrations of hydrocarbon metabolites in the bile. The evidence of injury is indicated by increased incidence of certain histopathological lesions. Injury to rockfish is not unique to the EVOS. Rockfish were one of the few groups of finfish found dead after the Amoco Cadiz grounding off the coast of France in March of 1978 (Cross et al. 1978). In the days following the spill there were mortalities of "rocky bottom-dwelling finfish" reported near the wreck site (Gundlach et al. 1983).

This was not even the first time rockfish mortalities have occurred in Prince William Sound. After the 1964 earthquake, "Vast numbers of red snapper (several species of red rockfish) were exterminated in Port Valdez, Port Wells and in the area between Knight Island, Chenega Island and Evans Island... Countless thousands of these fish, which normally are bottom dwellers in deep water, were left floating on the surface." (Hansen et al. 1966). Oil was also spilled into the Sound as a result of the 1964 earthquake, but it is unknown whether this was a causal factor in the rockfish mortality. One factor that these events have in common (other than all occurring in March) is that rockfish were seen floating and other species were not. These species of rockfish are brightly colored organisms equipped with a buoyancy mechanism (air bladder) and thus float and are highly visible while other species of rockfish and other finfish groups would be less visible. The cause of mortalities from the earthquake can be explained "...possibly by turbulence or sudden upwelling associated with submarine slumping or perhaps by sudden pressure changes caused by the passage of high amplitude surface waves" (Hansen et al. 1966). However, the mechanism causing injury to rockfish in oil spills is not so obvious.

The histopathological evaluation was conducted by scoring all

lesions found in the tissues rather than looking for specific predetermined lesions that would be indicative of hydrocarbon exposure. In the initial ADF&G analyses only four of the lesion types (of the nine in 1990 and 26 in 1991) were statistically The four lesions tested were, liver lipidosis, liver tested. sinusoidal fibrosis, liver karyomegaly, and kidney macrophage aggregates. These lesions were selected, based on the recommendation of the ADF&G pathologist, because they were the most likely to be caused by exposure to toxins. Exposure to a toxin may cause liver lipidosis by several metabolic mechanisms which do not affect the uptake of fatty acids by liver cells, but do prevent the ultimate release of lipoproteins. Thus, fats and fat metabolites accumulate in the liver cells. Sinusoidal fibrosis is a classic sign of chronic inflammation. This would indicate that exposure to a foreign substance or body has occurred over a significant period of time. Fibrosis without other signs of inflammation, such as macrophage and other mononuclear cell infiltration or tissue destruction, would indicate that chronic inflammation had occurred at one time but was no longer present. While none of these signs are pathognomonic for exposure to hydrocarbons, they are collectively indicative of a continuing exposure to some kind of toxin in the aquatic environment. If they occur more frequently in fish from oiled than from unoiled areas, the presumption is that the toxins to which they are still being exposed are hydrocarbons. The other five lesions scored in 1990 were not tested in the initial analysis for the following reasons. Liver glycogen depletion was not tested because this can be caused by a wide range of stress conditions and is highly variable in normal populations. Hepatic single cell necrosis and kidney vacuolar degeneration could be indicators of a wide range of toxic or pathogenic conditions and were considered too general for analysis. Liver and spleen macrophage aggregates were not examined because they would be expected to show the same trend as the kidney macrophage. The additional 22 lesions scored in 1991 were not included in the initial analysis so that tests between years would be more directly comparable. The analysis of only four, rather than the whole range of lesions, also gave more power to the statistical tests. The initial tests, using only the four selected lesions, indicated that two of the four lesions in 1990, liver lipidosis (P=0.0016) and liver sinusoidal fibrosis (P=0.0118), and one in 1991, liver lipidosis (P=0.008) were more severe in oiled areas of PWS.

The final analysis presented in the results section of this report tested all lesions scored for each year. When all lesions were tested, the level of significance was adjusted to maintain a P=0.10. In this final analysis, liver lipidosis was still significant in both years, however liver fibrosis was no longer significant. In addition, two previously untested lesions were significant: in 1990, liver glycogen depletion and in 1991, kidney lymphocytes. These results could be helpful in narrowing the field of lesions to be examined for effects of hydrocarbons. Liver lipidosis should be looked for as an indicator of hydrocarbon exposure because it showed significant difference in lesion scores under both analyses for both years and was correlated to elevated concentrations of hydrocarbons in the bile in 1991. In addition, liver sinusoidal fibrosis should be considered because it was significant when predetermined lesion types were tested.

CONCLUSIONS

The evidence from the hydrocarbon and histopathological data suggest that sublethal injuries resulted from exposure to oil from the EVOS; however, hydrocarbons and lesions were found in unoiled sites. Although there were no statistical differences, hydrocarbons were found in the bile of fish from unoiled areas in both 1990 and 1991. In addition, there were mixed function enzyme activities initiated in both unoiled and oiled sites and histopathological lesions were also found at all sites. The conclusion can be drawn from this information that the unoiled sites may have been compromised to some degree and thus were not true "controls". There are at least two explanations for the reason for this compromise. One explanation is that some sites, although they were not in the direct path of the oil spill, may have had other sources of hydrocarbon exposure. For example, both Zaikof Point and Gravina Rocks were unoiled sites which had a few fish with hydrocarbons detected in the bile. They are both, however, areas of high tanker traffic, which could be a chronic source of hydrocarbon exposure. The second explanation for the compromise of unoiled sites is that the subsurface movement of oil was more widespread than indicated by surface and beach surveys. For example, the absence of differences in lesion scores between oiled and unoiled sites along the Kenai Peninsula could be indicative of the difficulty in finding areas totally unaffected by the spill. Although unoiled sites were selected based on observations of no surface oiling, subsurface movements could have contaminated these areas. If the theory of the oil exposure being more widespread is true, then differences between oiled sites and a "true control" site would be expected to be more significant.

ACKNOWLEDGEMENTS

The authors would like to recognize a number of individuals who assisted in the development and implementation of this study. Richard Rosenthal of Alaska Coastal Research and Morgan Productions and Tony Chess from the NMFS Tiburon Lab assisted in developing and training personnel in sampling procedures and diving techniques. SCUBA divers on the project included Matt Miller, Dan Bosch, David Nees, Dave Gordon, Dave Barto, Dora Sigurdsson, Dennis Jung, David Laur, Kieran Donahue, Corrie Elms, Jerry Philips and Chris Gotschalk. Kelly Hepler was instrumental in the development, supervision and administration of the project, as well as participating as a SCUBA diver. Celia Rozen provided editing assistance on the final report.

The SEM was made available by the Anchorage office of Minerals Management Service with the assistance of Maurice Lynch and Al Powers. The photographs were sent to Pete Hagen at the ADF&G Commercial Fisheries aging lab for digitizing and analysis. Victoria O'Connell, ADF&G Commercial Fish Division in Sitka, assisted in identification several rockfish including a range extension for the vermillion rockfish.

The captain and crew of the vessels from which the field work was conducted: "Julia Breeze", Guy Piercy and Scott Higley; "Kittiwake II", Mike Yorkowski, Doug and Janet Bowen; and the "Sound Pacer", Sam Mehilich and Darrell Winchester.

LITERATURE CITED

- Agresti, Alan. 1990. Categorical Data Analysis. John Wiley & Sons Inc. New York.
- Chilton, D. E. and R. J. Beamish. 1982. Age determination methods for fishes studied by the groundfish program at the Pacific Biological Station. Canadian special publication of fisheries and aquatic sciences 60. Ottawa.
- Cross, F. A., W. P. Davis, D. E. Hoss, and D. A. Wolfe. 1978. Biological Observations. IN: The AMOCO CADIZ Oil Spill, A Preliminary Scientific Report. NOAA/EPA Special Report.
- Gundlach, Erich R., Paul D. Boehm, Michel Marchand, Ronald M. Atlas, David M. Ward, Douglas A. Wolfe. 1983. Fate of the Amoco Cadiz Oil. Science, Reprint Series. 221:122-129.
- Hansen, Wallace R., Edwin B. Eckel, William E. Schaem, Robert E. Lyle, Warren George, and Genie Chance. 1966. The Alaska Earthquake March 27, 1964: Field Investigations and Reconstruction Effort. Geological Survey Professional Paper 541.
- Hart, J. L. 1973. Pacific fishes of Canada. Bulletin 180, Fisheries Research Board of Canada. Ottawa, Ontario, Canada. pp 388-453.
- Hose, J. E., J. N. Cross, S. G. Smith, and D. Diehl. 1987. Elevated circulating erythrocyte micronuclei in fishes from contaminated sites off southern California. Marine Environmental Research 22:167-176.
- Khan R.A. 1986. Effects of chronic exposure to petroleum hydro carbons on two species of marine fish infected with hemoprotozoan, Trypanosoma muranensis. Can. J. Zool. 65:2703-2709.
- Khan R.A. 1987. Crude oil and parasites in fish. Parasitology Today, 3:99-102.
- Kiceniuk J.W. and R.A. Khan. 1986. Effects of petroleum hydrocarbons on Atlantic cod, Gadus Morhua, following chronic exposure. Can. J. Zool. 65:490-494.
- Kramer, D. E. and V. M. O'Connell. 1988. Guide to northeast Pacific rockfishes genera Sebastes and Sebastolobus. University of Alaska Marine Advisory Bulletin No. 25.

- Malins, D. C., E. H. Gruger, Jr., H. O. Hodgins, N. L. Karrick, and D. D. Weber. 1977. Sublethal effects of petroleum hydrocarbons and trace metals, including biotransformations, as reflected by morphological, chemical, physiological, pathological, and behavioral indices. OCS Energy Assessment Program. Seattle, Washington.
- Manen, C. A., Chairman. 1989. State/federal damage assessment plan, analytical chemistry collection and handling of samples. Analytical Chemistry Group, National Marine Fisheries Service lab, Auk Bay, Alaska.
- Marty, Garty D., Mark S. Okihiro, and David E. Hinton. 1993. Fish histopathology report on Exxon Valdez oil spill; final summary scientific report: May 21, 1993, for the Alaska Department of Fish and Game. Contract number IHP-91-033. Aquatic Toxicology Program, University of California, Davis, California. 400 pp.
- Matarese, A. C., A. W. Kendall Jr., D. M. Blood, and B. V. Vinter. 1989. Laboratory guide to early life history stages of northeast Pacific fishes. NOAA Tech. Rep. NMFS 80. National Oceanic and Atmospheric Adm., National Marine Fisheries Service. Seattle, Washington 98115. 625 pp.
- Meyers, T. R., Chairperson. 1989. State/federal damage assessment plan, Histopathology Technical Group, Alaska Department of Fish and Game, Fisheries Rehabilitation, Enhancement, and Development Division, Juneau, Alaska.
- Moles, A. 1990. correspondence from Moles, NMFS Auke Bay Laboratory to Crawford, ADF&G Anchorage. November 16, 1990.
- National Marine Fisheries Service (NMFS), Personal communication, April 1989 - January 1990, Maline Babcock, Carol Ann Manen, Stanley Rice and Adam Moles. NMFS-Auke Bay Lab. Juneau, AK.
- Pacific Coast Groundfish Aging Technicians. 1984. Manual on generalized age determination procedures for rockfish. Prepared for the Canada-U.S. Groundfish Committee. Sponsored by Pacific Marine Fisheries Commission.
- Rice, S. D., J. W. Short, and J. P. Karinen. 1977. Comparative oil toxicity and comparative animal sensitivity. In: "Fate and effects of petroleum hydrocarbons in marine organisms and, ecosystems, Proceedings", Wolfe, Douglas A., ed., Pergamon Press, New York. pp. 78-94.
- Rice, S. D. 1985. Effects of oil on fish. Chapter 5 IN: Petroleum effect in the Arctic environment. F.R. Engelhardt ed. pages 157-182. Elsevier Applied Science Publishers, London.

18

- Rosenthal, R.J. 1980. Shallow water fish assemblages in northeastern gulf of Alaska: habitat evaluation, species composition, abundance, spatial distribution and trophic interaction. Prepared for NOAA, OCSEAP Program. 84 pp.
- Rubin, J. 1988. A review of petroleum toxicity and fate in the marine environment, with implications for the development of a penalty table for spilled oil. Institute for Marine Studies, University of Washington. Seattle, Washington.
- SAS (Statistical Analysis System). 1987. SAS/STAT Guide for Personal Computers, Version 6 Edition. SAS Institute Inc. Cary, North Carolina.
- Secor, David H., John M. Dean and Elisabeth H. Laban. 1991. Manual for Otolith Removal and Preparation for Microstructural Examination. Belle W. Baruch Institute for Marine Biology and Coastal Research. Technical Publication No. 1991-01.
- Stegeman, John J. 1992. Cytochrome P450 (Mixed Function Oxidases - MFO) in fish from Prince William Sound, draft final report; submitted to Alaska Department of Fish and Game. Contract no. IHP-90-027. Woods Hole Oceanographic Institution, Woods Hole Massachusetts.
- Wennekens, M. P., L. B. Flagg, L. Trasky, D. C. Burbank, R. Rosenthal, and F. F. Wright. 1975. Anatomy and potential impacts of an oil spill upon Kachemak Bay. Alaska Department of Fish and Game, Habitat Protection Section Anchorage, Alaska.
- Zar, J. H. 1984. Biostatistical analysis. 2nd edition, Prentice Hall, Inc., Englewood Cliffs, New Jersey. 718 pp.

Study Sites	Latitude	Longitude	1989	1990	1991
Samp	<u>ling sites :</u>	in Prince Will:	iam Sound	1	
Unoiled					
Windy Bay	60° 34′	145° 58′	х		
Knowles Head	60° 38.73				
Schooner Rocks	60° 18.55				
Port Etches	60° 19'	146° 40'	X		
Gravina Rocks	60° 39.42		X	х	x
Zaikof Point	60° 18.12		x	x	X
	00 20122	210 01112			11
<u>Oiled</u>	0	<u>^</u>			
Herring Bay	60° 27'	147° 45'	x	х	Х
Squirrel Bay	60°01′	148° 081	х		
Lonetree Point	50° 59.13				
Chenega Island	60°23′	148°00′	Х		
Naked Island	60° 42′	147° 29′	Х		
Pt. Nowell	60° 26.67				
Applegate Island	60° 37.42				
Northwest Bay	60° 34.18		′ X		
Danger Island	59° 55.50		х	х	Х
Bligh Reef	60° 51′	146° 53′	Х		
<u>Samplin</u>	<u>g sites on</u>	the lower Kena	<u>i Penins</u>	<u>ula</u>	
Unoiled					
Cape Puget	59° 55.80	148° 26.70	′ X		
Cape Fairfield	59° 55.00				
Granite Island	59° 40.70			х	
Harris Bay	59° 42.83			Λ	
Day Harbor	60° 00.68			х	
Day narbor	80 00.08	149 04.25		Λ	
<u>Oiled</u>	_				
Driftwood Bay	59° 51.45		′ X		
Aialik Cape	59° 43.90	′ 149° 29.80′	′ X		
Chiswell Islands	59° 39.13				
Seal Rocks	59° 32.15				
Outer Island	59° 20.30				
Nuka Passage	59° 14.70	150° 44.15			
Front Point	59° 16.15				
Gore Point	59° 11.95				
Port Dick	59° 12.30				
Aligo Point	59° 37.90				
Pony Cove	59° 33.82			х	

Table 1. Locations of study sites sampled in Prince William Sound and on the lower Kenai Peninsula, 1989 - 1991.

Figure 1. Map of rockfish study sampling locations in 1989.

21

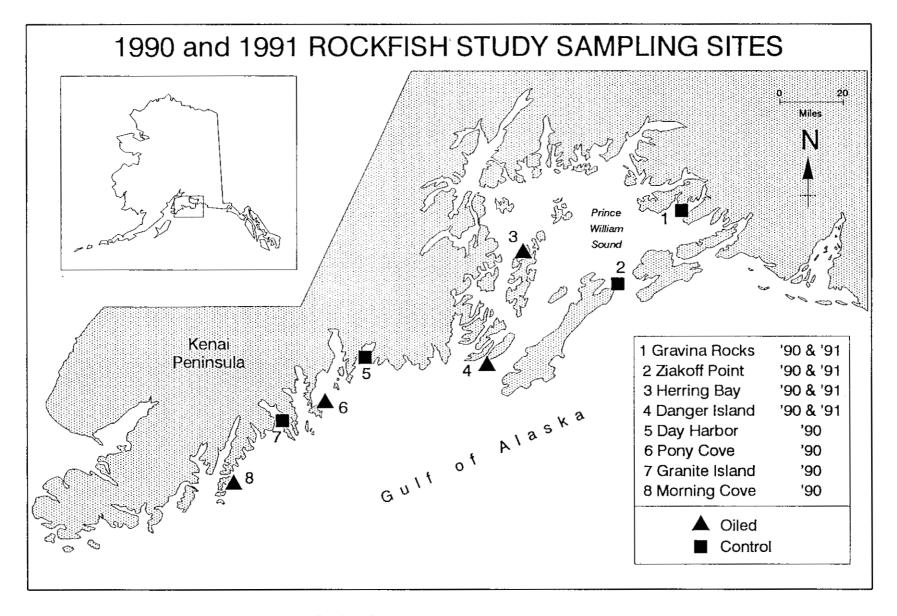


Figure 2. Map of 1990 and 1991 rockfish sampling locations.

22

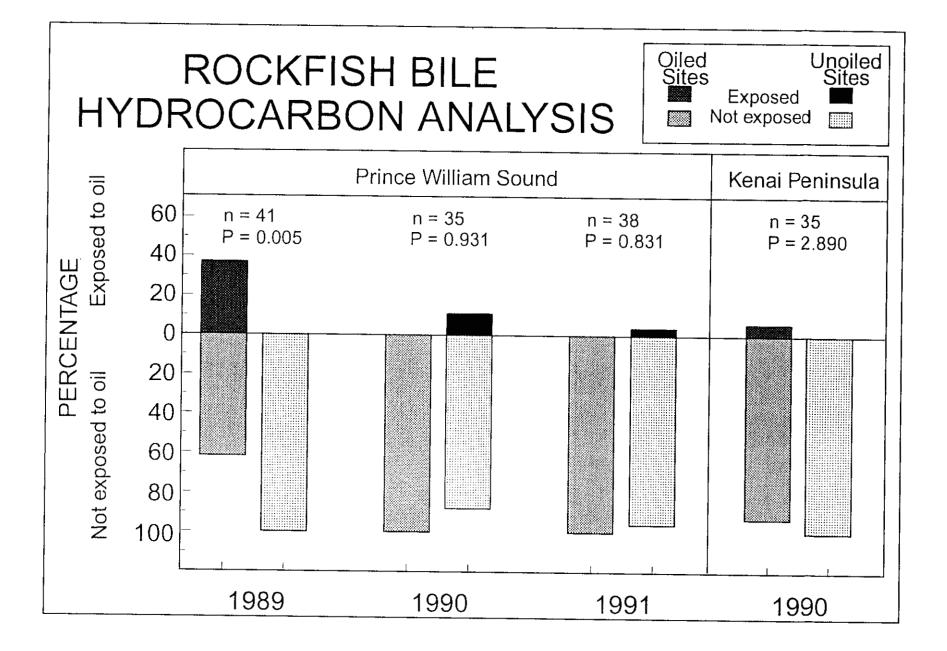


Figure 3. Summary of the hydrocarbon analysis of bile from rockfish in Prince William Sound and the Kenai Peninsula, 1989-1991.

APPENDICES

- ----

•

APPENDIX A

Hydrocarbon Analysis Reports 1989, 1990, and 1991 from Auke Bay Laboratory Auke Bay, Alaska

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Office of Environmental Assessment and Restoration Post Office Box 210029 Auke Bay, Alaska 99821-0029

December 28, 1989

Kelly Hepler ADF&G, Sport Fish 333 Raspberry Rd. Anchorage, AK 99518

Dear Kelly:

Enclosed are the data from the bile analyses for Fish and Shellfish Project #17. The summary table in the "Preliminary Report" indicates which fish were or were not possibly exposed, the data table provides more specific information on a fish by fish basis and the two chromatograms are included to demonstrate what the difference is between an "oil pattern" and a "degradation pattern". The numerical data have been incorporated into the database.

The data interpretation has been provided by the analysts, Dr. Varanasi and her group at NMFS/Seattle. Bile analysis is a semi-quantitative analytical methodology, that is, the numerical values are not absolutes. The values can be used to divide the samples into categories such as, "This fish was exposed to oil within the last two weeks before collection." or "This fish may have been exposed to oil within the last two weeks before collection." or "This fish was probably not exposed to oil within the last two weeks before collection." Because of this and the problems with sample collection and handling that we discussed, the determination as to the presence or absence of oil in these samples was based on a comparison of the chromatographic patterns as well as the numerical values for each samples and is conservative.

If you have any questions or I can help you with this in any way, please call me at (907) 789-6604.

Sincefelv

Carol-Ann Manen

enclosures

Species	Site name	Sample	No.	PHN	equiv	(ng/g)	NPH	equiv	(ng/g)	OCBATCH	Comments
Rocklish	Applegate Island	1780				2,500			14,000	22NOV89	no oli
		178	1			700			3,000	22NOV89	no oil
		8428	3			•			•	20NOV89	degradation pattern
		8429	9			•	,		•	20NOV89	degradation pattern
		8430	0			•	•		•	20NOV89	degradation pattern
		843	1 ·			•	•		•	20NOV89	degradation pattern
		8432	2			280			2,400	20NOV89	no oli
		843:	3			320			2,800	20NOV89	no oil
						230			2,300	20NOV89	no oll
		843				•	•		•	20NOV89	degradation pattern
		843				•	•		•	20NOV89	degradation_pattern
		843	6			1,100			9,800	20NOV89	no oil
	Count for	Applegate	island:			6			6		
	Average for					855			5,717		
Stan	idard Deviation for					871			4,977		
	Chenega Island	271	7			150			3,800	26OCT89	no oli
	-					120			4,000	26OCT89	na oil
	Count for	Chenega	Island;		·····	2			2		
•	Average for					135			3,900		
27 SI	landard Deviation for					21			141		
	Eleanor Island	178	4			44,000		1	40,000	22NOV89	oil
						42,000		1	30,000	22NOV89 -	011
		178	5			5,700			22,000	22NOV89	?sm oll
	Count fo	r Eleanor	Island:			3			3		
	Average fo	r Eleanor	leland:	l		30,587			97,333		
8	itandard Deviation fo					21,558			65,432		
	Eshamy Bay	179	2			6,800			33,000	22NOV89	no oli
	- •	179	3			460			4,200	22NOV89	no olt
		842	0			1,600			6,800	21NOV89	no olt
		842	1			13,000			43,000	20NOV89	sm oll
						12,000			42,000	20NOV89	sm oil
		842	2			1,400			9,700	20NOV89	degradation patter
		842	3			1,100			6,700	20NOV89	no oli
		842	4			5,800			15,000	20NOV89	no oli
		842	5			4,400			18,000	20NOV89	no oli
		842	8			6,600			17,000	20NOV89	no oli
		842	7			800			3,500	20NOV89	no oli
						1,000			2,400	20NOV89	no oil
		for Eshan				12			12		
	Average	for Eshan	ny Bay:			4,580			16,808		
	Standard Deviation	for Eshan	y Bay:			4,387			14,718		

BILE SUMMARY--DAMAGE ASSESSMENT--FISH/SHELLFISH 17

* not determined due to interfering degradation peak

DILL UDIVIIVIALA	د د د فال د البناني، فال با دير، د د
1	

.

1

İ

Species	Site name	Sample No.	PHN equiv (ng/g)	NPH equiv (ng/g)	QCBATCH	Comments
Rockfish	Knowles Paint	1774	4,700	13,000	22NOV89	lio on
NOCKIISII	Riowies Fonn	1775	2,300	18,000	22NOV89	no oil
	Count for	r Knowles Point:	2	2		
		Knowles Point:	3,500	15,500		
	Standard Deviation for		1,697	3,536		
	Standard Deviadoli ior	Allowies Louis				
	Liljegren Passage	1768	3,900	18,000	22NOV89	?sm oil
	Culadiau Lessaña	1100	3,500	17,000	22NOV89	?sm_oll
		1769	97,000	330,000	22NOV89	lg oll
	Coupt for Li	iljegren Passage:	3	3		
		lijegren Passage:	34,800	121,667		
81a	ndard Deviation for Li		53,867	180,423		
	Naked Island	8410	2,500	10,000	13NOV89	no oli
		8411	12,000	54,000	13NOV89	?sm_oll
		8412	15,000	59,000	13NOV89	?sm oli
			14,000	58,000	13NOV89	?sm oll
		8413	13,000	65,000	16NOV89	?sm oll
		8414	15,000	51,000	16NOV89	7sm oll
		8415	11,000	26,000	16NOV89	?sm oll
N		8416	15,000	42,000	16NOV89	7sm oli
28		8417	2,800	10,000	16NOV89	no oll
		8418	2,800	17,000	16NOV89	no oil
			2,700	11,000	16NOV89	no oll
		8419	5,900	17,000	16NOV89	no oil
	Count	for Naked Island:	12	12		
	Average	for Naked Island:	9,308	35,000		
	Standard Deviation			21,797		
	Windy Bay	1796	5,200	35,000	22NOV89	?degradation; no oil pattern
		1797	190	3,800	22NOV89	degradation pattern
		8400	2,500	21,000	13NOV89	?degradation; no oil patterr
		8401	100	8,800	13NOV89	no oli
		8403	4,300	33,000	13NOV89	?degradation; no oil patterr
		8404	350	12,000	13NOV89	llo on
		8405	540	8,200	13NOV89	no oli
		8406	1,300	8,400	13NOV89	no oll
			1,100	7,800	13NOV89	no oli
		8407	500	5,400	13NOV89	no oil
		8408	240	2,400	13NOV89	llo on
	_	8409	420	5,100	13NOV89	no oli
		int for Windy Bay				
	Avetaç	ge for Windy Bay	: 1,395	12,558		

* not determined due to interfering degradation peak

BILE SUMMARY--DAMAGE ASSESSMENT--FISH/SHELLFISH 17

Species	Site name	Sample No.	PHN equiv (ng/g)	NPH equiv (ng/g)	QCBATCH	Comments
	Standard Deviation	for Windy Bay:	1,713	11,098		

.

.

* not determined due to interfering degradation peak

PRELIMINARY REPORT: FISH/SHELLFISH 17 Analyses of Bile for Fluorescent Aromatic Compounds

Environmental Conservation Division Northwest Fisheries Center National Oceanic and Atmospheric Administration

Bile samples from rockfish (particular species not identified) were analyzed by the methods and the quality assurance outlined in the Detailed Study Plan for the Project titled "Shellfish and Groundfish Trawl Assessment Outside Prince William Sound" submitted for State/Federal Resource Damage Assessment.

SAMPLES ANALYZED

	Total	Samples	Samples	
Sample #	samples	analyzed	not analyzed	degradationd
1768-1797	12	12		2
2711-2712	3	0	за	Õ
2717	1	1		0
4533-5302	69	0	69 ^b	0
8400-8437	38	36	2 ^c	9
8520-8596	<u>75</u>	Q	<u>75</u> a	<u>0</u>
TOTALS	198	49	149	11

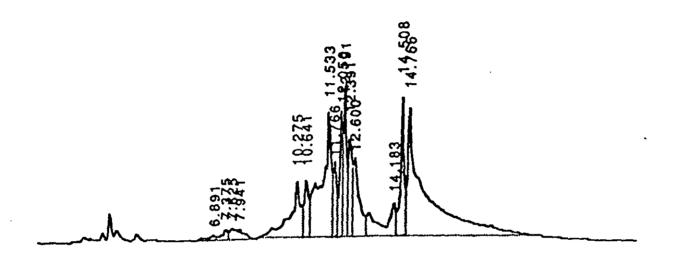
- a Gall bladder collected; no record of collection/storage method. See Problems A1 and A2 below for explanation.
- b Gall bladder collected from fish held on ice for up to 7 days. See Problems A1 and A2 below for explanation.
- c Bile collected was almost solid and could not be injected onto the column.
- d Degradation pattern was observed in analyzed samples. See Problem C1 below for explanation.

30

increasing oil contamination (see attached Table); and (2) an identifiable "pattern of hydrocarbon exposure" is present in the chromatogram when a fish has been exposed to oil (see attached example). Based on these criteria for exposure, individual fish from the following sites (see Table) can be assigned to the following categories:

Exposure level	Species	Site	<u> n </u>
Possibly exposed	rockfish (species not identified)	Liljegren Passage Eleanor Island Eshamy Bay Naked Island	1 2 1 6
Not exposed	rockfish	Applegate Island Chenega Island Eshamy Bay Naked Island Knowles Point Windy Bay	5 1 9 4 2 7
Degradation pattern	rockfish	Applegate Island Windy Bay Eshamy Bay	6 4 1

CONCLUDING REMARKS


In conclusion, 10 of the rockfish collected in this study showed possible evidence of exposure to oil. However, the evidence is overshadowed by several problems with the sample collection. In particular, problems with sample handling resulting in bile degradation and with sampling design resulting in few fish of each species from some sites made it impossible to draw firm conclusions from the data. Date: Mon, Dec 11, 1989 10:46 AM Data: 20NOV89-039

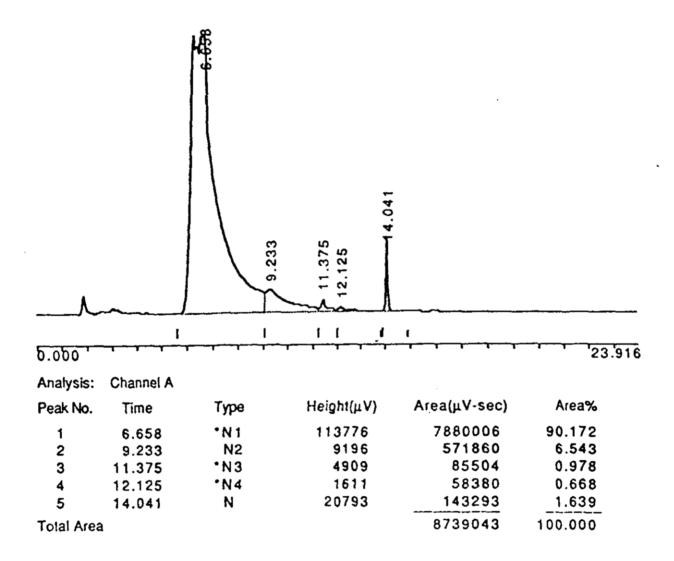
Sample:

89.1412-PATTERN OF HYDROCARBON EXPOSURE

Processing File: bile-A-proc-10 Method: bilemeth Sampling Int: 0.5 Seconds

Chromatogram:

	ł	1 8 8 9 1	11 1111 1 1	1	1
0.000	<u></u>	·	<u>~</u>		23.975
Analysis:	Channel A				
Peak No.	Time	Туре	Height(µV)	Area(µV-sec)	Area%
1	6.891	*N1	411	12424	0.579
2	7.375	*N2	1088	17277	0.805
3	7.625	•T3	1138	38068	1.775
4	7.941	T4	212	1621	0.075
5	10.275	*N1	6570	167681	7.819
6	10.641	•N2	6415	74344	3.466
7	11.533	*N3	13676	353028	16.462
8	11.766	*N4	7512	81402	3.795
9	12.050	*N5	12711	118790	5.539
10	12.191	*N6	14885	121320	5.657
11	12.391	•N7	11675	125799	5.866
12	12.600	•N8	8087	138436	6.455


Date: Mon, Dec 11, 1989 10:48 AM Data: 21NOV89-039

Sample:

8833-DEGRADATION PATTERN

Processing File: bile-A-proc-17 Method: bilemeth Sampling Int: 0.5 Seconds

Chromatogram:

National Marine Fisheries Service Office of Oil Spill Damage Assessment and Restoration P.O. Box 210029 Auke Bay, Alaska 99821

December 18, 1991

Andy Hoffman ADF&G, Sport Fish 333 Raspberry Road Anchorage, AK 99518

Dear Andy,

Enclosed are the hard copy data from the analysis of the bile collected by Fish/Shellfish 17 during 1991. Accompanying this data return is a printout of all the samples presently in the archives from Fish/Shellfish 17 and their analytical status. Data from catalog number 6678 and 6680 are included in this return. Samples included in catalog number NMFS_156 will go for analysis January 13, 1991.

At this point, review of these data do not warrant analysis of additional samples from this project. Please call me at 301/443-8655 if you wish to discuss this recommendation.

Sincefely Carol-Ann Manen

encl.

cc: J. Sullivan without encl.

SAMPLE ID GAGC BATCH FWS CAT NAPHTHALENE OFICANESM NG/G WET WT. FISH 78000 6678 102301 QAC-0257 FISH 73000 QAC-0257 6678 102302 30000 FISH 6678 102303 QAC-0257

N14235	102304	QAC-0257	6678	FISH	18000	2000 N	
N14237	102305	QAC-0257	6678	FISH	15000	2000 N	
N14239	102308	QAC-0257	6678	FISH	25000	2700 N	
N14241	102307	QAC-0257	6678	FISH	27000	3700 N	
N14243	102308	QAC-0257	6678	FISH	40000	4900 N	
N14245	102309	QAC-0257	6678	FISH	11000	1200 N	/
N14247	102310	QAC-0256	6678	FISH	22000	2500 N	,
N14249	102311	QAC-0256	6678	FISH	18000	2100 N	. /
N14251	102312	QAC-0256	6678	FISH	11000	1200 N	sil
N14253	102313	QAC-0256	6678	FISH	4500	510 N	
N14255	102314	QAC-0256	6678	FISH	26000	3900 N	- (D)
N14257	102315	QAC-0256	6678	FISH	30000	4500 N	N= ND
N14259	102316	QAC-0256	6678	FISH	6800		
N14261	102317	QAC-0256	6678	FISH	21000	2700 N	+= YES
N14283	102318	QAC-0256	6678	FISH	8800	1300 N	
N14285	102319	QAC-0256	6678	FISH	8800	950 N	
N14267	102320	QAC-0258	6678	FISH	23000	2900 N	
N14269	102321	QAC-0256	6678	FISH	51000	5800 Č,	
N14271	102322	QAC-0258	6678	FISH	22000	2800 N	
N14273	102323	QAC-0258	6678	FISH	8700	980 N	
N14275	102324	QAC-0256	6678	FISH	27000	3600 N	
N14277	102325	QAC-0258	6678	FISH	25000	4000 N	\backslash
N14279	102328	QAC-0258	6678	FISH	26000	3500 N	
N14281	102329	QAC-0258	6678	FISH	30000	3100 N	
N14283	102330'	QAC-0258	6678	FISH	18000	2200 N	
N14285	102333	QAC-0258	6678	FISH	19000	2000 N	
N14287	102334	QAC-0258	6678	FISH	32000	4800 N	
N14289	102335	QAC-0258	6678	FISH	30000	4700 N	
N14291	102336	QAC-0258	6678	FISH	25000	2700 N	
N14293	102337	QAC-0258	6678	FISH	51000	5300 ² .	/

HPLC BILE ANALYSIS

F

See

13000

13000

0000

3000 1

2700 N

...

FILE #

N14229

N14231

N14233

N14295

102338

QAC-0258

PAGE 1

FISH

20000

HPLC BILE ANALYSIS

144007	102339	QAC-0258	6678	FISH	35000	4700 N
N14297	102339	QAC-0258	6678	FISH	24000	3100 N
N14299	102341	QAC-0258	6678	FISH	48000	5500 N
N14301	102342	QAC-0258	6678	FISH	20000	2400 N
N14303 N14305	102343	QAC-0258	6678	FISH	20000	2700 N
N14305	102344	QAC-0259	6678	FISH	16000	2000 N
N14307	102345	QAC-0259	6678	FISH	26000	3100 N
N14311	102346	QAC-0259	6678	FISH	20000	2600 N
N14313	102349	QAC-0259	6678	FISH	21000	2100 N
N14315	102350	QAC-0259	6678	FISH	18000	2100 N 2100 N
N14317	102401	QAC-0259	6678	FISH	19000	3100 N
N14319	102402	QAC-0259	6678	FISH	22000	3200 N
N14321	102403	QAC-0259	6678	FISH	17000	2500 N
N14323	102404	QAC-0259	6678	FISH		

İ

HPLC BILE ANALYSIS

QAQC						····
FILE *	(SYAMPLES (D))	<u>લ</u> યના ગામ		ORCINEM	-CARCINICALESIE NGCOMMENWER	INGREWEINUT
N14265 DUP	102319	QAC-0256	6678	FISH	10000	1000
N14275 DUP	102324	QAC-0256	6678	FISH	31000	4100
N14243 DUP	102308	QAC-0257	6678	FISH	41000	4900
N14245 DUP	102309	QAC-0257	6678	FISH	11000	1200
N14285 DUP	102333	QAC-0258	6678	FISH	21000	2200
N14295 DUP	102338	QAC-0258	6678	FISH	18000	2600
N14305 DUP	102343	QAC-0258	6678	FISH	19000	2700
N14313 DUP	102349	QAC-0259	6678	FISH	21000	2000
N14323 DUP	102404	QAC-0259	6678	FISH	18000	2700
BILE REF MAT	the second second second second second second second second second second second second second second second s	QAC-0256		MIX	130000	54000
BILE REF MAT		QAC-0257		MIX	120000	50000
BILE REF MAT		QAC-0258		MIX	130000	52000
BILE REF MAT		QAC-0259		MIX	120000	51000

•

.

.

UNITED STATES DEPARTMENT UP Summers National Dossnis and Atmospheric Administration NATIONAL DEAN SERVICE Office of Ocean Pascurces Conservation and Assessment Pockvis, Marylance 20852

May 26, 1992

Kelly Hepler Alaska Dept. of Fish & Game 333 Raspberry Road Anchorage, AK 99518

Dear Kelly;

Enclosed are the data from the analysis of the remaining rockfish samples. In general, all but one a quilled rockfish collected from Zaikov Bay on 08/09/91 are negative for petroleum hydrocarbons. There are several fish, particularly those collected from Danger Island where the bile metabolite values are intermediate between presence/absence of petroleum hydrocarbons. Since two of these samples (id numbers 204620 and 204629) displayed chromatograms characteristic of sample degradation, I have identified these samples as negative.

If you have any questions or wish to discuss these data and their interpretation, please call me at 301/443-8466.

Sincerely,

Carol-Ann Manen

enclosure

cc: J. Sullivan R. Spies

HPLC BILE ANALYSIS

FILE #	SAMPLE 10	QAOC BATCH	FWS CAT #	ORGANISM	NAPHTHALENE	PHENANTHRENE
				· · · · · · · · · · · · · · · · · · ·		NGAG WET WI
N14390	204601	QAC-0314	NMFS 158	0900	16000	2400 N
N14391	204602	QAC-0314	NMFS 156	0900	27000	3200 N
N14392	204603	QAC-0314	NMFS 156	YRCC	26000	4100 N
N14393	204604	QAC-0314	NMFS 156	0900	11000	1500 N
N14394	204605	QAC-0314	NMFS 156	0900	14000	2000 N
N14395	204606	QAC-0314	NMFS 156	0090	21000	2200 N
N14396	204607	QAC-0314	NMFS 156	0800	59000	7300 2.
N14397	204608	QAC-0314	NMFS 156	0800	12000	1400 N
N14398	204609	QAC-0314	NMFS 156	CROC	32000	3700 N
N14399	204610	QAC-0314	NMFS 156	YROC	28000	3500 N
N14400	204611	VIAL EMPTY	NMFS 158	BLANK	VIAL EMPTY	VIAL EMPTY
N14401	204612	QAC-0316	NMFS 156	BLANK	<500	<300
N14402	204613	QAC-0314	NMFS 156	YRCC	38000	5200 Z
N14403	204614	QAC-0314	NMFS 156	YROC	30000	3700 N
N14404	204615	QAC-0314	NMFS 156	CROC	27000	5700 N
N14405	204616	QAC-0314	NMFS 156	CROC	23000	3400 N
N14406	204617	QAC-0314	NMFS 158	CABCC	29000	3400 N
N14407	204618	QAC-0319	NMFS 156	CRCC	12000	1400 N
N14408	204619	QAC-0314	NMFS 156	00800	56000	8900 7
N14409	204620	QAC-0315	NMFS 158	CRCC	40000	6000 N
	204621	QAC-0315	NMFS 156	0900	26000	4500 N
<u>N14410</u> N14411	204622	QAC-0315	NMFS 156	CRCC	18000	3400 N
N14412	204623	QAC-0315	NMFS 156	CRCC	14000	2200 N
N14412	204624	QAC-0315	NMFS 156	YRCC	30000	3700 N
N14413	204625	QAC-0315	NMFS 156	YRCC	17000	2300 N
N14415	204628	QAC-0315	NMFS 156	YRCC	18000	2400 N
N14415	204627	QAC-0315	NMFS 156	YRCC	21000	3300 N
	204628	QAC-0315	NMFS 156	ORCC	37000	4800 N
N14417		QAC-0315	NMFS 156	YRCC	36000	5800 N
N14418	204629	VIAL EMPTY	NMFS 156	BLANK	VIAL EMPTY	VIAL EMPTY
<u>N14419</u>	204631	QAC-0315	NMFS 156	YROC	34000	4800 N
<u>N14420</u> N14421	204632	QAC-0315	NMFS 156	YRCC	17000	2100 N
N14421	204634	QAC-0315	NMFS 156	0900	26000	3200 N
N14423	204635	QAC-0315	NMFS 156	OROC	35000	6500 N

39

,

.

.

HPLC BILE ANALYSIS

	SAMPLE ID	OAXOC BATCH	FWS OAT #	ORGANISM	NAPHTHALENE NG/G WET WT	NGIG WET W
FILE #		Laui •. "		0900	81000	<u>11000 y</u>
	204636	QAC-0315	NMFS 156	0400	34000	4500
N14424	204637	QAC-0315	NMFS 156	0800	33000	4700
N14425	204638	OAC-0315	NMFS 156		23000	3400 A
N14426	204639	QAC-0316	NMFS 156	0000	34000	4300
N14427	204640	QAC-0316	NMFS 158	0900	15000	2000
N14428	204641	QAC-0316	NMFS 156	0700	24000	3100
N14429	204642	QAC-0316	NMFS 156		<500	<300
N14430	204643	QAC-0316	NMFS 156	BLANK	VIAL EMPTY	VIAL EMPT
N14431	204644	VIAL EMPTY	NMFS 156	BLANK	<500	<300
N14432 N14433	204644	QAC-0316	NMFS 156	BLANK		

40

1

ONOC	CHARLES AND AND AND AND AND AND AND AND AND AND		FWS CAT	7.80	NAPHTHALENE	
FILE	SAMPLEID	GAOC BATCH	FWS CAL #		INGIG WET WIT	NG/G WET WI
С Г 16 м. М . С.		A		0080	20000	2300 N
NIC 4205	204608	QAC-0314	NMFS 156	YRCC	29000	3600 N
N14395	204614	QAC-0314	NMFS 158	0800	11000	1300 N
N14403	204618	QAC-0319	NMFS 156	YROC	15000	2100 N
N14407	204625	QAC-0315	NMFS 156	YRCC	17000	2100 N
N14414 N14421	204633	OAC-0315	NMF8 156	3390	31000	4500 0
N14426	204638	QAC-0315	NMFS 156	ORCC	14000	1800 N
N14429	204641	QAC-0318	NMFS 156	BLANK	<500	<300
N14431	204643	QAC-0316	NMFS 156	MIX	110000	53000
BILE REF MAT	and the second division of the second divisio	QAC-0314		MIX	100000	52000
		QAC-0315]		110000	53000
BILE REF MAT		QAC-0316		MIX	99000	45000
BILE REF MAT		QAC-0319		MX		

· .

.

.

	A Sun grant	61.Y. 6 6 37 8 10 3	(A)VEREALLY	a corellisu		
GIVE	CANELABIOL	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			CUR	
A	1 ANIA A. S.C.		6680	FISH	41000	<u>6500 Z.</u>
N14155	102405	QAC-0280	6680	FISH	28000	2900 N
N14157	102406	QAC-0280		FISH	16000	2000 N
N14159	102407	QAC-0260	6680 6680	FISH	66000	13000 Y
N14161	102408	QAC-0260	6680	FISH	20000	2200 N
N14163	102409	QAC-0280	and the second se	FISH	38000	3800 N
N14165	102410	QAC-0260	6680	FISH	25000	2800 N
N14187	102411	QAC-0260	6680	FISH	INSUFF SAMPLE	INSUFF SAMPLE
N14169	102412	INSUFF	6680	FISH	23000	2600 N
N14171	102413	QAC-0260	6680	FISH	32000	4100 N
N14173	102414	QAC-0260	6680	FISH	20000	2800 N
N14175	102415	QAC-0260	6680	FISH	26000	3400 N
N14177	102418	QAC-0260	6680	FISH	26000	2900 N
N14179	102417	QAC-0280	6680	FISH	17000	1900 N
N14181	102418	QAC-0260	6680	FISH	23000	3000 N
N14183	102419	QAC-0260	6680	FISH	13000	1800 N
N14185	102420	QAC-0260	6680	and the second second second second second second second second second second second second second second second	23000	3100 N
N14187	102421	QAC-0261	6680	FISH	INSUFF SAMPLE	
N14189	102422	INSUFF	6680	FISH	29000	4600 N
N14191	102423	QAC-0281	6680	FISH	14000	2000 N
N14193	102424	QAC-0261	6680	FISH	31000	3400 N
N14195	102425	QAC-0261		FISH	28000	3800 N
N14197	102426	QAC-0261	6680	FISH	28000	4000 11

.

•

٦

HPLC BILE ANALYSIS

APPENDIX B

Rockfish Age, Length and Weight Data

.

-

ID#			SITE	DATE	SPECIES	LENGTH	AGE	WEIGHT
BLACK	ROCK	FIS	H					
2284	PWS	С	SCHONER	6/28/89	BLAC	477	11	
285	PWS	С	SCHONER	6/28/89		395	8	
287	PWS	С	SCHONER	6/28/89		426	10	
286	PWS	С	SCHONER	6/28/89	BLAC	355	6	
266	PWS	С	SCHONER	6/28/89	BLAC	395	8	
2280	PWS	С	SCHONER	6/28/89	BLAC	524	15	
2303	PWS	С	SCHONER	6/28/89	BLAC	420	10	
2279	PWS	С	SCHONER	6/28/89	BLAC	470	15	
0153	PWS	Т	DANGER	9/19/89		511	13	
0167	PWS	\mathbf{T}	DANGER	9/19/89		497	13	
0162	PWS	\mathbf{T}	DANGER	9/19/89		455	17	
0174	PWS	\mathbf{T}	DANGER	9/19/89		489	14	
0166	PWS	\mathbf{T}	DANGER	9/19/89		493	13	
0163	PWS	\mathbf{T}	DANGER	9/19/89		497	13	
0164	PWS	\mathbf{T}	DANGER	9/19/89		449	13	
0161	PWS	\mathbf{T}	DANGER	9/19/89		438	14	
)152	PWS	Т	DANGER	9/19/89		498	10	
0173	PWS	т	DANGER	9/19/89	BLAC	465	14	
0160	PWS	\mathbf{T}	DANGER	9/19/89	BLAC	472	11	
0158	PWS	Т	DANGER	9/19/89	BLAC	457	11	
0159	PWS	Т	DANGER	9/19/89	BLAC	468	15	
0144	PWS	\mathbf{T}	DANGER	9/19/89	BLAC	531	15	
0172	PWS	т	DANGER	9/19/89	BLAC	470	14	
0157	PWS	т	DANGER	9/19/89		455	8	
0175	PWS	т	DANGER	9/19/89		510	10	
2233	PWS	\mathbf{T}	HERRING	6/24/89		496	13	
2328	PWS	Т	LONETRE	6/25/89		478	11	
2329	PWS	т	LONETRE	6/25/89	BLAC	465	23	
2330	PWS	Т	LONETRE	6/25/89	BLAC	453	10	
2326	PWS	Т	LONETRE	6/25/89		440	10	
2322	PWS	Т	LONETRE	6/25/89	BLAC	366	7	
CHINA	ROCK	FIS	Н					
0150	PWS	т	DANGER	9/19/89	CHIN	335	14	
	PWS	т	DANGER	9/19/89		320	14	
	PWS	Т	DANGER	9/19/89		308	14	
289	PWS	т	LONETRE	6/25/89		298	14	
	PWS	С	GRAVINA	7/16/90		330	21	
113	PWS	С	ZAIKOF	8/ 6/90		220	9	275
37	PWS	т	DANGER	7/22/90	CHIN	296	14	

Appendix B1. Rockfish age, length and weight data for Prince William Sound, 1989 - 1991.

ID#			SITE	DATE	SPECIES	LENGTH	AGE	WEIGHT
35	PWS	т	DANGER	7/21/90	CHIN	300	15	
COPPEI	R ROC	KFI	SH					
C274	PWS	С	GRAVINA	6/29/89		384	15	
C278 C275	PWS PWS	C C	GRAVINA GRAVINA	6/29/89 6/29/89		340 385	12 27	
1	PWS	С	GRAVINA	7/16/90		376	37	
15 26	PWS PWS	С Т	GRAVINA HERRING	7/18/90 7/19/90		371 290	22 7	
1007	PWS	С	GRAVINA	7/21/91		326	11	653
1006	PWS	С	GRAVINA	7/21/91		355	15	986
1009 1008	PWS PWS	C C	GRAVINA GRAVINA	7/21/91 7/21/91		355 316	15 9	789 542
1008	PWS	c	GRAVINA GRAVINA	7/21/91		318	9 15	542 782
1010	PWS	č	GRAVINA	7/21/91		349	14	712
1015	PWS	С	GRAVINA	7/21/91		336	11	696
1013	PWS	С	GRAVINA	7/21/91		332	14	635
1014	PWS	С	GRAVINA	7/21/91		339	13	682
1019	PWS	С	GRAVINA	7/22/91	COPP	258	11	307
1039	PWS	Т	DANGER	7/27/91		413	16	1196
1085	PWS	T	DANGER	9/ 9/91		408	18	1170
1034	PWS	T m	DANGER	7/27/91		402	18	1093
1042 1038	PWS PWS	T T	DANGER DANGER	7/27/91 7/27/91		420 397	20 13	1233 1214
1038	PWS	Ť	DANGER	7/27/91		402	15	1170
1101	PWS	Ť	DANGER	9/10/91		360	17	945
1036	PWS	$\hat{\mathbf{T}}$	DANGER	7/27/91		402	17	1195
1041	PWS	T	DANGER	7/27/91		425	18	1396
1033	PWS	Т	DANGER	7/27/91		406	16	1218
DUSKY	ROCK	FIS	Н					
B107	PWS	С	PORPOIS	6/17/89		314	7	
B108	PWS	С	PORPOIS	6/17/89		334	11	
C265	PWS	С	SCHONER	6/28/89		342	13	
C281	PWS	С	SCHONER	6/28/89		356	13	
C283	PWS	C	SCHONER	6/28/89		355	11	
C282	PWS	С	SCHONER	6/28/89	DOOK	325	9	
D143	PWS	Т	DANGER	9/19/89		335	11	
D149	PWS	Т	DANGER	9/19/89		347	14	
D147	PWS	Т	DANGER	9/19/89	DUSK	393	45	

ID#			SITE	DATE	SPECIES	LENGTH	AGE	WEIGHT
D171	PWS	Т	DANGER	9/19/89	DUSK	395	29	
C235	PWS	T	HERRING	6/24/89		395	13	
C233	PWS	Ť	HERRING	6/24/89		419	19	
C234	FWD	T	HERKING	0/24/89	DOSK	419	19	
QUILL	BACK	ROC	KFISH					
C276	PWS	С	GRAVINA	6/29/89	QUIL	395	31	
C273	PWS	С	GRAVINA	6/29/89	QUIL	392	61	
C277	PWS	С	GRAVINA	6/29/89		380	16	
B101	PWS	С	GRAVINA WINDY B WINDY B WINDY B	6/17/89		425	44	
B105	PWS	С	WINDY B	6/17/89		281	9	
B103	PWS	С	WINDY B	6/17/89		327		
B104	PWS	С	WINDY B	6/17/89		357	27	
B139	PWS	T	CABIN B	6/13/89	OUIL	306	12	
B144	PWS	Ť	CABIN B	6/13/89		372	28	
B145	PWS	Ť	CABIN B	6/13/89		348	13	
B134	PWS	Ť	CABIN B	6/13/89		395	34	
B141	PWS	Ť	CABIN B	6/13/89		388	29	
B127	PWS	Ť	CABIN B	6/13/89		340	14	
B143	PWS	Ť	CABIN B	6/13/89		375	25	
B135	PWS	Ť	CABIN B	6/13/89		355	18	
B146	PWS	Ť	CABIN B	6/13/89		380	25	
B136	PWS	Ť	CABIN B	6/13/89		373	27	
B140	PWS	$\bar{\mathrm{T}}$	CABIN B	6/13/89		410	37	
B142	PWS	$\bar{\mathrm{T}}$	CABIN B	6/13/89		390	49	
B137	PWS	Ť	CABIN B	6/13/89		417	28	
B128	PWS	Ť	CABIN B	6/13/89		343	20	
B138	PWS	T	CABIN B	6/13/89		400	28	
C231	PWS	- T	HERRING	6/24/89		332	12	
C205	PWS	Ť	HERRING	6/24/89		380	31	
C229	PWS	Ť	HERRING	6/24/89		352	25	
C232	PWS	Ť	HERRING	6/24/89		330	20	
C217	PWS	Ť	HERRING	6/24/89		387	23	
C230	PWS	Ť	HERRING	6/24/89		360	33	
B124	PWS	Ŷ	HERRING	6/14/89		358	21	
C228	PWS	Ť	HERRING	6/24/89		375	26	
C228	PWS	T	HERRING	6/24/89		373	31	
C216	PWS	T	HERRING	6/24/89		365	21	
C204	PWS	Ť	HERRING	6/24/89		370	26	
1 3	DMC	C	CDXUTNX	7/17/00	OUTI	401	51	
13	PWS	C	GRAVINA	7/17/90				
12	PWS	С	GRAVINA	7/17/90		413	44	
2	PWS	С	GRAVINA	7/16/90		229	7	
14	PWS	С	GRAVINA	7/17/90		417	39	
3	PWS	С	GRAVINA	7/16/90		406	30	1025
109	PWS	С	MIDDLEP	8/ 3/90	Δотп	385	17	1025

ID#			SITE	DATE	SPECIES	LENGTH	AGE	WEIGHT
107	PWS	с	MIDDLEP	8/ 3/90	OUTL	325	13	725
118	PWS	c	MIDDLEP		QUIL	170	6	100
119	PWS	c	MIDDLEP		QUIL	265	9	350
110	PWS	č	MIDDLEP	8/ 3/90		345	14	830
108	PWS	C	MIDDLEP		QUIL	343	13	850
120	PWS	c	MIDDLEP		QUIL	274	10	425
120 127	PWS	c	ZAIKOF	8/ 5/90		218	7	250
111	PWS	c	ZAIKOF	8/ 5/90		261	7	430
T ¥ ¥	PWD	Ç	ZAINUP	0/ 5/90	Q01D	201	/	430
45	PWS	Т	DANGER	7/22/90		320	10	
41	PWS	T	DANGER	7/21/90		344	10	
21	PWS	Т	HERRING	7/19/90		420	35	
30	PWS	T	HERRING	7/20/90		415	50	
23	PWS	Т	HERRING	7/19/90		430	16	
20	PWS	T	HERRING	7/19/90		361	23	
28	PWS	Т	HERRING	7/19/90		356	35	
27	PWS	Т	HERRING	7/19/90	QUIL	370	30	
L001	PWS	С	GRAVINA	7/21/91		325	11	655
L002	PWS	С	GRAVINA	7/21/91	QUIL	343	14	716
026	PWS	С	GRAVINA	7/22/91	QUIL	420	55	1259
021	PWS	С	GRAVINA	7/22/91		304	9	561
1029	PWS	С	GRAVINA	7/22/91		390	32	1279
L025	PWS	С	GRAVINA	7/22/91		434	47	1653
1005	PWS	С	GRAVINA	7/21/91		433	30	2193
1011	PWS	С	GRAVINA	7/21/91		360	19	909
L020	PWS	С	GRAVINA	7/22/91		350	15	834
1028	PWS	С	GRAVINA	7/22/91		407		1323
L030	PWS	С	GRAVINA	7/22/91		369	21	909
027	PWS	C	GRAVINA	7/22/91		363	18	816
.012	PWS	č	GRAVINA	7/21/91		395	33	1155
L074	PWS	č	ZAIKOF	8/ 8/91		195	9	153
L073	PWS	č	ZAIKOF	8/ 8/91		314	11	585
1078	PWS	c	ZAIKOF	8/10/91		333	9	615
077	PWS	c	ZAIKOF	8/ 9/91		265	11	388
103	PWS	C	ZAIKOF	9/12/91		338	13	715
L075	PWS	c	ZAIKOF	8/ 8/91	-	169	9	95
1075	PWS	c	ZAIKOF	8/ 8/91		316	11	736
	PWS	c		8/12/91	-	346	16	845
083			ZAIKOF	8/12/91 8/10/91			8	645 555
.081	PWS	C	ZAIKOF	• •		307		
106	PWS	C	ZAIKOF	9/13/91		362	14	895
L079	PWS	С	ZAIKOF	8/10/91		283	10	445
1080	PWS	С	ZAIKOF	8/10/91	-	264	11	370
1084	PWS	С	ZAIKOF	8/12/91		375	18	1040
L105	PWS	С	ZAIKOF	9/12/91	-	270	9	337
L082	PWS	С	ZAIKOF	8/12/91	QUIL	251	9	300

ID#			SITE	DATE	SPECIES	LENGTH	AGE	WEIGHT
1005	DUG		DANGER		0			1010
1035	PWS	T	DANGER	7/27/91		409	24	1317
1086	PWS	T	DANGER	9/ 9/91		378	19	975
1102	PWS	Т	DANGER	9/10/91		330	16	690
1090	PWS	Т	DANGER	9/ 9/91		410	26	1350
1040	PWS	\mathbf{T}	DANGER	7/27/91		400	16	1175
1087	PWS	Т	DANGER	9/ 9/91		360	18	900
1100	PWS	Т	DANGER	9/ 9/91		390	29	1130
1088	PWS	Т	DANGER	9/ 9/91		361	16	870
1064	PWS	Т	HERRING	8/ 7/91		319	11	690
1066	PWS	т	HERRING	8/ 7/91		339	14	781
1068	PWS	т	HERRING	8/ 7/91		339	12	650
1044	PWS	Т	HERRING	8/ 6/91		351	14	663
1065	PWS	Т	HERRING	8/ 7/91	QUIL	326	11	657
1072	PWS	Т	HERRING	8/ 7/91		340	19	790
1053	PWS	Т	HERRING	8/ 6/91	QUIL	276	10	405
1043	PWS	т	HERRING	8/ 6/91	QUIL	394	31	1111
1071	PWS	т	HERRING	8/ 7/91	QUIL	348	24	836
1070	PWS	\mathbf{T}	HERRING	8/ 7/91	QUIL	365	29	886
1067	PWS	т	HERRING	8/ 7/91	QUIL	353	22	908
1049	PWS	Т	HERRING	8/ 6/91		375	34	992
YELLO	WEYE	ROC	KFISH					
C270	PWS	С	GRAVINA	6/29/89	YELE	601	46	
C268	PWS	С	GRAVINA	6/29/89		335	11	
C272	PWS	С	GRAVINA	6/29/89		580	63	
C269	PWS	С	GRAVINA	6/29/89		460	21	
C271	PWS	С	GRAVINA	6/29/89		655	72	
B102	PWS	С	WINDY B	6/17/89		451	31	
B133	PWS	т	CABIN B	6/13/89	YELE	368	12	
B132	PWS	T	CABIN B	6/13/89		400	12	
B126	PWS	$\tilde{\mathbf{T}}$	CABIN B	6/13/89		525	31	
D142	PWS	Ť	DANGER	9/19/89		560	21	
D169	PWS	Ŧ	DANGER	9/19/89		565	20	
D146	PWS	T	DANGER	9/19/89		538	23	
D145	PWS	Ť	DANGER	9/19/89		629	32	
D170	PWS	Ť	DANGER	9/19/89		468	22	
C221	PWS	$\hat{\mathbf{T}}$	HERRING	6/24/89		465	37	
C212	PWS	Ť	HERRING	6/24/89		365	14	
C212 C215	PWS	T	HERRING	6/24/89		408	18	
B123	PWS	T	HERRING	6/14/89		425	22	
C224	PWS	Ť	HERRING	6/24/89		336	13	
B100	PWS	Ť	HERRING	6/14/89		595	63	
C203	PWS	Ť	HERRING	6/24/89		523	31	
	PWS						24	
C201	PWS	T T	HERRING HERRING	6/24/89		505 317	24 12	
C225	E W D	Т	TERVETAG	6/24/89	يو تر ال	110	22	

ID#			SITE	DATE	SPECIES	LENGTH	AGE	WEIGHT
C202	PWS	Т	HERRING	6/24/89	VFLF	490	27	
C2202	PWS	Ţ	HERRING	6/24/89		560	61	
C227	PWS	Ť	HERRING	6/24/89		504	28	
C227	PWS	ı T	HERRING	6/24/89		350	20	
C220 C214	PWS	T	HERRING	6/24/89		495	21	
B121	PWS	Ť	HERRING			495 545	60	
C200	PWS	т Т	HERRING	6/14/89		545 565	80 41	
C213	PWS	Ť		6/24/89			66	
			HERRING	6/24/89		521 250		
C222	PWS	T	HERRING	6/24/89	YELE	356	11	
C219	PWS	T	HERRING	6/24/89	YELE	495	36	
C209	PWS	T	HERRING	6/24/89	YELE	355	11	
B119	PWS	Т	HERRING	6/14/89		405	20	
B122	PWS	T	HERRING	6/14/89		442	20	
C208	PWS	T	HERRING	6/24/89		505	30	
B120	PWS	Т	HERRING	6/14/89		400	12	
C210	PWS	\mathbf{T}	HERRING	6/24/89		500	22	
C211	PWS	Т	HERRING	6/24/89	YELE	475	20	
C223	PWS	Т	HERRING	6/24/89		485	31	
C207	PWS	Т	HERRING	6/24/89	YELE	522	51	
2242	PWS	Т	LONETRE	6/25/89		546	27	
C244	PWS	Т	LONETRE	6/25/89	YELE	460	22	
C238	PWS	т	LONETRE	6/25/89		450	21	
C325	PWS	т	LONETRE	6/25/89		485	20	
C247	PWS	Т	LONETRE	6/25/89	YELE	579	32	
C290	PWS	Т	LONETRE	6/25/89	YELE	395	12	
C246	PWS	Т	LONETRE	6/25/89	YELE	695	39	
C331	PWS	т	LONETRE	6/25/89	YELE	373	11	
C241	PWS	Т	LONETRE	6/25/89		520	30	
C243	PWS	Т	LONETRE	6/25/89	YELE	473	23	
C239	PWS	Т	LONETRE	6/25/89		703	70	
C245	PWS	Т	LONETRE	6/25/89		652	32	
C324	PWS	Т	LONETRE	6/25/89		475	20	
C240	PWS	Т	LONETRE	6/25/89		545	23	
B116	PWS	Ť	PT NOWE		YELE	576	70	
B118	PWS	Ť	PT NOWE	6/14/89		579	69	
B115	PWS	Ť	PT NOWE	6/14/89		520	55	
B112	PWS	Ť	PT NOWE	6/14/89		458	38	
B158	PWS	$\hat{\mathbf{T}}$	PT NOWE	6/14/89		555	58	
B159	PWS	Ť	PT NOWE	6/14/89		517	43	
B155	PWS	Ť	PT NOWE	6/14/89		470	33	
B109	PWS	Ť	PT NOWE	6/14/89		363	14	
B111	PWS	T	PT NOWE	6/14/89		525	43	
B117	PWS	т Т	PT NOWE	6/14/89		525 467	43 34	
	PWS PWS							
B113		T	PT NOWE	6/14/89		431	20	
B160	PWS	Т	PT NOWE	6/14/89		552	62	
B110	PWS	Т	PT NOWE	6/14/89		507	37	
B157	PWS	Т	PT NOWE	6/14/89	YELE	493	40	

ID#			SITE	DATE	SPECIES	LENGTH	AGE	WEIGHT
D114	DHC	m	DE MOLTE	6/14/20		455		
B114 B161	PWS	T	PT NOWE	6/14/89		455		
	PWS			6/14/89		508		
B156	PWS	Т	PT NOWE	6/14/89	X E L E	565	44	
5	PWS	С	GRAVINA	7/16/90		350	13	
10	PWS	С	GRAVINA	7/17/90		366	12	
9	PWS	С	GRAVINA	7/17/90		553		
4	PWS	С	GRAVINA	7/16/90		410		
11	PWS	С		7/17/90		462		
8	PWS	С		7/17/90		430		
106	PWS	С	MIDDLEP	8/ 3/90	YELE	402	12	1200
44	PWS	т	DANGER	7/22/90	YELE	626	30	
38	PWS	т	DANGER	7/22/90		546		
40	PWS	\mathbf{T}	DANGER	7/22/90	YELE	520		
31	PWS	т	DANGER	7/21/90		611	37	
34	PWS	т	DANGER	7/21/90		614		
32	PWS	\mathbf{T}	DANGER	7/21/90	YELE	620	32	
43	PWS	т	DANGER	7/22/90		510		
33	PWS	т	DANGER	7/21/90		490		
18	PWS	т	HERRING	7/19/90		540	49	
17	PWS	т	HERRING	7/19/90		400		
24	PWS	Т	HERRING	7/20/90		417		
19	PWS	T	HERRING	7/19/90		625	50	
1016	PWS	С	GRAVINA	7/21/91	YELE	269	9	352
1024	PWS	С	GRAVINA	7/22/91		321		499
1018	PWS	С	GRAVINA	7/22/91		365		771
1017	PWS	С	GRAVINA	7/22/91		343		701
L022	PWS	С	GRAVINA	7/22/91		531		3275
1004	PWS	С	GRAVINA	7/21/91		566		
L023	PWS	Ĉ		7/22/91		401		1222
107	PWS	Ċ	ZAIKOF	9/14/91		694	54	
104	PWS	С	ZAIKOF	9/12/91		650	34	4750
.032	PWS	т	DANGER	7/26/91	YELE	440	21	1849
L095	PWS	Ť	DANGER	9/ 9/91		613	47	4225
L093	PWS	Ť	DANGER	9/ 9/91		516	26	2525
L092	PWS	Ť	DANGER	9/ 9/91		540	26	2750
092	PWS	Ť	DANGER	9/ 9/91		570	25	3300
1098	PWS	Ť	DANGER	9/ 9/91		702	60	2200
L098	PWS	T	DANGER	9/ 9/91		680	48	5300
L031	PWS	Ť	DANGER	7/26/91		560	32	3910
.094	PWS	т Т	DANGER	9/ 9/91		585	45	3730
.094	PWS	т Т	DANGER	9/ 9/91		650	52	5020
	LAND							5020
1090	PWS	\mathbf{T}	DANGER	9/ 9/91	V H'1, H'	657	36	

. . . .

ID#			SITE	DATE	SPECIES	LENGTH	AGE	WEIGHT
1069 1058 1046 1061 1047 1060 1063 1052 1056 1059	PWS PWS PWS PWS PWS PWS PWS PWS PWS	T T T T T T T T T T T	HERRING HERRING HERRING HERRING HERRING HERRING HERRING HERRING HERRING	8/ 6/91 8/ 7/91 8/ 6/91 8/ 7/91 8/ 7/91 8/ 6/91 8/ 7/91 8/ 7/91	YELE YELE YELE YELE YELE YELE YELE YELE	518 359 403 308 504 286 343 500 522 306	27 16 15 10 22 9 15 22 34 10	2290 825 1143 479 1967 359 714 2372 2265 480
1055 1045 1051 1054 1057 1048 1062 1050	PWS PWS PWS PWS PWS PWS PWS	Τ Τ Τ Τ Τ Τ Τ Τ Τ	HERRING	8/ 7/91 8/ 6/91 8/ 6/91 8/ 7/91 8/ 3/91 8/ 6/91 8/ 7/91 8/ 6/91	YELE YELE YELE YELE YELE YELE	551 424 370 405 345 555 276 612	37 15 17 15 11 50 8 58	2704 1282 489 1140 767 3153 396 4265
112	PWS	с	CKFISH ZAIKOF CKFISH	8/ 5/90	VERM	325	10	900
C237	PWS	Т	HERRING	6/24/89	SGRY	340	7	
25 29	PWS PWS	${f T} {f T}$	HERRING HERRING	7/20/90 7/20/90	SGRY SGRY	378 360	12 9	
TIGER	ROCK	FIS	Н					
B125	PWS	Т	HERRING	6/14/89	TIGR	352	34	
AETTO.	WTAIL	RO	CKFISH					
39 42	PWS PWS	${f T}$	DANGER DANGER	7/22/90 7/22/90	YELT YELT	413 377	10 8	

•

ID#			SITE	DATE	SPECIES	LENGTH	AGE	WEIGHT
BLACK	ROCK	FIS	н	· · · · · · · · · · · · · · · · · · ·				
C315	LKP	с	CP PUGE	6/26/89	BLAC	409	11	
D072	LKP	С	GRANITE	9/17/89	BLAC	488	10	
D075	LKP	С	GRANITE	9/17/89	BLAC	478	11	
D079	LKP	С	GRANITE	9/17/89	BLAC	465	11	
D077	$\mathbf{L}\mathbf{K}\mathbf{P}$	С	GRANITE	9/17/89		410	11	
D078	$\mathbf{L}\mathbf{K}\mathbf{P}$	С	GRANITE	9/17/89	BLAC	425	9	
D076	LKP	С	GRANITE	9/17/89	BLAC	515	16	
D090	LKP	т	ALIGO P	9/18/89	BLAC	436	13	
D089	LKP	т	ALIGO P	9/17/89		450	10	
C339	LKP	\mathbf{T}	CP AIAL	6/27/89		484	11	
C296	LKP	Т	CP AIAL	6/27/89		525	12	
C338	LKP	Т	CP AIAL	6/27/89		454	11	
C294	LKP	T	CP AIAL	6/27/89		-	10	
C307	LKP	T	DRIFTWD	6/26/89		456	10	
C292	LKP	T	DRIFTWD	6/26/89		530	11	
C304	LKP	Т	DRIFTWD	6/26/89		520	13	
C293	LKP	Т	DRIFTWD	6/26/89		454	15	
C306	LKP	Ť	DRIFTWD	6/26/89		451	12	
C291	LKP	Т	DRIFTWD	6/26/89		498	12	
C305	LKP	T	DRIFTWD	6/26/89		455	10	
D047	LKP	T	FRONT P	9/15/89		432	13	
D041	LKP	Т	FRONT P	9/15/89		360	8	
D042	LKP	Т	FRONT P	9/15/89		453	17	
D043	LKP	T	FRONT P	9/15/89		466	13	
D044	LKP	T	FRONT P	9/15/89		456	17	
D045	LKP	T	FRONT P	9/15/89		496	18	
D048	LKP	Ť	FRONT P	9/15/89		468	23	
D046	LKP	T	FRONT P	9/15/89		430	11	
D059	LKP	Τ Ͳ	GORE PT	9/16/89		484	10	
D055	LKP	T T	GORE PT	9/16/89 9/16/89		463	29	
D051	LKP		GORE PT			467 444	10 10	
D056	LKP LKP	T T	GORE PT GORE PT	9/16/89 9/16/89		444 495	17	
D052	LKP	Ť	GORE PT GORE PT	• •		495 385	32	
D054	LKP	T T	GORE PT GORE PT	9/16/89		385 503	52 14	
D057 D053	TKD	T T	GORE PT GORE PT	9/16/89 9/16/89		503	14 14	
D053 D058	LKP	\mathbf{T}	GORE PT GORE PT	9/16/89		482	8	
D058 D027	LKP	T	OUTER I	9/16/89		482 470	11	
D027 D040	LKP	T	OUTER I	9/15/89		470 531	32	
D040 D024	LKP	T	OUTER I	9/15/89		445	10	
D024 D017	LKP	\mathbf{T}	OUTER I OUTER I	9/15/89		445 541	12	
D017 D038	LKP	T	OUTER I	9/15/89		475	13	

Appendiz B2. Rockfish age, length and weight data for the lower Kenai Peninsula, 1989 - 1991.

- -

ID#			SITE	DATE	SPECIES	LENGTH	AGE	WEIGHT
D019	LKP	т	OUTER I	9/15/89	BLAC	470	11	
D036	LKP	Т	OUTER I	9/15/89		510	13	
D023	LKP	T	OUTER I	9/15/89		487	14	
D039	LKP	Т	OUTER I	9/15/89		520	41	
D025	LKP	т	OUTER I	9/15/89		461	11	
D015	LKP	Т	OUTER I	9/15/89		521	19	
D026	LKP	т	OUTER I	9/15/89		477	18	
D037	LKP	т	OUTER I	9/15/89		486	14	
D022	LKP	Т	OUTER I	9/15/89		495	14	
D071	LKP	т	PORT DK	9/16/89		427	8	
D065	LKP	т	PORT DK	9/16/89		464	11	
D064	LKP	Т	PORT DK	9/16/89		475	10	
D069	LKP	T	PORT DK	9/16/89		439	11	
D062	LKP	Т	PORT DK	9/16/89		466	11	
D068	LKP	т	PORT DK	9/16/89		474	11	
D067	LKP	T	PORT DK	9/16/89		389		
D063	LKP	Т	PORT DK	9/16/89		483	11	
D061	LKP	Т	PORT DK	9/16/89		441	10	
D066	LKP	т	PORT DK	9/16/89		451	11	
D012	LKP	Т	SEAL RK	9/15/89		495	8	
D135	LKP	Т	SEAL RK	9/18/89		505	13	
D002	LKP	т	SEAL RK	9/15/89		487	10	
D134	$\mathbf{L}\mathbf{K}\mathbf{P}$	Т	SEAL RK	9/18/89		462	10	
D006	LKP	Т	SEAL RK	9/15/89		472	12	
D005	LKP	\mathbf{T}	SEAL RK	9/15/89		507	10	
D001	LKP	Т	SEAL RK	9/15/89		483	9	
D011	LKP	Т	SEAL RK	9/15/89	BLAC	415	11	
D003	LKP	\mathbf{T}	SEAL RK	9/15/89		438	9	
D136	LKP	Т	SEAL RK	9/18/89		515	14	
D004	LKP	Т	SEAL RK	9/15/89	BLAC	500	11	
CHINA	ROCK	FIS	Н					
C254	LKP	с	CP PUGE	6/26/89		313	15	
C322	LKP	С	CP PUGE	6/26/89		319	24	
C321	LKP	С	CP PUGE	6/26/89		281	13	
C317	LKP	С	CP PUGE	6/26/89		338	30	
C318	LKP	С	CP PUGE	6/26/89		308	22	
D081	LKP	С	GRANITE	9/17/89		285	13	
080	LKP	С	GRANITE	9/17/89	CHIN	298	13	
096	LKP	Т	ALIGO P	9/18/89		289	20	
D093	LKP	T	ALIGO P	9/18/89		295	14	
D095	LKP	T	ALIGO P	9/18/89		317	30	
D111	LKP	т	ALIGO P	9/18/89		300	21	
D109	LKP	Т	ALIGO P	9/18/89		298	14	
D108	$_{\rm LKP}$	т	ALIGO P	9/18/89	CHIN	267	11	

ID#			SITE	DATE	SPECIES	LENGTH	AGE	WEIGHT
D110	LKP	т	ALIGO P	9/18/89	CHIN	273	13	
D094	LKP	Ť	ALIGO P	9/18/89		308	23	
D010	LKP	Ť	SEAL RK	9/15/89		322	14	
		_						
72	LKP	С	GRANITE	7/26/90		262	11	430
73	LKP	С	GRANITE	7/26/90		303	14	510
62	LKP	С	GRANITE	7/26/90		293	15	
69	LKP	С	GRANITE	7/28/90		202	8	75
65	LKP	С	GRANITE	7/26/90		292	15	580
74	LKP	С	GRANITE	7/26/90		260	15	375
75	LKP	С	GRANITE	7/27/90		325	18	700
61	LKP	С	GRANITE	7/26/90		318	16	
67	LKP	С	GRANITE	7/27/90		310	15	675
63	LKP	С	GRANITE	7/26/90	CHIN	297	16	
46	LKP	т	MORNING	7/24/90	CHIN	222	8	
89	LKP	Т	PONYCOV	7/29/90		298	17	525
77	LKP	т	PONYCOV	7/29/90		270	15	450
85	LKP	$\bar{\mathrm{T}}$	PONYCOV	7/30/90		335	15	650
76	LKP	- T	PONYCOV	7/29/90		292	15	570
86	LKP	Ţ	PONYCOV	7/29/90		277	15	500
COPPE	R ROC	KFI	SH					
C316	LKP	С	CP PUGE	6/26/89	COPP	377	15	
C323	LKP	č	CP PUGE	6/26/89	COPP	390	14	
0020								
	* ***	~	D 3 1111 D D	01 1 100	0000		~	
102	LKP	С	DAYHARB	8/ 1/90		285	8	375
102 96	LKP	С	DAYHARB	8/ 1/90	COPP	255	7	325
102 96 99	LKP LKP	C C	DAYHARB DAYHARB	8/ 1/90 8/ 2/90	COPP COPP	255 268	7 7	325 300
102 96 99 94	LKP LKP LKP	C C C	DAYHARB DAYHARB DAYHARB	8/ 1/90 8/ 2/90 8/ 1/90	COPP COPP COPP	255 268 321	7 7 12	325 300 650
102 96 99 94 93	LKP LKP LKP LKP	С С С С С	DAYHARB DAYHARB DAYHARB DAYHARB	8/ 1/90 8/ 2/90 8/ 1/90 8/ 1/90	COPP COPP COPP COPP	255 268 321 402	7 7 12 24	325 300 650 1200
102 96 99 94 93 70	LKP LKP LKP LKP LKP	с с с с с	DAYHARB DAYHARB DAYHARB DAYHARB GRANITE	8/ 1/90 8/ 2/90 8/ 1/90 8/ 1/90 7/28/90	COPP COPP COPP COPP COPP	255 268 321 402 303	7 7 12 24 15	325 300 650 1200 575
102 96 99 94 93	LKP LKP LKP LKP	С С С С С	DAYHARB DAYHARB DAYHARB DAYHARB	8/ 1/90 8/ 2/90 8/ 1/90 8/ 1/90	COPP COPP COPP COPP COPP	255 268 321 402	7 7 12 24	325 300 650 1200
102 96 99 94 93 70	LKP LKP LKP LKP LKP	с с с с с	DAYHARB DAYHARB DAYHARB DAYHARB GRANITE	8/ 1/90 8/ 2/90 8/ 1/90 8/ 1/90 7/28/90	COPP COPP COPP COPP COPP	255 268 321 402 303	7 7 12 24 15	325 300 650 1200 575
102 96 99 94 93 70 71	LKP LKP LKP LKP LKP	000000	DAYHARB DAYHARB DAYHARB DAYHARB GRANITE GRANITE	8/ 1/90 8/ 2/90 8/ 1/90 8/ 1/90 7/28/90 7/26/90 7/24/90	COPP COPP COPP COPP COPP COPP	255 268 321 402 303 381	7 7 12 24 15 15	325 300 650 1200 575
102 96 99 94 93 70 71 58	LKP LKP LKP LKP LKP LKP	C C C C C C C T	DAYHARB DAYHARB DAYHARB DAYHARB GRANITE GRANITE MORNING	8/ 1/90 8/ 2/90 8/ 1/90 8/ 1/90 7/28/90 7/26/90 7/24/90 7/24/90	COPP COPP COPP COPP COPP COPP COPP	255 268 321 402 303 381 244	7 7 12 24 15 15	325 300 650 1200 575
102 96 99 93 70 71 58 52 54	LKP LKP LKP LKP LKP LKP LKP	C C C C C C C C T T T	DAYHARB DAYHARB DAYHARB DAYHARB GRANITE GRANITE MORNING MORNING MORNING	8/ 1/90 8/ 2/90 8/ 1/90 8/ 1/90 7/28/90 7/26/90 7/24/90 7/24/90 7/25/90	COPP COPP COPP COPP COPP COPP COPP COPP	255 268 321 402 303 381 244 302 332	7 7 24 15 15 8 10 15	325 300 650 1200 575
102 96 99 94 93 70 71 58 52 54 55	LKP LKP LKP LKP LKP LKP LKP LKP	C C C C C C C C C C T T T T	DAYHARB DAYHARB DAYHARB GRANITE GRANITE MORNING MORNING MORNING MORNING	8/ 1/90 8/ 2/90 8/ 1/90 8/ 1/90 7/28/90 7/26/90 7/24/90 7/24/90 7/25/90 7/25/90	COPP COPP COPP COPP COPP COPP COPP COPP	255 268 321 402 303 381 244 302 332 329	7 7 24 15 15 8 10 15 13	325 300 650 1200 575
102 96 99 94 93 70 71 58 52 54 55 60	LKP LKP LKP LKP LKP LKP LKP LKP LKP LKP	CCCCCC TTTTT	DAYHARB DAYHARB DAYHARB DAYHARB GRANITE GRANITE MORNING MORNING MORNING MORNING	8/ 1/90 8/ 2/90 8/ 1/90 8/ 1/90 7/28/90 7/26/90 7/26/90 7/24/90 7/25/90 7/25/90 7/25/90	COPP COPP COPP COPP COPP COPP COPP COPP	255 268 321 402 303 381 244 302 332 329 275	7 7 12 24 15 15 15 8 10 15 13 8	325 300 650 1200 575
102 96 99 94 93 70 71 58 52 54 55 60 50	LKP LKP LKP LKP LKP LKP LKP LKP LKP LKP	CCCCCC TTTTTT	DAYHARB DAYHARB DAYHARB DAYHARB GRANITE GRANITE MORNING MORNING MORNING MORNING MORNING	<pre>8/ 1/90 8/ 2/90 8/ 1/90 8/ 1/90 7/28/90 7/26/90 7/26/90 7/24/90 7/25/90 7/25/90 7/25/90 7/25/90 7/25/90 7/24/90</pre>	COPP COPP COPP COPP COPP COPP COPP COPP	255 268 321 402 303 381 244 302 332 329 275 370	7 7 24 15 15 15 8 10 15 13 8 24	325 300 650 1200 575 1300
102 96 99 94 93 70 71 58 52 54 55 60	LKP LKP LKP LKP LKP LKP LKP LKP LKP LKP	CCCCCC TTTTT	DAYHARB DAYHARB DAYHARB DAYHARB GRANITE GRANITE MORNING MORNING MORNING MORNING	8/ 1/90 8/ 2/90 8/ 1/90 8/ 1/90 7/28/90 7/26/90 7/26/90 7/24/90 7/25/90 7/25/90 7/25/90	COPP COPP COPP COPP COPP COPP COPP COPP	255 268 321 402 303 381 244 302 332 329 275	7 7 12 24 15 15 15 8 10 15 13 8	325 300 650 1200 575

DUSKY ROCKFISH

54

-

ID#		_	SITE	DATE	SPECIES	LENGTH	AGE	WEIGHT
D083	LKP	С	CRATER			315	9	
D074	LKP	С	GRANITE			405	20	
D073	LKP	С	GRANITE	9/17/89	DUSK	349	14	
D091	LKP	Т	ALIGO P			371	18	
D049	LKP	\mathbf{T}	FRONT P	9/15/89	DUSK	415	26	
D070	LKP	\mathbf{T}	PORT DK	9/16/89	DUSK	368	29	
D127	$_{\rm LKP}$	т	SEAL RK	9/18/89	DUSK	397	19	
D008	LKP	т	SEAL RK	9/15/89	DUSK	416	16	
D125	LKP	т	SEAL RK	9/18/89	DUSK	410	15	
D132	LKP	т	SEAL RK	9/18/89	DUSK	421	16	
D119	LKP	Т	SEAL RK	9/18/89	DUSK	417	30	
D123	$\mathbf{L}\mathbf{K}\mathbf{P}$	т	SEAL RK	9/18/89		395	13	
D124	LKP	Т	SEAL RK	9/18/89		439	35	
D133	LKP	т	SEAL RK	9/18/89		439	37	
D121	LKP	Т	SEAL RK	9/18/89		456	21	
D128	$\mathbf{L}\mathbf{K}\mathbf{P}$	Т	SEAL RK	9/18/89		420	33	
D122	LKP	Т	SEAL RK	9/18/89		398	22	
D130	LKP	т	SEAL RK	9/18/89		425	15	
D131	LKP	Т	SEAL RK	9/18/89		353	13	
D007	LKP	т	SEAL RK	9/15/89		390	13	
D126	LKP	Т	SEAL RK	9/18/89		416		
D129	LKP	т	SEAL RK	9/18/89		417	23	
D120	LKP	Т	SEAL RK	9/18/89		422	43	
QUILL	BACK	ROC	KFISH					
D118	LKP	С	CRATER	9/18/89	QUIL	325	14	
D092	LKP	т	ALIGO P	9/18/89	QUIL	369	16	
C337	LKP	Т	CP AIAL	6/27/89		395	33	
95	LKP	С	DAYHARB	8/ 1/90	OUIL	286	8	475
104	LKP	C	DAYHARB	8/ 1/90		259	8	330
100	LKP	С	DAYHARB	8/ 2/90		255	7	330
101	LKP	Ċ	DAYHARB	8/ 1/90		278	9	425
103	LKP	č	DAYHARB	8/ 1/90		265	8	350
105	LKP	Ĉ	DAYHARB	8/ 1/90		246	10	310
68	LKP	С	GRANITE	7/27/90	-	216	7	200
57	LKP	Т	MORNING	7/24/90	OUIL	226	7	
53	LKP	T	MORNING	7/24/90		244	8	
49	LKP	$\hat{\mathbf{T}}$	MORNING	7/24/90		357	16	
56	LKP	Ť	MORNING	7/24/90		217	7	
00	LKP	Ť	MORNING	7/24/90	-	301	, 9	
47		-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	×~~~			
47 88	LKP	Т	PONYCOV	7/29/90	OUTL	247	7	

·						_
ID#	SITE	DATE	SPECIES LENGTH	I AGE	WEIGHT	

YELLOWEYE ROCKFISH

C251	LKP	С	CP PUGE	6/26/89	YELE	575	24
C314	LKP	С	CP PUGE	6/26/89	YELE	458	21
C319	LKP	С	CP PUGE	6/26/89	YELE	430	19
C252	LKP	С	CP PUGE	6/26/89	YELE	583	25
C320	LKP	С	CP PUGE	6/26/89	YELE	404	20
C250	LKP	С	CP PUGE	6/26/89	YELE	587	29
C249	LKP	С	CP PUGE	6/26/89	YELE	700	44
D085	LKP	С	HARRIS	9/17/89	YELE	421	21
D087	LKP	Т	ALIGO P	9/18/89	YELE	550	37
D088	LKP	Т	ALIGO P	9/18/89	YELE	503	22
C311	$\mathbf{L}\mathbf{K}\mathbf{P}$	Т	CHISWEL	6/27/89	YELE	498	22
C299	LKP	Т	CHISWEL	6/27/89	YELE	545	26
C312	LKP	Т	CHISWEL	6/27/89	YELE	440	19
C297	LKP	T	CHISWEL	6/27/89	YELE	445	20
C309	LKP	т	CHISWEL	6/27/89	YELE	522	31
C308	LKP	T	CHISWEL	6/27/89	YELE	492	31
C298	LKP	T	CHISWEL	6/27/89	YELE	445	19
C300	LKP	T	CHISWEL	6/27/89	YELE	527	27
C313	LKP	Т	CHISWEL	6/27/89	YELE	490	21
C310	LKP	T	CHISWEL	6/27/89	YELE	445	25
C262	LKP	Т	CP AIAL	6/27/89	YELE	545	29
C335	LKP	T	CP AIAL	6/27/89	YELE	530	23
C295	LKP	T	CP AIAL	6/27/89	YELE	455	21
C333	LKP	Ť	CP AIAL	6/27/89	YELE	555	39
C261	LKP	T	CP AIAL	6/27/89	YELE	664	42
C263	LKP	T	CP AIAL	6/27/89	YELE	553	27
C336	LKP	T	CP AIAL	6/27/89	YELE	515	27
C334	LKP	T	CP AIAL	6/27/89	YELE	523	24
C264	LKP	T	CP AIAL	6/27/89	YELE	595	60
D060	LKP	T	GORE PT	9/16/89	YELE	578	21
D021	LKP	Ť	OUTER I	9/15/89	YELE	655	31
D020	LKP	T	OUTER I	9/15/89	YELE	674	49
D032	LKP	T	OUTER I	9/15/89	YELE	788	59
D018	LKP	Ť	OUTER I	9/15/89	YELE	680	30
D034	LKP	Ť	OUTER I	9/15/89	YELE	581	24
D016	LKP	$\hat{\mathbf{T}}$	OUTER I	9/15/89		687	30
D033	LKP	Ť	OUTER I	9/15/89		658	32
D014	LKP	$\hat{\mathbf{T}}$		9/15/89		715	41
D028	LKP	Ť	OUTER I	9/15/89	VELE	675	38
D020	LKP	Ť	OUTER I	9/15/89		445	24
D009	LKP	Ŷ		9/15/89		515	20
D138	LKP	Ť		9/18/89		520	22
D137	LKP	$\hat{\mathbf{T}}$	SEAL RK	9/18/89		550	22
,	~~~\±	-				~~~	
				•			

ID#			SITE	DATE	SPECIES	LENGTH	AGE	WEIGHT
92 98	LKP LKP	с с	DAYHARB DAYHARB	8/ 1/90 8/ 2/90		239 301	9	275 300
81 82	LKP LKP	т т	PONYCOV PONYCOV	7/30/90 7/30/90	YELE	542 499	30 22	2800 410
			CKFISH	7730790	1 1 1 1 1 1	455	22	410
D082	LKP	с	MNLIGHT	9/16/89	SGRY	385	8	
C301 D050	LKP LKP	T T	CHISWEL FRONT P	6/27/89 9/15/89		640 373	47 9	
48 80	LKP LKP	T T	MORNING PONYCOV	7/24/90 7/30/90		342 299	9 9	
TIGER	ROCK	FIS	н					
64 66	LKP LKP	C C	GRANITE GRANITE	7/26/90 7/27/90	TIGR TIGR	278 382	16 20	1050
51 83 79 84	LKP LKP LKP	T T T	MORNING PONYCOV PONYCOV PONYCOV	7/24/90 7/30/90 7/30/90 7/30/90	TIGR TIGR	273 362 335 327	23 24 22 23	800 700 660

.

APPENDIX C

1990 Histopathology Report from University of California, Davis School of Veterinary Medicine

. .____

Ξ

XI. ROCKFISH - Final Summary Report

A. 1990 Rockfish - Histopathologic Methods and Results

HISTOPATHOLOGISTS - Mark Okihiro, DVM; Filenames: 90RF_R.PRN David Hanes, Ph.D. or 90RF_R.WK1

<u>METHODS</u>

Jars of formalin containing liver, spleen, gonad (ovary or testis), gill, and kidney from 121 rockfish (eight different species) were received [logged in on 9-17-1990 by David Hanes]. Gills were decalcified before sectioning. All fish were assigned a random number (processing code, see RF-Table 1) and all tissues were processed routinely in paraffin and stained with hematoxylin and Eosin (HE). Slides were read in ascending numerical order based on the assigned random number (i.e., blind study). Lesions were subjectively ranked using a four point scale: none (0), mild (1), moderate (2), or severe (3); tissues that were not present were designated with a period (.). Data sheets used for scoring lesions in each rockfish tissue were included in the July 3, 1991 progress report (Appendix 9, pp. 53-55). To optimize precision of results, all specimens of a given organ (e.g., all 121 livers) were read and scored before any specimens of the next organ were scored.

RESULTS

Lesion scores and basic historical/site data for each fish are listed in RF-Table 1. Gonadal lesions were minimal and are not reported in table format.

I. Quillback Rockfish - 41 quillback rockfish were examined

- A. Liver
 - 1. Normal histology: Normal rockfish livers had glycogen-laden hepatocytes organized into orderly tubules (RF90-Figure 1). Hepatocyte nuclei were small, round, and regular.
 - 2. Megalocytosis: The most striking feature of quillback rockfish livers was megalocytosis. Affected hepatocytes had marked nuclear and moderate cellular enlargement (RF90-Figures 2-5). Enlarged nuclei varied from 2 to 10X normal size, and cytomegalic hepatocytes varied from 2 to 6X normal size. Some megalocytes were multinucleated (up to five nuclei per cell; RF90-Figure 3) and enlarged nuclei were often elongate and/or irregular. Nucleoli were usually single and prominent, but some nuclei had two or three nucleoli. Some karyomegalic nuclei contained pseudoinclusions (RF90-Figure 4).

In severely affected livers, tubular architecture was often disrupted by enlarged, irregular hepatocytes. Sinusoids were compressed and some foci of tubules appeared to lack nuclei (assumed to be due to enlargement of hepatocytes such that nuclei were out of the plane of section). Enlarged hepatocytes often contained moderate to large amounts of coarsely granular, light brown pigment which was similar to that seen in macrophages. Severe megalocytosis was usually associated with increased numbers of macrophage aggregates and scattered individually necrotic hepatocytes (apoptosis).

Interestingly, some microcytic hepatocytes were in livers that had severe megalocytosis. In a separate study in our laboratory, we are in the process of confirming differences in hepatocyte and nuclear size with morphometry of rockfish caught off the California coast.

Differences in mean megalocyte scores among sites were not significant (ANOVA, P = 0.13).

Comment: Megalocytosis in mammals (primarily horses) is usually associated with pyrrolizidine alkaloid toxicity, but we have occasionally seen this lesion in medaka (<u>Oryzias latipes</u>, a small aquarium fish) in both controls and in medaka exposed to diethylnitrosamine (DEN) (Hinton et al. 1988b). Severe megalocytosis was also observed in a group of pond-raised striped bass (Groff et al. 1992).

- 3. Sinusoidal fibrosis: An uncommon, but striking hepatic lesion (RF90-Figure 6). Distribution tended to be patchy, with affected sinusoids lined by variable amounts of fibrillar collagen (confirmed using Masson's Trichrome stain; RF90-Figure 7). In some areas, sinusoidal fibrosis was continuous with the connective tissue of large veins.
- 4. Necrosis:
 - a. Coagulation necrosis: none
 - b. Single cell necrosis: Individual hepatocyte necrosis or apoptosis was a common, but usually mild finding (RF90-Figure 2).
- 5. Inflammation:
 - a. Macrophage aggregates: Macrophage aggregates were a common finding in quillback livers (RF90-Figure 8). Macrophages in these aggregates were usually vacuolated (possibly due to fat accumulation in phagolysosomes) and filled with granular brown pigment (either hemosiderin or lipofuscin).

Comment: Macrophage aggregates were probably an indicator of previous hepatocyte degeneration and necrosis (i.e., macrophages phagocytized dead hepatocytes). The scoring scheme for macrophage aggregates in the liver was slightly different than for the spleen and kidney because the liver is not a normal terminal site for macrophages. Macrophage aggregates are being used by the EPA and NMFS as indicators of pollutant stress.

ï

- b. Lymphocytic aggregates: Small clusters of lymphocytes were occasionally in the liver.
- 6. Hepatocyte storage disorders
 - a. Glycogen depletion: Glycogen depletion was common and characterized by loss of cell volume and increased cytoplasmic basophilia (RF90-Figure 5).
 - b. Lipidosis (hepatocellular fatty change): A few fish had mild lipidosis.
 - c. Eosinophilic bodies: Some hepatocytes contained refractile, eosinophilic, intracytoplasmic droplets that may represent large lysosomes (RF90-Figure 8).
- 7. Bile duct hyperplasia: none
- 8. Parasitism: minimal. A few fish had small numbers of <u>Ichthyophonus</u>, nematodes, and trematodes.
- B. Kidney
 - 1. Renal tubular degeneration and necrosis: Another common finding was vacuolar degeneration and necrosis of individual or small clusters of tubular epithelial cells (RF90-Figure 9). This was associated with the influx of individual macrophages into the tubular epithelium and the presence of small amounts of necrotic debris in some tubules.

Comment: Renal tubular necrosis certainly could be related to xenobiotic exposure.

2. Glomerulonephritis: One of the most consistent renal lesions in quillback rockfish was the presence of generalized membranous glomerulonephritis (RF90-Figure 10). Affected glomeruli had mild to severe thickening of basement membranes by pale eosinophilic, acellular material. In some glomeruli, there also appeared to be mild to moderate proliferation of mesangial cells (podocytes) and mild dilation of Bowman's capsule. This lesion was, in some fish, associated with large amounts of protein droplets in proximal tubular epithelial cells.

Comment: Membranous glomerulonephritis is a chronic renal disease which is usually associated with the deposition of immune complexes or antiglomerular antibodies on the glomerular basement membranes. The lesion must be differentiated from amyloidosis. We do not know if the lesions could be related to oil exposure, but it seems unlikely.

- 3. Inflammation
 - a. Macrophage aggregates: Many kidneys were massively infiltrated by macrophage aggregates (RF90-Figure 11).

Comment: The degree and number of macrophage aggregates probably reflects the amount of degeneration and necrosis of renal tubular epithelial cells.

- b. Lymphoid aggregates: occasionally seen
- 4. Megalocytosis: In a few fish, scattered renal tubules were lined by epithelial cells with karyomegaly (RF90-Figure 12).
- 5. Protein: In some fish, scattered renal tubular epithelial cells were packed with eosinophilic "protein" droplets (RF90-Figure 13).
- C. Spleen
 - 1. Inflammation:
 - a. Macrophage aggregates: Macrophage aggregates were a consistent finding. Some fish had large numbers of large aggregates that replaced a considerable volume of splenic parenchyma (RF90-Figure 14).
 - b. Lymphoid aggregates: occasionally seen
 - 2. Periarteriolar sheath hyperplasia: Periarteriolar sheaths were often hyperplastic and prominent. In some, hyaline material in the sheaths was similar to that described in renal glomeruli. The amount of pigmentation (with brown-black pigment assumed to be melanin) was highly variable.
- D. Gonads:
 - 1. Testes: Some testes had small numbers of macrophage aggregates (RF90-Figure 15) and/or lymphoid aggregates.
 - 2. Ovary: A few ovaries had lymphoid aggregates, macrophage aggregates (RF90-Figure 16), and/or atretic follicles (RF90-Figure 17).
- E. Gills
 - 1. Inflammation: The majority of fish had multifocal infiltrates of lymphocytes, and in some fish, the infiltrates were very dense and large (RF90-Figure 18).
 - Hyperplasias: The most consistent finding was mild mucous cell hyperplasia, with affected fish having individual or small clusters of mucous cells scattered over the lamellae (RF90-Figure 19). Quantification of mucous cell numbers requires special staining (e.g. Periodic Acid-Schiff), not provided for in the original contract. A few fish also had marked squamous epithelial cell hyperplasia, involving single filaments (RF90-Figures 20 & 21).
 - 3. Parasites:

- a. Flukes: A few fish had gill flukes (trematodes) which were sometimes associated with focal squamous epithelial hyperplasia and cartilage dysplasia (RF90-Figure 22 & 23).
- b. Micro/myxosporidian: An unidentified micro or myxosporidian parasite was in a few gills (RF90-Figure 24).
- II. Other rockfish species
 - A. Yelloweye rockfish: 26 yelloweye rockfish were examined. The most prominent lesion was sinusoidal fibrosis, with 22/25 livers examined having at least mild fibrosis. In some, fibrosis was diffuse and severe. In contrast, yelloweye rockfish had minimal megalocytosis; only 7/25 livers had megalocytosis and all seven were mild. Lipidosis was another fairly common liver lesion.
 - B. China rockfish: 20 China rockfish were examined. There were minimal liver lesions in these fish, but macrophage aggregates were common in both the kidney and spleen.
 - C. Copper rockfish: 19 copper rockfish were examined. These fish had minimal lesions in the liver. Vacuolar degeneration was fairly common in the kidney, as were macrophage aggregates in the spleen.
 - D. Tiger rockfish: 7 tiger rockfish were examined. Liver lesions were mild, but macrophage aggregates in the spleen were common.
 - E. Silvergrey rockfish: 5 silvergrey rockfish were examined; one fish had moderate hepatic megalocytosis and sinusoidal fibrosis.
 - F. Yellowtail rockfish: 2 yellowtail rockfish were examined. Both had mild lesions in all organs.
 - G. Splitnose rockfish: 1 splitnose rockfish was examined. The most prominent lesion was moderate hepatic sinusoidal fibrosis.

1990 Rockfish adults

Filenames: 90RF R.PRN

RF-Table 1. Summary of histopathologic findings in 1990 Rockfish adults.

or 90RF R.WK1 Key to table symbols: Proc. code = Random number generated by Dr. Hinton's Laboratory (= processing #) Lesion scores = none (0), mild (1), moderate (2), severe (3), or not present "." LIVER: KIDNEY: glycogen depletion (GLY) macrophage aggregates (KMA) lipidosis (LIP) tubular epithelial vacuolar degeneration (VD) macrophage aggregates (LMA) single cell necrosis (SCN) SPLEEN (SPL): hepatocellular karyomegaly (MEG) macrophage aggregates (SMA) sinusoidal fibrosis (FIB) OS = oiled status; (O) oiled; (C) clean MFO = mixed function oxidase; ranked as negative (0), very mild (1), mild (2), mod (3), or strong (4) note: MFO values could not be determined on these samples Hinton fish # = initial accession # used before generation of random #'s ADF&G record # - number submitted with length and age data from Andy Hoffman (6-30-92) ADF&G Jar # ~ number on jars received from ADF&G SEX - determined from examination of gonad (M = male, F = female) Species (in proc. code): CH = China rockfishTT = Tiger realifich

ch – China rockrish	TI = Tiger rockrish
CO = Copper rockfish	VM = Vermillion rockfish
QB = Quillback rockfish	YE = Yelloweye rockfish
SG = Silvergrey rockfish	YT = Yellowtail rockfish

Prince William Sound Sites:

	Proc.			Liv	e <u>r</u>			<u>Spl</u>	_Kid	lney				Collection	Hinton	Length	Age		Date
#	Code	GLY	LIP	lma	SCN	MEG	FIB	SMA	КМА	VD	SEX	os	Mfo	Site	Fish 🖸	(mm)	(yrs)	ADF&G Jar #	Sampled
1	CH 324	2	0	1	0	2	0	2	2	1	м	с	?	Gravina Rocks	6	330	21	UCD 111,112	7-17-90
2	CH 27	2	0	1	0	0	0	1	1	0	м	С	?	Zaikof	113	220	- 9	UCD 627,628	8-6-90
3	CH 55	3	0	1	1	1	1	2	2	1	F	0	?	Danger Island	35	300	15	UCD 220,221	7-21-90
4	CH 371	3	0	1	Ο	1	1	2	1	0	М	о	?	Danger Island	36	345		UCD 222,223	7-21-90
5	CH 445	2	0	1	0	1	1	1	1	1	NP	0	2	Danger Island	37	296	14	UCD 224,225	7-22-90
6	CO 264	0	0	3	0	1	0	3	3	1	M	С	?	Gravina Rocks	1	376	37	UCD 101,102	7-16-90
7	CO 266	0	0	1	0	1	0	3	2	2	м	С	?	Gravina Rocks	15	371	22	UCD 130,131	7-18-90
8	CO 404	0	0	0	0	0	0	2	1	1	м	0	?	Herring Bay	26	290	7	UCD 202,203	7-19-90

1990 Rockfish - Prince William Sound Sites

_	#	Pro		GLY	LIP	Live LMA		MEG	FIB	<u>Spl</u> SMA	<u>Kic</u> KMA		SEX	OS	MFC	Collection Site	Hinton Fish #	Length (mm)	~	ADF	&G Jar #	Date Sampled
		QB 47		1	0	1	0	1	0	1	1	1	F	с	?	Gravina Rocks	2	229	7		103,104	7-16-90
		QB 33		2	0	2	0	2	1	2	2	1	F	С	?	Gravina Rocks	3	406	30	UCD	105,106	7-16-90
		QB 15		0	0	3	0	1	1	3	2	1	F	С	?	Gravina Rocks	7	404	•	UCD	113,114	7-17-90
		QB 11		1	0	3	0	3	0	3	3	1	М	С	?	Gravina Rocks	12	413	44	UCD	124,125	7-17-90
		QB 44		2	0	3	1	3	0	2	3	2	м	С	?	Gravina Rocks	13	401	51	UCD	126,127	7-17-90
		QB 48		1	0	3	1	1	0	2	2	0	F	С	?	Gravina Rocks	14	417	39	UCD	128,129	7-17-90
			77	1	0	1	0	2	1	1	1	2	F	С	2	Zaikof	107	325	13	UCD	615,616	8-3-90
	16	QB 32	21	3	1	1	1	2	2	1	1	1	F	С	?	Zaikof	108	343	13		617,618	8-3-90
	17	QB 4	46	0	0	1	0	3	0	3	3	1	М	С	?	Zaikof	109	385	17	UCD	619,620	8-3-90
	18	QB 48	31	0	0	1	0	1	0	1	2	0	М	С	?	Zaikof	110	345	14	UCD	621,622	8-3-90
	19	QB 35	59	0	0	0	1	1	1	2	1	1	F	С	?	Zaikof	111	261	7	UCD	623,624	8-5-90
	20	QB 38	39	0	0	0	0	1	0	1	1	2	F	С	?	Zaikof	116	166	•	UCD	633,634	8-3-90
	21	QB 20	29	0	0	0	0	0	0	1	0	0	М	С	?	Zaikof	117	175		UCD	635,636	8-3-90
	22	QB 44	40	0	0	0	0	1	0	1	0	1	F	С	?	Zaikof	118	170	6		637,638	8-3-90
	23	QB 4	43	2	0	1	0	2	1	2	1	0	F	С	?	Zaikof	119	265	9		639,640	8-3-90
	24	QB 26	51	2	1	1	0	2	2	1	1	1	F	С	2	Zaikof	120	274	10		641,642	8-3-90
ע	25	QB 45	55	0	0	0	1	1	1	1	•	•	F	С	?	Zaikof	126	150	0		703,704	8-5-90
л	26	QB 28	33	0	0	0	0	1	1	1	1	1	М	С	?	Zaikof	127	218	7		705,706	8-5-90
	27	QB 40	05	0	0	0	0	0	0	1	1	2	F	С	?	Zaikof	128	188	•		707,708	8-6-90
	28	QB 34	48	2	0	2	0	3	2	1	1	1	F	0	?	Danger Island	41	344	10		232,233	7-21-90
	29	QB 10	23	2	0	1	0	0	0	2	2	1	F	0	2	Danger Island	45	320	10		240,241	7-22-90
	30	QB 13	38	2	1	3	0	2	1	3	2	2	м	ο	2	Herring Bay	20	361	23		140,141	7-19-90
	31	QB 41	11	3	0	3	0	2	1	2	2	1	F	0	?	Herring Bay	21	420	35		142,143	7-19-90
	32	QB 24	18	3	0	1	0	1	1	2	1	0	F	0	2	Herring Bay	23	430	16		146,147	7-19-90
	33	QB 50	01	1	0	1	1	3	0	3	3	2	М	ο	?	Herring Bay	27	370	30		204,205	7-19-90
	34	QB 9)	0	0	3	0	2	1	3	3	2	М	ο	?	Herring Bay	28	356	35		206,207	7-19-90
	35	QB 45	52	1	0	3	1	2	1	3	1	1	F	0	?	Herring Bay	30	415	50		210,211	7-20-90
	36	SG 25	59	1	1	1	0	1	0	1	1	1	F	ο	?	Herring Bay	16	389			132,133	7-19-90
	37	SG 20	01	1	1	1	1	2	2	1	1	1	F	ο	?	Herring Bay	25	378	12		150,201	7-20-90
	38	SG 40)9	0	0	0	0	1	1	1	1	1	F	о	?	Herring Bay	29	360			208,209	7-20-90
	39	SN 36	57	0	0	1	0	0	2	1	1	1	NP	С	?	Zaikof	112	325	10		625,626	8-5-90
	40	YE 19	94	3	1	1	0	0	1	1	1	2	NP	С	?	Gravina Rocks	4	410	15		107,108	7-17-90
	41	YE 25	58	0	0	0	0	0	0	1	1	1	NP	С	2	Gravina Rocks	5	350	13		109,110	7-17-90
	42	YE 2	23	3	1	1	0	1	2	1	1	1	F	Ċ	2	Gravina Rocks	8	430	24		115,116,117	
	43	YE 6	52	0	0	1	0	ō	ō	ī	ī	1	M	Ċ	2	Gravina Rocks	9	553	26		118,119	7-17-90
	44	YE 7	75	Ó	Ō	ō	ō	ō	Ō	ī	ō	2	F	č	2	Gravina Rocks	10	366	12		120,121	7-17-90
	45	YE 2	22	Ō	ō	1	ō	õ	1	2	1	1	F	č	?	Gravina Rocks	11	462	22		122,123	7-17-90
		YE 25		ō	õ	ī	õ	õ	ī	2	ī	ō	Ň	č	?	Zaikof	106	402	12		613,614	8-3-90
	47			2	õ	ĩ	ō	1	ī	ĩ	1	ĭ	M	ŏ	?	Danger Island	31	611	37		212,213	7-21-90
	48		35	3	ĩ	1	õ	1	ĩ	2	1	ō	F	ŏ	?	Danger Island	32	620	32		214,215	7-21-90
	49		37	2	3	ō	õ	ō	ī	ĩ	1	ŏ	M	ŏ	?	Danger Island	33	490	23		214,215	
	50			3	3	ĩ	ŏ	ŏ	3	2	1	1	M	ŏ	?	Danger Island	34	614	23			7-21-90
	51		52	3	2	ī	õ	ĩ	1	1	1	i	M	ŏ	2	Danger Island	34	546			218,219	7-21-90
		•	_	-	-	-	-	-	-	-	-	-	••	5	•	senger totanu	50		2.J	000	226,227	7-22-90

1990 Rockfish - Prince William Sound Sites

UW 106

UW 110

UW 112

UW 113

UW

UW

UW

UW

107

108

109

111

7-20-90

7-21-90

7-21-90

7-24-90

7-26-90

7-31-90

7-31-90

7-31-90

	F	roc.			Live	er			Spl _Kidney						Collection	Hinton	Length	Age		Date
#	C	lode	GLY	LIP	LMA	SCN	MEG	FIB	SMA	KMA	VD	SEX	os	MFO	Site	Fish #	(mm)	(yrs)	ADF&G Jar #	Sampled
52	YE	488	2	2	1	0	0	2	1	1	1	м	о	?	Danger Island	40	520	23	UCD 230,231	7-22-90
		230	3	ĩ	ī	õ	õ	2	ī	1	1	M	õ	?	Danger Island	43	510	24	UCD 236,237	7-22-90
		360	ō	ō	ī	ō	õ	1	2	ī	ī	M	ō	?	Danger Island	44	626	30	UCD 238,239	7-22-90
55	YE	210	2	1	1	0	ō	1	1	1	1	M	0	?	Herring Bay	17	400	14	UCD 134,135	7-19-90
56	YE	99	3	0	2	1	1	1	3	1	1	м	0	?	Herring Bay	18	540	49	UCD 136,137	7-19-90
57	ΥE	499	3	1	3	2	1	1	3	1	1	F	0	?	Herring Bay	19	625	50	UCD 138,139	7-19-90
58	ΥE	38	2	3	1	0	0	2	1	1	1	F	ο	?	Herring Bay	22	402		UCD 144,145	7-19-90
59	ΥE	449	2	1	1	0	0	2	1	1	2	м	ο	?	Herring Bay	24	417	20	UCD 148,149	7-20-90
60	ΥT	400	0	0	1	0	0	0	1	1	0	F	0	?	Danger Island	39	413	10	UCD 228,229	7-22-90
61	ΥŤ	290	3	2	1	1	1	0	1	1	0	F	0	?	Danger Island	42	377	8	UCD 234,235	7-22-90
				ENDD.	VO D	A (7) A	NO	מת ייי	00200	C 10 10		TED T		201						
				EMBR	10 0.	MIN .	- 10	1 PR	UCE 5	SED	(SAV	ED II	N DAI	x5)		_				
		398E													Gravina Rocks	_			UW 101	7-17-90
		353E													Gravina Rocks				UW 102	7-17-90
	YF														Herring Bay	19			UW 103	7-19-90
		411E													Herring Bay	21			UW 104	7-19-90
	QE	3 248E													Herring Bay	23			UW 105	7-19-90

30

32

41

49

562

933

934

935

Herring Bay

Danger Ísland

Danger Island

Morning Cove

Pony Cove

Pony Cove

Pony Cove

Granite Island

99

QB 179E

ŶE 85E

QB 193E

QB 94E

HA 383

HA 26

HA 410

HA 53

			Mean	Lesi	on s	core	S								Mear	1
				Liv					Kid						Length	Age
	Species	B GLY	LIP	LMA	SCN	MEG	FIB	SMA	KMA 	VD E	xposure	History		N	(mm)	(yrs)
				_	-						_		_			
СН	2 (. 0	1	U	1.5				Combined			2	275	15	
CH	2.7 (3	31	1	1.7	1.3	.67	7	Combined			3	313.667	14.5	
co	0 () 2	. 0	1	0	3	2.5	5 1.5	5	Combined	clean	sites	2	373.5	29.5	
CO	0 0) (0	0	0	2	1	1		Combined	oiled	sites	1	290	7	
QB	.79 .1	11.	1.2	6 1.5	5.58	1.6	1.4	1		Combined	clean	sites	19	291.316	17.8	
QВ	1.8 .:	13 2.	1.2	5 1.9	.88	2.4	1.9	1.3	3	Combined	oiled	sites	8	377	26.13	
ŝĜ	no fish	1			•					Combined			-		20120	
SG	.67 .6		7 .3	3 1.3	1	1	1	1		Combined			з	375.667	10.5	
SN	0 0) 1	0	0	2	1	1	1		Combined	clean	sites	1	325	10	
SN	no fisi	1								Combined			-			
YE	.86 .2		1 0	.14	.71	1.3	. 86	i 1.1		Combined	+ +		7	424.714	17.71	
O YE	2.3 1.				1.5			.92	-	Combined			13	532.385	_ · · · _	
	no fish						-	• • • •	•	Combined			10	552.303		
YT	1.5		. 5	.5	0	1	1	0		Combined			2	205	•	
	i Pennin				0	Т	Ŧ	0		compined	orred	SILGB	2	395	9	
Vene	T LGUUTI	19419	. SI U	50.												

Summary Statistics, Prince William Sound Rockfish only:

	Proc.	Liver						Sp.	<u>цкі</u>	dne	v			Collection Hinton Length Age							
#	Code	GLY	LIP	LMA	SCN	MEG	FIB		KMA		SEX	os	MFO	Site	Fish #	(mm)			G Jar #	Date Sampled	
62	CH 45	1	0	1	0	0	1	2	2	2	м	С	?	Granite Islan	d 61	318	16	UCD	332,333	7-26-90	
63	CH 278	1	0	1	0	0	1	2	1	1	F	С	?	Granite Island	d 62	293	15	UCD	334,335	7-26-90	
64	CH 108	3	1	1	0	1	1	3	2	0	м	С	?	Granite Islan	d 63	297	16	UCD	336,337	7-26-90	
65	CH 233	3	0	1	0	0	1	1	1	2	м	С	?	Granite Islan	d 65	292	15		340,341	7-26-90	
66	CH 7	0	0	1	0	0	0	2	1	0	М	С	?	Granite Islan	d 67	310	15	UCD	344,345	7-27-90	
67	CH 58	3	0	1	0	1	2	1	1	0	М	С	?	Granite Islan	d 72	262	11	UCD	405,406	7-26-90	
68	CH 447	3	0	1	0	1	0	3	1	0	М	С	?	Granite Islan	d 73	303	14		407,408	7-26-90	
69	CH 355	2	0	1	0	0	1	3	2	1	F	С	?	Granite Island	d 74	260	15	UCD	409,410	7-26-90	
70	CH 131	3	0	1	1	0	1	2	2	3	м	С	?	Granite Island	d 75	325	18		411,412	7-27-90	
71	CH 379	2	0	0	0	1	0	1	1	1	NP	0	?	Morning Cove	46	222	8	UCD	301,302	7-24-90	
72	CH 345	0	0	1	0	1	1	3	3	2	М	о	?	Pony Cove	76	292	15		501,502	7-29-90	
73	CH 183	0	0	1	0	0	0	2	1	0	M	О	?	Pony Cove	77	270	1.5		503,504	7-29-90	
74	CH 117	1	0	1	0	0	0	3	2	2	М	ο	?	Pony Cove	85	335	15		519,520	7-30-90	
75	CH 154	0	0	1	0	0	0	2	1	0	F	0	?	Pony Cove	86	277	15		521,522	7-29-90	
76	CH 370	0	0	1	0	0	0	3	3	2	NP	0	?	Pony Cove	89	298	17		527,528	7-29-90	
77	CO 49	Ö	0	2	0	1	1	3	2	2	F	С	?	Day Harbor	93	402	24	UCD	537,538	8-1-90	
78	CO 412	1	1	1	0	0	1	1	1	1	F	С	?	Day Harbor	94	321	12	UCD	539,540	8-1-90	
79	CO 186	3	1	1	0	1	1	2	1	2	F	С	?	Day Harbor	96	255	7		543,544	8-1-90	
80	CO 71	0	0	1	0	1	0	3	1	2	F	С	?	Day Harbor	99	268	7		549,550	8-2-90	

.

1990 Rockfish - Kenai Peninsula Sites

	#	Proc. Code	GLY	LIP	Live LMA		MEG	FIB		<u>Kid</u> KMA		SEX	os	MFO	Collection Site	Hinton Fish #	Length (mm)		ADF	G Jar #	Date Sampled
	• 																				
8	1 C	D 166	3	3	1	0	1	1	1	1	0	м	С	?	Day Harbor	102	285	8	UCD	605,606	8-1-90
82	2 C	D 123	0	0	1	0	0	0	2	1	2	F	С	?	Granite Island	l 70	303	15		350,401	7-28-90
8	3 C	D 178	3	3	1	0	0	1	3	3	3	м	С	?	Granite Island	1 71	381	15	UCD	402,403,404	7-26-90
84	4 C	D 302	2	3	1	0	0	1	3	1	0	М	0	2	Morning Cove	50	370	24	UCD	309,310	7-24-90
8	5 C	D 294	0	0	1	0	0	1	2	1	1	Р	0	?	Morning Cove	52	302	10	UCD	313,314	7-24-90
- 80	6 C	D 242	0	0	1	0	0	0	3	2	0	NP	0	?	Morning Cove	54	332	15	UCD	317,318,331	7-25-90
8.	7 C	0 216	0	0	1	0	1	1	3	1	2	F	0	?	Morning Cove	55	329	13	UCD	319,320	7-25-90
- 88	BC	D 327	2	0	1	0	0	0	2	1	2	F	0	?	Morning Cove	58	244	8	UCD	325,326	7-24-90
- 89	9 C	0 255	0	0	1	0	0	1	3	1	1	F	0	?	Morning Cove	60	275	8	UCD	329,330	7-25-90
9(0 C	D 490	0	0	0	0	1	0	1	1	1	М	0	?	Pony Cove	78	278	9	UCD	505,506	7-29-90
91	1 C	D 491	0	0	1	0	0	0	2	1	1	М	0	2	Pony Cove	87	258	9	UCD	523,524	7-29-90
92	2 C	D 487	· 0	0	1	0	0	0	2	1	2	М	0	?	Pony Cove	90	252	7	UCD	529,530	7-29-90
93	3 Q	B 346	D	0	0	0	0	0	1	0	0	М	С	?	Day Harbor	95	286	8	UCD	541,542	8-1-90
94	4 Q	B 113	1	0	0	0	0	1	2	1	1	F	С	?	Day Harbor	100	255	7	UCD	601,602	8-2-90
9!	5 Q	B 60	0	0	1	0	1	1	1	1	1	F	С	?	Day Harbor	101	278	9	UCD	603,604	8-2-90
91	6 Q)	B 344	1	0	0	0	1	1	1	1	1	м	С	?	Day Harbor	103	265	8	UCD	607,608	8-1-90
ه 6.	7 Q	B 126	1	0	1	0	1	1	2	1	1	F	C	?	Day Harbor	104	259	8	UCD	609,610	8-1-90
∞ 98		B 130	2	2	1	1	2	2	1	0	2	F	C	?	Day Harbor	105	246	10	UCD	611,612	8-1-90
	9 Qi		3	0	1	0	2	1	1	1	2	F	С	2	Granite Island	68	216	7	UCD	346,347	7-27-90
100	0 0	B 430	2	0	0	0	3	2	2	1	0	М	С	?	Granite Island	69	202	8	UCD	348,349	7-28-90
10:	1 Qi	B 271	3	2	1	0	0	1	2	1	0	М	0	?	Morning Cove	47	301	9	UCD	303,304	7-24-90
10;	2 Q.	B 386	2	2	1	0	2	2	•	•	•	F	0	?	Morning Cove	49	357	16	UCD	307,308	7-24-90
10:	3 Qi	в 4	0	0	0	0	1	0	•	1	1	м	0	?	Morning Cove	53	244	8	UCD	315,316	7-24-90
104	4 Q	B 424	3	0	2	0	2	1	1	1	0	м	0	?	Morning Cove	56	217	7	UCD	321,322	7-24-90
10	5 Qi	B 142	3	1	0	1	2	1	1	0	0	М	0	?	Morning Cove	57	226	7	UCD	323,324	7-24-90
10	6 Q	B 238	0	0	1	0	1	0	1	1	1	NP	0	?	Pony Cove	88	247	7	UCD	525,526	7-29-90
10.	7 SI	381	0	0	0	0	1	1	1	1	3	NP	0	?	Morning Cove	48	342	9	UCD	305,306	7-24-90
108	8 S(G 298	0	0	1	0	1	1	1	2	2	F	0	?	Pony Cove	80	299	9	UCD	509,510	7-30-90
109	Э Т	I 473	2	0	1	0	1	0	2	1	2	F	С	?	Granite Island	64	278	16		338,339	7-26-90
11(C T	I 162	2	2	1	0	1	1	2	1	1	М	С	?	Granite Island	66	382	20	UCD	342,343	7-27-90
112	l T:	I 443	0	0	1	0	0	1	2	1	1	NP	0	?	Morning Cove	51	273	23		311,312	7-24-90
112	2 T	I 301	0	0	1	0	0	1	3	1	1	м	0	?	Morning Cove	59	281			327,328	7-25-90
113	3 T.	IЗ	1	2	1	0	1	0	3	2	1	м	0	?	Pony Cove	79	335	22	UCD	507,508	7-29-90
	4 T	I 42	0	0	1	0	0	1	3	2	1	NP	0	?	Pony Cove	83	362	24		515,516	7-30-90
119	5 T.	I 464	2	1	1	0	Ó	1	3	1	2	M	ō	2	Pony Cove	84	327	23		517,518	7-30-90
116	5 YI				•	•			1	ī	ō	M	Ċ	?	Day Harbor	91	297			533,534	8-1-90
117			Ó	Ó	1	Ō	Ō	1	ī	1	Ō	NP	Ĉ	2	Day Harbor	92	239	9		535,536	8-1-90
		E 182	ž	1	ī	ō	ŏ	2	ĩ	2	õ	NP	č	?	Day Harbor	97	247			545,546	8-2-90
119			3	ī	ī	ŏ	ŏ	2	ī			M	č	?	Day Harbor	98	301	9		547,548	8-2-90
120			1	õ	ī	õ	1	2	3	i	1	M	ŏ	?	Pony Cove	81	542	зó		511,512	7-30-90
		E 101	ź	2	ī	ĩ	ō	3	2	2	ĩ	F	ŏ	?	Pony Cove	82	499	22		513,514	7-30-90

Final comment on histopathologic lesions: A total of 121 rockfish (41 quillback, 26 yelloweye, 20 china, 19 copper, 7 tiger, 5 silvergrey, 2 yellowtail, and 1 splitnose) were examined. The most severe lesions were observed in the quillback rockfish, but all rockfish species had similar lesions in liver, kidney, and spleen. Evidence of both parasitism and infectious disease was minimal and the lesions are consistent with exposure to some hepatotoxic and/or nephrotoxic agent. Based on findings from the 1990-rockfish, recommendation for additional sampling were as follows:

- 1) Concentrate sampling on Quillback and Yelloweye rockfish
- 2) Equal numbers of males and females be sampled
- 3) Similar sized (age) fish be sampled
- 4) Sampled tissues to include: liver, kidney, spleen, and gill [Gonads could be eliminated from analysis because lesions were minimal, and confounding problems such as stage of gonad maturation and seasonal cycling, unknown to the pathologists, likely cloud the detection of lesions.]
- Statistics: For general details about the types of statistical analysis used, see part III, "Statistical Analysis" on page 14.
- Statistical Consultant Neil Willits, Senior Statistician, Division of Statistics, 2116 Wickson Hall, University of California, Davis, 95616

After lesion scores were recorded in spreadsheet format (RF-Table 1) and sorted by site of origin, lesions were visually scanned for trends. Because of the mixture of species, sites, and lesions, exposure history could not be determined by a visual scan. Initial statistical analysis involved ANOVA of individual lesions scores. Using this type of analysis, we speculated on exposure history of the sites based on the analysis of glycogen depletion scores: Danger Island and Granite Island were thought to be exposed sites, and Pony Cove and Zaikof/Schooner were thought to be clean sites (RF-Table 3). As additional data sets from the Fish Histopathology Project were analyzed, and as age and exposure status for each rockfish were revealed, we reanalyzed the 1990-rockfish data using principal components analysis as described in part III, "Statistical Analysis" on page 14. The SAS statistical program was used to analyze for differences in individual scale values with MANOVA, nested for site effect and blocked for species (RF-Table 4). The program listed in RF-Table 4 also computed comparisons without nesting for site effects; results from those analyses were similar and are not reported here.

Due to missing values, only 107 of the 121 fish (88%) were used in the analysis. With principal components analysis (PCA), a correlation matrix, eigenvalues of the correlation matrix, and eigenvectors were calculated (RF-Table 5). From the proportion part of "eigenvalues of the correlation matrix," the first principal component accounted for 26% of the variability; the second principal component, 23%; the third, 12%; and the fourth, 11%. From individual scale values for the first principal component, liver, kidney, and spleen macrophages were most important (eigenvectors with the greatest absolute value contribute most to variability).

Oiled vs. clean differences were not significant for any of the first four principal components (RF-Tables 6, 7, 8, and 9). Species differences were significant for the first, second, and third principal components, whereas age differences and site (within exposure status) were significant for the first and second principal components (RF-Tables 6, 7, 8, and 9). Tests for overall effects were not significant for oiled vs. clean effects (RF-Table 10) or site (within oil status; RF-Table 11), but were significantly different for age (RF-Table 12).

	Exposure Status			
Site	Speculated*	Actual ^b		
Danger Island - PWS	oiled	oiled		
Gravina Rocks - PWS	ND	clean		
Herring Bay - PWS	ND	oiled		
Zaikof/Schooner - PWS	clean	clean		
Day Harbor - (Kenai)	ND	clean		
Granite Island - (Kenai)	oiled	clean		
Morning Cove - (Kenai)	ND	oiled		
Pony Cove - (Kenai)	clean	oiled		

RF-Table 3. Exposure history (oiled vs. clean) of rockfish sampled in 1990. Sites are labeled from Prince William Sound (PWS) or the Kenai peninsula (Kenai).

*Speculated in progress report; ND = not done (lesions did not separate potential exposure history of each site)

^bActual exposure history revealed by Andy Hoffman on 5-18-92.

Significance of Results:

After our progress report was submitted, Pat Hansen (Alaska Dept. of fish and Game) analyzed selected lesions for frequency of occurrence and found that hepatic lipidosis and glycogen depletion occurred at a significantly greater frequency in rockfish from oiled vs. clean sites. Considering only the rockfish from Prince William Sound, and scanning the scores by species, differences in hepatic lipidosis are most evident in yelloweye rockfish (e.g., 10 of 13 yelloweye from oiled sites had hepatic lipidosis, whereas only 2 of 7 from clean sites had lipidosis).

- **RF-Table 4.** Copy of program and output used by Neil Willits and SAS for statistical analysis of 1990 rockfish (here, 90rf_r.txt) samples.
 - 1 data rf90;
 - 2 infile 'c:\home\t\marty\new\90rf_r.txt' firstobs=37 obs=157 lrecl=512;
 - 3 input id species \$ pcode2 lgly llip lmac lscn lmeg lfib kmac kvd smac
 - 4 os \$ mfo \$ site \$ hintonno length age;
 - 5 proc princomp out=pcs prefix=scale;
- NOTE: The infile 'c:\home\t\marty\new\90rf_r.txt' is file
- C:\HOME\T\MARTY\NEW\90RF R.TXT.
- NOTE: 157 records were read from the infile C:\HOME\T\MARTY\NEW\90RF_R.TXT. The minimum record length was 0.
 - The maximum record length was 224.
- NOTE: The data set WORK.RF90 has 121 observations and 18 variables.
- NOTE: The DATA statement used 7.00 seconds.
 - 6 var lgly--smac;
 - 7 title 'PCA on data 90rf_r.txt';
 - 8 data big;

WARNING: 5 of 121 observations in data set WORK.RF90 omitted due to missing values. NOTE: The data set WORK.PCS has 121 observations and 27 variables.

NOTE: The PROCEDURE PRINCOMP used 12.00 seconds.

- 9 merge rf90 pcs;
- 10 proc glm data=big;
- NOTE: The data set WORK.BIG has 121 observations and 27 variables.

NOTE: The DATA statement used 4.00 seconds.

- 11 class os site species;
- 12 model scale1-scale4 = species os age/solution;
- 13 manova h=os age/printh printe;
- 14 title 'initial MANOVA on 1990 rockfish data';
- 15 title2 'blocked for species effect';
- 16 proc glm data=big;

NOTE: The PROCEDURE GLM used 17.00 seconds.

- 17 class os site species;
- 18 model scale1-scale4 = species os site(os) age/solution;
- 19 lsmeans os/pdiff;
- 20 manova h=os site(os) age/printh printe;
- 21 title 'MANOVA on 1990 rockfish data with nested site effect';
- 22 title2 'blocked for species effect';

RF-Table 5. Principal components analysis on 1990 rockfish: correlation matrix, eigenvalues of the correlation matrix, and eigenvectors (filename: 90RF_R.PRN). Important values are highlighted.

Correlation Matrix

	LGLY	LLIP	LMA	LSCN	LMEG	LFIB	KMA	KVD	SMA
LGLY	1.0000	0.4833	0.1674	0.2614	0.2080	0.4120	0491	1099	1071
LLIP	0.4833	1.0000	0375	0.1072	1236	0.4154	0794	0905	0974
LMA	0.1674	0375	1.0000	0.2577	0.3566	0.0508	0.4985	0.0562	0.4347
LSCN	0.2614	0.1072	0.2577	1.0000	0.2813	0.1313	0.0449	0.0359	0.0841
LMEG	0.2080	1236	0.3566	0.2813	1.0000	0.0624	0.2513	0.0427	0.0582
LFIB	0.4120	0.4154	0.0508	0.1313	0.0624	1.0000	1328	0135	1488
KMA	0491	0794	0.4985	0.0449	0.2513	1328	1.0000	0.2686	0.5515
KVD	1099	0905	0.0562	0.0359	0.0427	0135	0.2686	1.0000	0.1554
SMA	1071	0974	0.4347	0.0841	0.0582	1488	0.5515	0.1554	1.0000

Eigenvalues of the Correlation Matrix

Eigenvalue	Difference	Proport	ion Cu	mulative	
2.29184	0.221822	0.254	649	0.25465	
2.07001	0.966170	0.230	002	0.48465	
1.10385	0.156258	0.122	649	0.60730	
0.94759	0.185371	0.105	288	0.71259	
0.76222	0.165250	0.084	691	0.79728	
0.59697	0.139814	0.066	330	0.86361	
0.45715	0.035980	0.050	795	0.91440	
0.42117	0.071966	0.046	797	0.96120	
0.34921	•	0.038	801	1.00000	
	Eigenvecto	ors			
SCALE2	SCALE3	SCALE4	SCALE5	SCALE6	SCALE 7-9
0.573878	0.018400	058477	103539	0.400661	(not shown)
0.471224	0.453865	120831	0.111367		(/
0.181970	047674	233234	087851	229654	
0.334198	362854	0.201973	0.782626	086646	
0.213619	564771	0.181240	447549	0.168258	
0.486404	0.215230	0.172480	263125	738025	
047266	0.260283	067836	178537	0.198321	
101380	0.342064	0.860348	0.010908	0.114210	
095272	0.331189	281763	0.234789	152669	
	2.29184 2.07001 1.10385 0.94759 0.76222 0.59697 0.45715 0.42117 0.34921 SCALE2 0.573878 0.471224 0.181970 0.334198 0.213619 0.486404 047266 101380	2.29184 0.221822 2.07001 0.966170 1.10385 0.156258 0.94759 0.185371 0.76222 0.165250 0.59697 0.139814 0.45715 0.035980 0.42117 0.071966 0.34921 . Eigenvecto SCALE2 SCALE3 0.573878 0.018400 0.471224 0.453865 0.181970047674 0.334198362854 0.213619564771 0.486404 0.215230 047266 0.260283 101380 0.342064	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccccc} 2.29184 & 0.221822 & 0.254649 & 0.25465 \\ 2.07001 & 0.966170 & 0.230002 & 0.48465 \\ 1.10385 & 0.156258 & 0.122649 & 0.60730 \\ 0.94759 & 0.185371 & 0.105288 & 0.71259 \\ 0.76222 & 0.165250 & 0.084691 & 0.79728 \\ 0.59697 & 0.139814 & 0.066330 & 0.86361 \\ 0.45715 & 0.035980 & 0.050795 & 0.91440 \\ 0.42117 & 0.071966 & 0.046797 & 0.96120 \\ 0.34921 & & 0.038801 & 1.00000 \\ \end{array}$

LGLY

LLIP LMAC LSCN LMEG LFIB KMAC KVD SMAC **RF-Table 6.** Initial MANOVA on the first principal component for 1990 rockfish, with nested site effect blocked for species effect. Significant P values (P < 0.05) are highlighted.

Dependent Variable: S	CALE1	General Linear Mo	dels Procedure		
Source Model Error Corrected Total	DF 15 91 106	Sum of Squares 167.13037117 74.69419180 241.82456297	Mean Square 11.14202474 0.82081529	F Value 13.57	Pr > F 0.0001
R-Square 0.691122		C.V. 1605.286	Root MSE 0.90598857		CALE1 Mean 0.05643783
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SPECIES Oiled vs. clean (OS) SITE(OS) AGE	7 1 6 1	27.58768497 2.85242480 59.49751081 77.19275059	3.94109785 2.85242480 9.91625180 77.19275059	4.80 3.48 12.08 94.04	0.0001 0.0655 0.0001 0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SPECIES Oiled vs. clean (OS) SITE(OS) AGE	7 1 6 1	56.36519065 0.00168069 7.61124185 77.19275059	8.05217009 0.00168069 1.26854031 77.19275059	9.81 0.00 1.55 94.04	0.0001 0.9640 0.1724 0.0001

RF-Table 7. Initial MANOVA on the second principal component for 1990 rockfish, with nested site effect blocked for species effect. Significant P values (P < 0.05) are highlighted.

Dependent Variable: S	CALE2 General Lin	ear Models Procedure		
Source Model Error Corrected Total	DFSum of Squares1564.5185260591154.01085355106218.52937960	Mean Square 4.30123507 1.69242696	F Value 2.54	Pr > F 0.0034
R-Square 0.295240	C.V. 4611.725	Root MSE 1.30093311	SCALE2 0.028	
Source SPECIES Oiled vs. clean (OS) SITE(OS) AGE	DF Type I SS 7 28.51571902 1 1.78409706 6 27.09254137 1 7.12616860	Mean Square 4.07367415 1.78409706 4.51542356 7.12616860	F Value 2.41 1.05 2.67 4.21	Pr > F 0.0263 0.3073 0.0198 0.0430
Source SPECIES Oiled vs. clean (OS) SITE(OS) AGE	DFType III SS716.4283079510.84318030629.2453890317.12616860	Mean Square 2.34690114 0.84318030 4.87423150 7.12616860	F Value 1.39 0.50 2.88 4.21	Pr > F 0.2205 0.4821 0.0129 0.0430
Error of Parameter	Estimate	T for HO: Parameter=0	Pr > T	Std Estimate
INTERCEPT OS C O	-1.113302927 B 0.340861485 B 0.000000000 B	-1.03 0.58	0.3061 0.5645	1.08162130 0.58938595
SITE(OS) Day Harb C Granite C Gravina C	0.463159510 B 0.899825423 B -0.732547476 B	0.82 1.50 -1.23	0.4155 0.1358 0.2217	0.56625169 0.59795109 0.59533747
Zaikof/S C Danger_I O Herring_ O Morning_ O	0.00000000 B 1.182159148 B 0.708508387 B 0.892542537 B	2.07 1.21 1.67	0.0412 0.2283 0.0977	0.57069961 0.58410353 0.53334435
Pony_Cov O AGE	0.000000000 B 0.032692737	2.05	0.0430	0.01593229

RF-Table 8. Initial MANOVA on the third principal component for 1990 rockfish, with nested site effect blocked for species effect. Significant P values (P < 0.05) are highlighted.

•

Dependent Va	ariable: SCALE	E3 Ger	neral Linear	Models Procedure		
Source	I	DF Sum of	Squares	Mean Square	F Value	Pr > F
Model	1		36104937	3.35740329	4.40	0.0001
Error	ç	91 69.3	35846650	0.76218095		010001
Corrected To	otal 10	06 119.	71951586			
R-Sq	quare	c.v.		Root MSE	SCALE3	Mean
0.42	20659	-6205.096		0.87302975	-0.014	06956
Source	I	DF T	ype I SS	Mean Square	F Value	Pr > F
SPECIES		7 44.0	61254397	6.37322057	8.36	0.0001
Oiled vs. cl	lean (OS)		44185994	0.44185994	0.58	0.4484
SITE(OS)			28158814	0.88026469	1.15	0.3375
AGE		1 0.6	02505731	0.02505731	0.03	0.8565
Source	I		e III SS	Mean Square	F Value	Pr > F
SPECIES			97563237	4.42509034	5.81	0.0001
Oiled vs. cl	lean (OS)		53326886	0.53326886	0.70	0.4051
SITE(OS)			88552234	0.81425372	1.07	0.3874
AGE		1 0.0	02505731	0.02505731	0.03	0.8565
_ .			T for HO:	1=1	Std Error	of
Parameter		Estimate		Parameter=0		Estimate
INTERCEPT		-0.759562619 1	В	-1.05	0.2981	0.72585406
os c		-0.742642341 1	В	-1.88	0.0636	0.39552492
0		0.000000000 1	В	•	•	
SITE(OS) Da	ay Harb C	0.341194069 1	В	0.90	0.3716	0.37999999
Gr	anite C	0.739764249 1	В	1.84	0.0685	0.40127282
	cavina C	0.014951445 1	В	0.04	0.9702	0.39951887
Za	aikof/S C	0.000000000 1		•	•	•
Da	inger_I O	-0.236901159 H	3	-0.62	0.5377	0.38298490
He	erring_ O	-0.558894152 1	3	-1.43	0.1573	0.39198000
Mo	orning_ O	-0.451138939 H	3	-1.26	0.2107	0.35791655
Ро	ony_Cov O	0.000000000 1	3	•	•	•
AGE	_	-0.001938610		-0.18	0.8565	0.01069184

RF-Table 9. Initial MANOVA on the fourth principal component for 1990 rockfish, with nested site effect blocked for species effect. Significant P values (P < 0.05) are highlighted.

Dependent Variable: S	CALE4 General Li	inear Models Procedure		
Source Model Error Corrected Total	DFSum of Squares1518.72424349181.3695351106100.0937786	3 1.24828290 9 0.89417072	F Value 1.40	Pr > F 0.1663
R-Square 0.187067	C.V. 6441.056	Root MSE 0.94560600	SCALE4 0.014	
Source SPECIES Oiled vs. clean (OS) SITE(OS) AGE	DF Type I S 7 13.7629078 1 1.75802966 6 1.3576263 1 1.8456795	9 1.96612970 6 1.75802966 5 0.22627106	F Value 2.20 1.97 0.25 2.06	Pr > F 0.0414 0.1643 0.9569 0.1542
Source SPECIES Oiled vs. clean (OS) SITE(OS) AGE	DF Type III St 7 12.64687082 1 0.86341722 6 1.82092790 1 1.84567952	2 1.80669583 9 0.86341729 0 0.30348798 3 1.84567953	F Value 2.02 0.97 0.34 2.06	Pr > F 0.0608 0.3284 0.9143 0.1542
Parameter	Estimate	T for HO: Pr > Parameter=0	T Std	Error of Estimate
INTERCEPT OS C O SITE(OS) Day_Harb C Granite_ C Gravina_ C Zaikof/S C Danger_I O Herring_ O Morning_ O	-0.795699609 B -0.073935282 B 0.000000000 B 0.126969872 B 0.372165695 B 0.218371756 B 0.000000000 B -0.051636884 B 0.057113304 B -0.382452969 B	-1.01 -0.17 0.31 0.86 0.50 -0.12 0.13 -0.99	0.3142 0.8634 0.7584 0.3941 0.6150 0.9012 0.8933 0.3265	0.78619538 0.42840549 D.41158995 0.43463122 0.43273146 0.41482300 0.42456588 0.38767068
Pony_Cov O AGE	0.000000000 B -0.016638010	-1.44	0.1542	0.01158066

RF-Table 10. MANOVA on all data for 1990 rockfish, to test the hypothesis of "no overall oiled vs. clean effect." Note that none of the P values are significant.

General Linear Models Procedure Multivariate Analysis of Variance

H = Type III SS&CP Matrix for "oiled vs. clean"

	SCALE1	SCALE2	SCALE3	SCALE4
SCALE1	0.0016806941	-0.037644763	-0.029937633	0.0380938365
SCALE2	-0.037644763	0.8431802961	0.6705533503	-0.853238798
SCALE3	-0.029937633	0.6705533503	0.5332688603	-0.678552543
SCALE4	0.0380938365	-0.853238798	-0.678552543	0.8634172894

Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SS&CP Matrix for "oiled vs. clean" E = Error SS&CP Matrix

Characteristic Root	Percent	C	ector V'EV=1		
		SCALE1	SCALE2	SCALE3	SCALE4
0.0253062811 0.0000000000 0.0000000000 0.000000000	100.00 0.00 0.00 0.00	0.00296108 0.10276002 -0.06608118 0.01230732	0.03915117 -0.00105904 -0.00095623 0.07122131	0.06702359 0.02553562 0.09029250 -0.04613773	-0.07996774 0.01448792 0.07293066 0.03357945

Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall "Oiled vs. clean" Effect H = Type III SS&CP Matrix for "oiled vs. clean" E = Error SS&CP Matrix

	S=1 M=1	N=43			
Statistic	Value	F	Num DF	Den DF	Pr > F
Wilks' Lambda	0.97531832	0.5567	4	88	0.6946
Pillai's Trace	0.02468168	0.5567	4	88	0.6946
Hotelling-Lawley Trace	0.02530628	0.5567	4	88	0.6946
Roy's Greatest Root	0.02530628	0.5567	4	88	0.6946

.

RF-Table 11. MANOVA on all data for 1990 rockfish, to test the hypothesis of "no overall site (within oiled or clean site) effect." Significant P values are highlighted.

General Linear Models Procedure Multivariate Analysis of Variance

H = Type III SS&CP Matrix for SITE(oiled or clean)

	SCALE1	SCALE2	SCALE3	SCALE4
SCALE1	7.6112418502	-10.41621264	0.2849926528	1.8190461083
SCALE2	-10.41621264	29.245389027	4.2716752388	0.6544939941
SCALE3	0.2849926528	4.2716752388	4.8855223423	1.7576479208
SCALE4	1.8190461083	0.6544939941	1.7576479208	1.8209279022

Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SS&CP Matrix for SITE(oiled or clean) E = Error SS&CP Matrix

Characteristic Root	Percent	C	haracteristic V	ector V'EV=1	
		SCALE1	SCALE2	SCALE3	SCALE4
0.2547520511 0.0732440109 0.0315970401 0.0067394847	69.54 19.99 8.63 1.84	-0.06274371 0.03666467 0.08537003 -0.05017438	0.06365056 0.00052596 0.04753855 -0.01719714	0.03431196 0.09241401 -0.07178953 -0.02354270	0.00519904 0.03676673 0.01404325 0.10712220

Manova Test Criteria and F Approximations for the Hypothesis of no Overall SITE(oiled or clean) Effect H = Type III SS&CP Matrix for SITE(oiled or clean) E = Error SS&CP Matrix

	S=4 M=0.	.5 N=43			
Statistic	Value	F	Num DF	Den DF	Pr > F
Wilks' Lambda	0.71501709	1.2961	24	308.2054	0.1633
Pillai's Trace	0.30859885	1.2679	24	364	0.1816
Hotelling-Lawley Trace	0.36633259	1.3203	24	346	0.1461
Roy's Greatest Root	0.25475205	3.8637	6	91	0.0018

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

RF-Table 12. MANOVA on all data for 1990 rockfish, to test the hypothesis of "no overall age effect." Significant P values are highlighted.

.

General Linear Models Procedure Multivariate Analysis of Variance

H = Type III SS&CP Matrix for AGE

	SCALE1	SCALE2	SCALE3	SCALE4
SCALE1	77.192750585	23.453966724	-1.390770571	-11.93620877
SCALE2	23.453966724	7.1261685966	-0.42256671	-3.62665459
SCALE3	-1.390770571	-0.42256671	0.0250573113	0.2150529389
. SCALE4	-11.93620877	-3.62665459	0.2150529389	1.845679531

Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SS&CP Matrix for AGE E = Error SS&CP Matrix

Characteristic Root	Percent	C	Characteristic V	Vector V'EV=1	
		SCALE1	SCALE2	SCALE3	SCALE4
1.3728234431 0.0000000000 0.0000000000 0.0000000000	100.00 0.00 0.00 0.00	0.11944431 0.00154930 -0.01276648 0.02557843	0.02321433 -0.02065278 0.06495676 -0.03771608	-0.03173845 0.10955231 0.04531022 0.01906827	-0.04066848 -0.04332676 0.03979471 0.08908674

Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall AGE Effect H = Type III SS&CP Matrix for AGE E = Error SS&CP Matrix

	S=1 M=	1 N=43			
Statistic	Value	F	Num DF	Den DF	Pr > F
Wilks' Lambda	0.42143886	30.2021	4	88	0.0001
Pillai's Trace	0.57856114	30.2021	4	88	0.0001
Hotelling-Lawley Trace	1.37282344	30.2021	4	88	0.0001
Roy's Greatest Root	1.37282344	30.2021	4	88	0.0001

Figure Legends. 1990 Rockfish

Pathologist/Photographer - Mark S. Okihiro

- **RF90-Figure 1.** Normal liver in fish QB209-90. Glycogen laden hepatocytes are organized into orderly tubules. Hepatic vein (V) is filled with blood and the bile duct (arrow head) is associated with a hepatic arteriole. HE 220X.
- RF90-Figure 2. Severe megalocytosis in fish QB501-90. Note the karyomegalic nuclei (arrow heads) and single dead hepatocyte (arrow). HE 220X.
- RF90-Figure 3. Hepatocyte syncytium with a large cluster of karyomegalic nuclei (arrow head) in fish QB9-90. HE 440X.
- **RF90-Figure 4.** Megalocytosis in fish QB501-90. Note the karyomegalic nucleus with a large pseudo-inclusion (arrow head). HE 440X.
- RF90-Figure 5. Megalocytosis and macrophage aggregates in fish QB209-90 (left) and normal liver in fish QB448-90. HE 220X.
- **RF90-Figure** 6. Severe sinusoidal fibrosis in fish QB386-90. MA = macrophage aggregates.HE 220X.
- RF90-Figure 7. Moderate sinusoidal fibrosis in fish QB348-90. Note the blue staining collagen fibers (arrow heads). Masson's trichrome 220X.
- RF90-Figure 8. Megalocytosis, macrophage aggregates, and glycogen depletion in fish QB112-90. Note the eosinophilic "protein" droplets (arrow heads) within some hepatocytes. HE 352X.
- RF90-Figure 9. Renal tubular necrosis in fish QB448-90. Note the numerous vacuolated, dead epithelial cells (arrow heads) and large macrophage aggregates (MA). HE 220X.
- RF90-Figure 10. Membranous glomerulonephritis in fish QB448-90. Note the severely thickened glomerular basement membranes (arrow heads). HE 352X.
- RF90-Figure 11. Macrophage aggregates (MA) in the kidney of fish QB112-90. HE 110X.
- RF90-Figure 12. Megalocytosis involving the renal tubular epithelium in fish QB9-90. Note that nuclei in the affected tubule are markedly enlarged (arrow heads). HE 440X.

- RF90-Figure 13. Lining epithelium of many renal tubules is packed with eosinophilic "protein" droplets in fish QB151-90. HE 220X.
- **RF90-Figure 14.** Spleen of fish QB9-90 is packed with numerous, large, pigmented macrophage aggregates (MA). HE 44X.
- RF90-Figure 15. Testicular interstitium of fish QB112-90 contains multiple macrophage aggregates (MA). HE 145X.
- RF90-Figure 16. Multiple large macrophage (MA) in the ovary of fish QB411-90. HE 110X.
- RF90-Figure 17. Two large attretic follicles (AF) packed with macrophages in the ovary of fish QB411-90. HE 110X.
- **RF90-Figure 18.** Severe, dense lymphocytic infiltration into the lamellar interstitium of the gill of fish QB103-90. HE 110X.
- **RF90-Figure** 19. Marked mucous cell hyperplasia over the gill lamellae of fish QB112-90. HE 110X.
- RF90-Figure 20. Severe squamous epithelial hyperplasia involving one gill filament in fish QB321-90. HE 44X.
- RF90-Figure 21. Higher magnification of figure 20. HE 110X.
- RF90-Figure 22. Trematode (T) attached to the gill lamellae of fish QB483-90. HE 110X.
- RF90-Figure 23. Marked filament cartilage dysplasia (CD) in the gill of fish QB452-90. There is focal squamous cell hyperplasia (SCH), and both lesions may be due to chronic attachment by a trematode (T). HE 70X.
- RF90-Figure 24. Unidentified micro or myxosporidian parasite (arrow heads) in the filament interstitium of the gill of fish QB501-90. HE 440X.

APPENDIX D

Erythrocyte Micronuclei Analysis from JoEllen Hose

.

To: Andy Hoffman, ADF6G, Cordova, AK

From: Jo Ellen Hose, VANTUNA Research Group, Occidental College Re: Rockfish Erythrocyte Micronucleus Analyses Date: November 9, 1990

INTRODUCTION

Micronuclei (MN) are smaller, secondary nuclei formed after exposure to chromosome breaking agents (clastogens) or spindle toxins. They arise from lagging chromosomes or acentric chromosome fragments which have not fused with the parent nucleus after mitosis. MN can occur in any cell although they are easiest to detect in anucleate cells such as mammalian erythrocytes (Schmid 1976). The rodent polychromatic erythrocyte MN assay is a widely used, second tier screening test for genotoxic agents (Heddle et al. 1983). Of the 220 compounds adequately tested in the rodent system, the detection rate for carcinogens was 91% (Navournin et al., 1990).

The method of MacGregor et al. (1980), measuring MN frequencies in circulating rodent erythrocytos, has been adapted to marine and freshwater species such as frogs, newts, mussels and fishes (Hooftman and de Raat 1982; Hose et al. 1987), However, measurement of MN in nucleated cells of these species is more difficult and nuclear changes different from the classical detached micronuclei of rodents have also been reported. These include the formation of knoblike structures extending from the nucleus. The mechanisms by which these attached micronuclei are formed are poorly understood and may be the result of exposure to membrane-active compounds rather than genotoxins.

Because the micronucleus test constitutes a potentially useful method of monitoring indigenous organisms for exposure to environmental genotoxins such as those in crude oil, it was suggested that rockfish residing within Prince William Sound be screened for micronucleus formation.

METHODS

Blood smears were prepared from rockfish collected from Prince William Sound and fixed in absolute methanol for approximately 15 min. The slides were sent to Occidental College on ice and then stained with May Grunwald-Giemss. Blood smears were examined at 1000X using an Olympus microscope fitted with an oil immersion objective. Starting near the center of the slide where the drop of blood was applied and moving in a straight line toward the trailing edge of the smear, two replicate counts of 1000 erythrocytes each were made. Brythrocytes were examined for the presence of 1) detached micronuclei and 2) attached nuclei. The detached MN presented as circular bodies ranging in size from 1/20 to 1/10 the diameter of the parent nucleus, in the same focal plane as the parent nucleus, and with staining properties identical to those of the parent nucleus. Attached MN were knoblike structures attached to the parent nucleus by either a thin thread or a slender stalk. Measurements of detached and attached micronuclei are presented for each of the two replicate counts as well as the average score for each slide (the average count of the detached plus attached micronuclei).

REFERENCES

Heddle, JA, M Hite, B Kirkhart, K Havournin, JT HacGregor, GW Newell and MF Salamone (1983) The induction of micronuclei as a measure of genotoxicity.

Analyses	: Erythrocyte	Micronucleus	Counts		
Sample 001A 002A 003A 004A 005A 006A 007A 008A 009A 010A 011A	lst Count Detached MN 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(1000 RBCs) Attached HN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2nd Count Detached MN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(1000 RBCs) Attached HN 0 0 0 0 0 0 0 0 0 1 0 1	X (#/1000 RBC) 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0
016A 017A 018A 019A 020A 021A 022A 023A 024A 024A	0 1 1 0 0 0 0 0	020000000	0 2 0 0 0 0 0 0 0	0000000000	0.0 2.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0
031A 032A 033A 034A 035A 035A 036A 037A 038A 039A 040A		000000000000000000000000000000000000000	0 1 0 0 0 0 0 0 0		0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0
046A 047A 048A 049A 050A 051A 052A 052A 054A			1 0 0 1 0 0 0 0	0 0 0 0 0 0 0 0	1.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0
061A 062A 063A 064A 065A 066A 067A 068A 069A 070A	0 1 0 0 0 0 1 1 0	0 0 1 0 0 0 0	0 0 0 1 0 0 0 0 0	000000000000000000000000000000000000000	0.0 0.5 0.0 1.5 0.5 0.0 0.0 0.5 1.0 0.0

Samples: Prince William Sound Oil Spill Study Rockfish 001-113

84

.

076A 077A 078A 079A 080A 081B 082B 083A 083A 084A 085A		0 0 0 0 0 0 0 0 0 0			0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0
091A 092A 093A 094A 095B 096A 097A 098A 098A 099A 100A	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	001000000000000000000000000000000000000	0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0
106A 107A 108A 109A 110A 111A 112A 113A	0 0 0 0 0 0 0 0	0 0 1 0 0 0 0	0 0 1 0 0 0 0	0000000	0.0 0.5 0.5 0.0 0.0 0.0

.

.

APPENDIX E

1991, Histopathology Report from University of California, Davis School of Veterinary Medicine

-

B. 1991 Rockfish - Histopathologic Methods and Results

PATHOLOGIST - Mark S. Okihiro, DVM

Diagnoses:

Liver:

- 1) Hepatocellular megalocytosis
- 2) Sinusoidal fibrosis
- 3) Single hepatocyte necrosis
- 4) Hepatic macrophage aggregates
- 5) Glycogen depletion
- 6) Lipidosis
- 7) Bile duct hyperplasia

Spleen:

- 1) Splenic macrophage aggregates
- 2) Periarteriolar sheath hyperplasia

Kidney:

- 1) Renal macrophage aggregates
- 2) Vacuolar degeneration and necrosis of tubular epithelium
- 3) Glomerulonephritis, membranous
- 4) Renal tubular adenoma, multiple (one fish)

Heart:

- 1) Atrial and pericardial macrophage aggregates
- 2) Lymphocytic endocarditis and pericarditis
- 3) Cardiac trematodiasis

History:

Jars of formalin containing tissues from 107 adult rockfish collected in 1991 (Copper, Quillback, and Yelloweye rockfish) were received [9-23-91; logged in 10-3-91 by Gary D. Marty]. Liver, spleen, kidney, heart, and gills were received from nearly every fish. Large gills were decalcified before sectioning. All fish were assigned a random number (Hinton number, see RF-Table 13) and all tissues were processed routinely in paraffin and stained with hematoxylin and Eosin (HE). Slides were read in ascending numerical order based on the assigned random number (i.e., blind study). Lesions were subjectively ranked using a four point scale: none (0), mild (1), moderate (2), or severe (3); tissues that were not present were designated with a period (.). To optimize precision of results, all specimens of a given organ (e.g., all 107 livers) were read and scored before any specimens of the next organ were scored. Basic historical/site data and significant lesion scores are listed in RF-Table 13.

Histopathology:

I. 1991 Quillback Rockfish

Filenames: 91RF_R.PRN or 91RF_R.WK1

A. Liver

- 1. Megalocytosis: Megalocytosis was still a prominent feature of many quillback rockfish livers sampled in 1991. In contrast to the histological appearance of normal glycogen-laden livers (RF-Figures 1-3), affected livers had marked variation in size and shape of hepatocyte nuclei (RF-Figures 4-6). Nuclei were often severely enlarged and sometimes contained multiple nucleoli. Lesions were essentially identical to those described in the 1990 rockfish.
- 2. Sinusoidal fibrosis: Sinusoidal fibrosis (RF-Figures 7 and 8) was prominent, and the prevalence appeared to be higher in the 1991 quillbacks than the 1990 fish. The 1991 samples had increased numbers of fish with moderate and severe (score 2 and 3) fibrosis.
- 3. Necrosis:
 - a. Coagulation necrosis: none
 - b. Single cell necrosis: Individual hepatocyte necrosis or apoptosis was uncommon and usually was mild (RF-Figure 5).
- 4. Inflammation
 - a. Macrophage aggregates: Macrophage aggregates were common in 1991 quillback livers (RF-Figures 7,8).
 - b. Lymphocytic aggregates: Small clusters of lymphocytes were often in the liver.
- 5. Hepatocytes storage disorders
 - a. Glycogen depletion: common
 - b. Lipidosis: Mild to severe lipidosis was seen in a few fish.
- 6. Bile duct hyperplasia: A few fish had focal reduplication of mature bile ducts (RF-Figure 9).
- 7. Parasitism: none

B. Spleen

- 1. Inflammation:
 - a. Macrophage aggregates: Macrophage aggregates were a consistent finding. In some fish, numerous large aggregates replaced a significant volume of splenic parenchyma (RF-Figure 10).
 - b. Lymphoid aggregates: occasionally seen
- 2. Periarteriolar sheath hyperplasia: Periarteriolar sheaths were often prominent due to hyaline material in the sheaths.
- C. Kidney

- 1. Inflammation
 - a. Macrophage aggregates: Many kidneys were massively infiltrated by macrophage aggregates (RF-Figures 11-13).

Comment: The degree and number of macrophage aggregates probably reflects the amount of degeneration and necrosis of renal tubular epithelial cells.

- b. Lymphoid aggregates: occasionally seen
- 2. Protein: A few quillback rockfish had scattered renal tubules that were lined by epithelial cells which were packed with large, intracytoplasmic, pale, eosinophilic protein droplets (RF-Figure 12).
- 3. Renal tubular degeneration and necrosis: Vacuolar degeneration and necrosis of individual or small clusters of tubular epithelial cells was common (RF-Figures 13,14). This was associated with the influx of individual macrophages into the tubular epithelium.

Comment: Renal tubular necrosis certainly could be related to xenobiotic exposure.

- 4. Glomerulonephritis: Membranous glomerulonephritis was uncommon.
- 5. Neoplasms: One fish from an oiled site (Herring Bay) had multiple (3) tubular adenomas in the kidney (RF-Figure 15).

D. Heart

- 1. Inflammation
 - a. Macrophage aggregates: Small numbers of macrophage aggregates were often in the endocardium of the atrium (RF-Figure 16) or in the pericardium.
 - b. Lymphoid aggregates: Small clusters of lymphocytes were often in either the endocardium or pericardium (RF-Figure 17).
- 2. Parasitism: A few fish had small numbers of trematodes (flukes) within the lumen of the ventricle (RF-Figure 18). Flukes were often associated with mild lymphocytic endocardial inflammation. Some fish also had small numbers of <u>Ichthyophonus</u>.
- E. Gills
 - Filament cartilage dysplasia: Cartilage in normal gill filaments is thin, runs the entire length of the filament, and provides structural support (RF-Figures 19 and 20). The outer edges or the entire mass of cartilage may become ossified in older fish (RF-Figure 20). Some 1991 quillback rockfish had focally severe cartilage dysplasia (RF-Figure 21) and one fish had fusion of two adjacent filaments (RF-Figure 22).
 - 2. Inflammation: A few fish had small infiltrates of lymphocytes in the interstitium of the filament.

- 3. Hyperplasias:
 - a. Squamous epithelial hyperplasia: A few fish had focal, moderate to severe, squamous epithelial hyperplasia, which resulted in thickening, clubbing, and occasional fusion of gill lamellae (RF-Figure 23).
 - b. Mucous cell hyperplasia: Similar to the 1990 quillbacks, the most consistent finding was mild to moderate mucous cell hyperplasia with affected fish having individual or small clusters of mucous cells scattered over the lamellae (RF-Figure 24).
- II. Other rockfish species
 - A. Yelloweye rockfish: Again in 1991, the most prominent liver lesion in yelloweye rockfish was sinusoidal fibrosis. Macrophage aggregates and lipidosis were also fairly common, while megalocytosis was uncommon and usually mild. In the gill, several yelloweye rockfish had a unique lesion of severe chloride cell hyperplasia (RF-Figures 25, 26).
 - B. Copper rockfish: The 1991 copper rockfish had minimal lesions in almost all organs examined, with the possible exception of the gill where mucous cell hyperplasia was fairly common.

Final comments on lesions: The lesions in the 1991 rockfish mirrored those seen in the 1990 rockfish. Again, the most severe lesions were in quillback rockfish, but all three species had somewhat similar lesions in liver, kidney, spleen, heart, and gill. Evidence of both parasitism and infectious disease was minimal and we believe that the lesions probably represent either continuing low level exposure to some hepatotoxic and nephrotic agent, or possibly the residual effects of some past exposure.

Differences in lesion scores were difficult to detect by perusal of the results, but some differences emerged. Among copper rockfish, scores for splenic macrophages and hepatic megalocytosis tended to be higher in fish from Danger Island (oiled) than from Gravina (clean). Among quillback rockfish, splenic and renal and cardiac macrophage scores tended to be higher in fish from Danger Island and Herring Bay (oiled) than from Zaikoff Schooner (clean). Among yelloweye rockfish, rockfish from Gravina tended to have lower macrophage scores (clean) than did the other groups. Although megalocytosis was prominent among many quillback rockfish, it seemed to be independent of exposure history, and might represent a "normal" finding in this species. Speculated exposure histories were correct for each sample site (RF-Table 14).

After our progress report was submitted, Pat Hansen (Alaska Dept. of fish and Game) analyzed selected lesions for frequency of occurrence and found that hepatic lipidosis and renal lymphocytes occurred at a significantly greater frequency in rockfish from oiled vs. clean sites. Scanning the scores by species, differences in hepatic lipidosis are not evident in copper rockfish, but are obvious in quillback and especially in yelloweye rockfish (e.g., 17 of 30 yelloweye from oiled sites had hepatic lipidosis, whereas 0 of 9 from clean sites had lipidosis).

1991 Rockfish adults

RF-Table 13. Summary of histopathologic findings in 1991 Rockfish adults.

ADF&G NUMBER = number generated by the Alaska Dept. of Fish and Game

File updated: 07/06/92

Filenames: 91RF_R.PRN or 91RF R.WK1

Key to table symbols:

S

Sex = male (M), female (F), or unknown (U) Hinton number = random number generated by Dr. Hinton's laboratory rockfish species: copper (CO), quillback (QB), and yelloweye (YE) Site = Danger Island (DI), Herring Bay (HB) Lesion scores = none (0), mild (1), moderate (2), severe (3), or not present "." OS = oiled status; oiled (0) or control/clean (C) MFO = mixed function oxidase; ranked as negative (0), very mild (1), mild (2), mod (3), or strong (4) note: MFO values in the liver were determined for hepatocytes, bile ductules, arteriolar endothelium, venular endothelium, and macrophage aggregates, but scores here are the maximum score for any of the three sites (usually hepatocytes). ND = MFO determination was not done KIDNEY: lymphocytes (KLY) macrophage aggregates (KMA) LIVER: tubular epithelial vacuolar degeneration (VD) glycogen depletion (GLY) tubular epithelial necrosis (NEC) lipidosis (LIP) glomerular basement membrane thickening (GBM) macrophage aggregates (LMA) SPLEEN (SPL): single cell necrosis (SCN) melanomacrophage centers (SMA) hepatocellular karyomegaly (MEG) GILL (additional comments at bottom): sinusoidal fibrosis (FIB) cartilaginous dysplasia (CTD) HEART: lymphocytes (LY) lymphocytes (LY) eosinophilic granular leukocytes (EGL) granulomatous inflammation (GRI) mucous cell hyperplasia (MCH) macrophage aggregates (HMA) squamous cell hyperplasia (SCH) luminal flukes/trematodes (FLK) aneurysms (ANU) xenomas (XEN) parasites (PAR) chloride cell hyperplasia (CLR) ADF&G Length Age HINTON SAMPLE Liver Kidney Heart GIT Spl HINTON NUMBER # # (mm) (yrs) Sex SITE OS MFO DATE GLY LIP LMA LY SCN MEG FIB SMA KMA KLY GRI HMA FLK XEN CTD LY VD. NEC GBM LY EGL MCH SCH ANU PAR CLH 1 1003 357 F 9100 9 GRAVINA C 4 7-21-91 Ô Ż Ò Û Ω Ω ñ ń Ω Ō <u>co 9</u> 2 1007 326 F 91C0 21 GRAVINA C 4 7-21-91 Ω. -1 CO 21 3 1014 339 M 9100 40 GRAVINA C 0 7-21-91 Û CO 40 4 1010 349 U 9100 54 GRAVINA C 0 Û. 7-21-91 £ n CO 54 5 1013 332 F 9100 74 GRAVINA C 0 7-21-91 -3 Û CO 74 6 1019 258 F 9100 85 GRAVINA C 3 7-22-91 O. -3 O. CO 85 7 1015 336 M 9100 92 GRAVINA C 0 7-21-91 £ n a Û CO 92 8 1009 355 M 9100 95 GRAVINA C 4 7-21-91 Û Û CO 95 9 1008 316 9100 99 М GRAVINA C 0 7-21-91 3 O. CO 99 10 1006 355 F 91CO 102 GRAVINA C 0 7-21-91 - 3 Û CO 102 11 1034 402 F 9100 13 7-27-91 Q D1 0 Ð D Û CO 13 12 1039 413 9100 17 7-27-91 M DI Ø Ω Ô. CO 17 13 1037 402 M 9100 29 DI O 7-27-91 n D CO 29 14 1036 402 F 9100 32 DI O 3 7-27-91 Ø CO 32 15 1038 397 F 91c0 37 DI O 0 7-27-91 - 3 Û D CO 37 16 1085 408 M 91C0 55 DIO 4 9-9-91 0 Û ß D CO 55

1991 Rockfish adults

	AD F&G	Lengt	:h	Age	1	HINTO	N			SAM	PLE				Live	r		. (Spl		Ki	dney	_		He	art					Gi	ιι				HINTON
, #	#	(mn)) (yгs)	Sex	NUMBE	ER S	SITE	09	S MFO E	ATE	GL	Y LI	P LM	IA LY	SC	N ME	<u>G</u> FI	B SM	A KM/	L	Y VD	NEC	GBM	LYG	RIH	MA F	LKX	EN C	TD L'	Y EC	GL M	CH S	CH A	NU F	AR CLH
#																																				
17	1041	425	18	м	91CO	57	DI	0	0	7-27-91	0	0	1	1	0	1	0	3	3	0	2	1	1 1	0	0	0	0	0	0	0	1	0	0	0	0	CO 57
	1101		17	. M	91co			-		9-10-91		ō	1	1	ō	Ó	ō	3	2	1	ō	Ó	o o	Ō	ō	õ	Ō	ō	1	õ	ż	1	Ō	Ō	ō	CO 72
19	1042	420	20	F	9100	75	DI	0	0	7-27-91	Ó	0	1	1	0	1	1	2	1	0	0	0	2 0	0	0	0	0	0	1	0	1	0	0	0	0	CO 75
20	1033	406	16	М	91CO	89	DI	0	4	7-27-91	0	0	1	1	0	0	1	3	1	1	2	0	0 1	0	1	0	0	0	0	0	1	0	1	0	0	CO 89
21	1005	433	30	F	91QB		GRAVINA		-	7-21-91	0	0	2	1	0	1	0	3	2	0	1	1	2 0	0	1	0	0	0	0	0	1	0	0	0	0	QB 16
	1025		47	М	91QB		GRAVINJ			7-22-91	_	0	3	1	0	3	2	3	- 3	0	2	1	1 0	0	1	0	0	2	1	2	2	3	0	0	0	QB 22
	1028		17	M	91QB		GRAVINA			7-22-91	-	0	1	0	0	3	0	2	3	0	2	1	0 1	0	0	0	0	1	2	1	2	3	0	0	0	QB 45
	1030		21	F	91QB		GRAVIN/			7-22-91		0	3	1	0	1	1	3	3	0	1	0	0 1	0	2	0	0	0	0	0	0	1	0	0	0	QB 46
	1029		32	F	910B		GRAVINA	-		7-22-91	_	0	2	1	0	2	1	3	1	1	0	0	0 1	0	1	0	0	2	0	0	2	0	0	0	0	QB 60
	1027		18 55	M	910B		GRAVIN/			7-22-91		0 0	3	1	0	1	1	3	Ž	0 0	0	U Q	0 0	U U	1	0	Ů	0 0	0	Ű	1	Ŭ	0 0	0 0	0 0	QB 62 QB 68
	1026 1012		33	M	9108 9108		GRAVIN/ GRAVIN/			7-22-91 7-21-91	_	0	2	4	U n	2	4	2	2	n	3	1	0 0	0	2	0	0	ů n	U n	0	1	υ Λ	0 0	0	U N	QB 78
	1012		33 9.	F	9108		GRAVIN			7-22-91	-	ŏ	1	1	n n	ň	1	2	1	ň	0		0 1	ň	ñ	ň	ñ	ň	1	0	1	ñ	ň	ň	ñ	QB 79
	1020		15	ŕ	91QB		GRAVIN/	-		7-22-91		ŏ	'n	i	ñ	ž	2	1	1	ň	ñ	ñ	0 1	ň	กั	ň	ŏ	ň	'n	ň	i	ň	ň	ň	ň	QB 82
	1001		11	Ň	91QB		GRAVIN			7-21-91		ŏ	ĭ	i	ŏ	1	2	i	ż	õ	ž	ĩ	õ ü	ŏ	1	ŏ	ŏ	ŏ	1	ŏ	ż	õ	ŏ	ŏ	ŏ	Q8 83
	1002		14	M	91QB		GRAVIN/			7-21-91	_	Ō	1	1	Ō	2	1	1	2	Ō	1	Ó	0 1	Ō	1	Ō	Ō	Ō	ò	Ō	1	1	Ō	Ō	Õ	QB 87
33	1011	360	19	F	91QB	91 G	GRAVIN/	A C	4	7-21-91	3	0	3	1	Ó	2	2	2	2	0	0	0	0 1	0	1	0	0	0	0	0	2	0	Ð	0	0	QB 91
34	1078	333	9	F	91QB	12 z	ZAIKOFI	FC	4	8-10-91	3	0	1	1	0	2	1	1	1	1	1	1	0 0	0	0	0	0	0	0	0	1	0	0	0	0	QB 12
	1080		11	F	919B	33 z	AIKOFI	FC	4	8-10-91	2	0	1	1	0	1	2	1	1	0	2	0	0 1	0	0	0	0	0	1	1	1	3	0	0	0	QB 33
	1105		9	F	910B		ZAIKOFI	-		9-12-91		0	1	2	0	2	2	1	0	0	0	0	0 1	0	0	0	0	0	0	0	1	1	0	0	0	QB 48
	1079		10	F	9198	-	ZAIKOFI			8-10-91		0	0	1	0	2	2	1	0	1	1	0	0 1	0	0	0	0	2	0	0	1	1	1	1	0	QB 50
	1083		16	M	91QB		ZAIKOF	-	-	8-12-91		0	1	1	0 Q	1	0	2	3	0	1	1	0 1	Ő	0	0	0	Ô	1	0	1	0	0	Ô	0	QB 51
) 1076 (1077 (11 11	F	9108 9108		ZAIKOF			8-9-91		1	1	1	0	2	2	2	1	1	0	0	1 1	0	0	0	0	Ŭ	1	U	1	U 7	U N	U 4	0	QB 52 QB 58
	1082		9		9198		ZAIKOFI ZAIKOFI			8-9-91 8-12-91		ó	n		0	1	1	1		n	0	0 0	0 0	0	0	n	ů N	ň	0	0	4	5	n	'n	0	QB 69
	1075		9 9	- ú	919B		ZAIKOFI			8-8-91		0	Ő	1	1	2	1	2		ñ	1	0 0	0 2	- N	0	ñ	ñ	ñ	ñ	n	1	ñ	0	õ	0	QB 80
	1103		13	5	-		ZAIKOFI			9-12-91	-	ŏ	2	1	'n	2	1	1	1	ň	ò	ň	0 1	ň	1	กั	ŏ	ñ	ñ	ñ	1	ň	ñ	ŏ	ň	QB 94
	1073		11	Ē			ZAIKOFI			8-8-91		ŏ	1	1	ŏ	1	i	ż	2	ī	õ	ã	a 1	ŏ	ġ	õ	ō	Ğ	õ	õ	1	ĭ	ŏ	ŏ	õ	QB 96
45	1081	307	8	Ň			ZAIKOFI			8-10-91		õ	Ō	1	õ	1	ō	ī	1	ò	Ō	ō	0 1	Ō	Õ	ŏ	Õ	Ō	ō	ŏ	1	Ó	Õ	Ō	ŏ	QB 103
	1106		14	F			ZAIKOFI			9-13-91		2	3	1	0	3	1	2	1	0	0	0	1 0	0	0	0	0	0	0	0	1	1	0	0	0	QB 106
47	1084	375	18	M	91QB	108 z	ZAIKOFI	FC	0	8-12-91	0	0	1	1	0	3	1	2	3	0	0	1	0 1	0	1	1	0	0	1	0	0	1	0	2	0	QB 108
48	1074		9	U			ZAIKOFI	FC	0	8-8-91	1	0	0	1	1	0	0	0	0	0	0	0	0 1	0	0	0	0	0	0	0	0	0	0	0	0	QB 116
	1090		26	F	91QB		DI	-	4	9-9-91		1	2	1	1	3	2	3	2	0	2	1	1 0	0	0	0	0	0	0	0	1	0	1	0	0	QB 3
	1087		18	M	91QB		DI		0	9-9-91		1	1	1	0	3	1	2	3	1	1	0	1 1	0	0	0	0	0	1	0	1	Ô	0	0	0	QB 10
	1086		19	M	91QB		DI	0	4	9-9-91	_	1	1	1	0	2	2	3	3	1	1	0	1 1	0	1	1	0	0	1	0	1	0	0	0	0	Q8 25
	1088		16	M	91QB		DI		0	9-9-91		2	1	1	1	3	1	÷	5	1	1	2	1 1	0	0	0	0	Ű	1	Ű	2	1	0 n	0	0	QB 28
	1035		24 16	F	91QB 91QB		D1 D1		-	7-27-91	-	0	2	1	1	0	2	3	4	1	1	4	0 0	0	2	0 0	0	0	0	0	4	0	0	0	U N	QB 71 QB 76
	5 11040		29	- M	9198		DI	-	õ	9-9-91	-	3	2	1	0	7	4	ר ג	3 7	'n	1	0	1 0	0	1	ő	ň	ň	1	õ	1	1	2	n	ň	QB 86
	5 1102		16	M	9198		DI	-	-	9-10-91	•	õ	1	1	ň	2	2	3	1	ĭ	'n	ñ	0 1	ŏ	1	ő	ñ	ň	4	ň	2	i	ñ	ñ	ň	QB 90
	1065		11	F	91QB		ЯВ	-	ž	8-7-91		ŏ	i	1	ŏ	ō	ō	ż	1	ò	ĭ	ŏ	õ i	ŏ	Ó	ŏ	õ	ž		ž	~	÷			ŏ	QB 1
	1068		12	M	91QB		HB	-	ō	8-7-91	_	ŏ	ò	ó	õ	ž	Ĩ	3	ż	1	1	Ō	1 0	ŏ	õ	ŏ	ō	ō	1	Ō	ż	1	ō	ō	ŏ	QB 19
	1071		24	F	91QB		HB		ŏ	8-7-91	-	Õ	1	1	Ō	3	1	3	3	Ó	1	0	1 0	õ	1	ō	1	1	ò	0	2	2	1	õ	ō	QB 20
	1067		22	F	91QB	27	KB	0	4	8-7-91	0	1	1	1	1	3	1	3	3	1	2	1	1 1	0	1	1	0	1	1	0	1	0	0	2	0	QB 27
61	1070		29	M	91QB	38	KB	٥	4	8-7-91	Û	0	1	0	0	2	1	3	3	1	2	1	0 0	0	1	0	0	•	-		•	•		•	0	98 38
	1064		11	F	91QB		HB		0	8-7-91	-	0	0	1	0	1	0	1	1	2	1	0	0 0	1	0	0	1	:	:	:	:	:	:	:	0	QB 39
63	1072	540	19	F	91QB	98	HB	0	0	8-7-91	2	0	1	0	0	1	1	3	1	0	0	0	1 0	0	1	0	0	0	0	0	1	1	2	0	0	QB 98

•

ς,

ı

1991 Rockfish adults

	Þ	ND F&G	Leng	th.	Age		HINT	ON			SAM	IPLE				Live	r		9	Spl		κί	dney				Hee	art					G	itt				HINTON
	#	#	-		yrs)	Sex	NUM	BER S	ITE	0S	MFO I	DATE	Gl	Y L1	PLM	ALY	SC	N ME			A KM	A L	Y VI	DN	IEC G	BM L			MA F	ικ x	EN C	TD L	ΥE	GLM	CH S	CH A	NŪ P	AR CLH
#																										_									<u>.</u>			
									~	•			-	-	~	~	-		-		•		•	~	-	•		•	•		•	~	~		~	•	~	
		1049 1043 :		34 31	F	91QB 91QB		HB HB	-	0 0	8-6-91 8-6-91		2	3	1	0	2	1	د ۲	2	0	0	0	0	1	0	1	0	0	1	0	0	1	1	0	0 Q	-	QB 101 QB 105
		053	-	10	r F	9108		HB	-	0	8-6-9		Ő	1	1	ñ	2	1	1	0	ñ	'n	ň	'n	1	ñ	'n	ñ	ň	õ	ñ	ñ	i	Ω.	1	õ	-	QB 109
		1044		14	F	910B				õ	8-6-91		ž	ò	1	õ	1	1	2	ĭ	1	ň	ñ	ĭ	1	ñ	õ	ň	õ	õ	ň	õ	1	1	ò	ž	õ	QB 113
		066	-	14	F	91qB			-	ŏ	8-7-91		2	1	1	ľ	2	1	3	1	ò	ŏ	ŏ	ò	1	ă	õ	õ	ŏ	ž	ŏ	õ	ż	1	õ	ō	ŏ	08 114
		023		17	F	91YE		GRAVINA	Ċ	4	7-22-9	0	Ō	1	1	Ó	0	0	1	1	2	Õ	Ō	Ó	2	Ō	1	Ō	Ō	Ō	Ō	Ó	Ō	1	0	0	Ó	YE 4
	70 1	024	321	13	F	91YE	65	GRAVINA	С	0	7-22-91	3	0	0	1	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	2	0	YE 65
		1004		41	M	91YE		GRAVINA			7-21-91	1	0	2	2	0	0	1	3	1	1	0	0	0	1	0	1	0	0	0	1	Û	0	1	0	1	0	YE 73
		1022		39	М	91YE		GRAVINA			7-22-9		0	0	1	0	0	0	2	1	2	0	0	0	1	0	1	0	0	0	0	0	0	1	0	0	3	YE 77
		016	-	9	U	91YE		GRAVINA			7-21-91		0	1	1	0	1	2	1	1	0	0	0	0	1	0	1	0	0	0	1	0	õ	0	0	0	3	YE 84
		017		14	F			GRAVINA			7-22-91		Ő	1	1	U A	0	0	1	\$	1	0	0	0	1	0	2	U	υ	0 0	0	Û	0	1	U	1	-	YE 104
		1018 1104 -		13 34	F			GRAVINA ZAIKOFF			7-22-91 9-12-91		0	2	1	U 0	1	<u>د</u>	1	2	1	ő	0	1	1	0	1	0	0	0 n	1	0	U A	1	0	2	-	YE 110 YE 49
		107		54	F			ZAIKOFF		-	9-12-91 9-14-91		0 0	<u>ر</u>	1	ñ	4	ő	z	2	1	ົ້	ñ	2	1	n	ñ	n	ñ	ñ	ň	ň	ñ	1	ñ	ő		YE 107
		095		47	. M	91YE		DI		0	9-9-9		2	2	1	õ	1	1	ž	1	1	ŏ	ŏ	ō	ò	õ	1	ŏ	ŏ	õ	ŏ	Õ	ŏ	1	ŏ	ŏ		YE 6
		089		36	M	91YE		DI	-	4	9-9-91	. –	2	1	1	Ō	1	2	3	1	ò	ō	ō	Ō	1	ō	2	Ō	Ō	Ō	õ	ō	1	1	Ō	Ō	1	YE 14
		096		52	M	91YE		10	0	4	9-9-91		1	2	1	ΰ	1	1	3						1	0	1	0	0	0	1	0	0	1	0	0	1	YE 15
	81 1	093	516	26	M	91YE	24	DI	0	4	9-9-91	2	1	1	1	0	0	1	1	1	2	0	0	0	3	0	0	0	0	0	0	0	0	1	0	0	0	YE 24
		032		21	F	91YE		DI	-		7-26-91		1	1	1	0	1	2	1	1	2	0	0	0	1	0	1	0	0	0	0	0	0	0	Q	1		YE 31
		031		32	F	91YE				-	7-26-91	-	1	2	1	0	0	3	2	2	2	0	0	0	1	0	1	0	Ô	0	0	0	0	1	0	0		YE 34
		1092 J	-	26	M	91YE		DI		0	9-9-91		3	1	1	0	0	1	2	1	2	2	1	0	2	0	0	0 0	0	0	0	0	0	1	0 2	1	-	YE 35
		098		60 25	F	91YE 91YE		DI D1	_	0 4	9-9-91		2	- S - 1	1	0	0	7	2	3	1	0	U N	0	2	0	1	0	U A	0	1	0	U n	3	2	0		YE 36 YE 63
		091		31	F	91YE		D1		0	9-9-91		ň	1	1	ñ	ñ	2	1	1	0	1	ñ	ň	ں ۲	0	ñ	ñ	ñ	ñ	1	ñ	ñ	'n	ñ	2		YE 66
		097		48	Ń	91YE		DI	_	4	9-9-91		ĭ	3	1	ŏ	ŏ	1	3	ż	ŏ	ó	1	ĭ	1	ŏ	ĩ	ñ	õ	õ	ò	õ	ŏ	ŏ	ő	ō	•	YE 81
		094		45	F	91YE		DI	õ	Ó	9-9-91		1	3	Ó	Õ	3	1	3	2	1	ō	Ō	Í	3	ō	1	Ō	Ō	Ō	1	Ō	Ō	1	Ō	Ō	-	YE 88
		055		37	F	91YE		HB	0	4	8-7-91	2	3	1	1	0	1	1	2	1	2	Ō	0	Ö	1	0	1	0	0	1	1	0	0	2	0	0	3	YE 2
		047		22	F	91YE		HB		0	8-6-91		0	0	1	0	1	1	2	1	1	0	0	0	1	0	0	0	0	0	0	0	Û	1	Ð	D		YE 5
		057		11	F	91YE			-	4	8-7-91		0	0	1	0	0	0	1	1	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0		YE 7
		058	-	16	F	91YE		HB		4	8-7-91		0	1	1	0	0	0	2	2	2	0	0	0	1	0	1	0	0	0	1	0	0	2	0	0	3	YE 11
		063 1059		15 10	U F	91YE		HB	-	4	8-7-91 8-7-91	_	3	1	1	0	0	U 4	1	4	1	0 0	0 0	0	2	0	1	0	0	•	•	•	•	•	•	•	٠	YE 23 YE 30
		048		50	F	91YE 91YE		KB HB	_	4 0	8-6-91		2	र	-	ň	1	2	2	1	1	0	0	0 n	4	ñ	1	0	0	'n	ò	ò	ō	i	'n	'n	i	YE 42
		050		58	F	91YE			-	Ő.	8-6-91		1	3	1	ñ	2	ō	ł	2	1	ň	ň	ñ	1	ñ	2	õ	ň	1	ň	n	ň	'n	ñ	ñ		YE 44
		052		22	F	91YE			-	Ď	8-6-91		3	õ	1	ŏ	1	1	2	ī	i	ŏ	1	ñ	1	ŏ	1	ŏ	ŏ	ò	ĭ	ŏ	õ	ĭ	ŏ	õ	•	YE 53
		062		8	Ù	91YE		HB		õ	8-7-91		ō	Ō	1	Ō	Ó	Ó	1	1	2	2	1	ō	1	Ō	Ó	Ō	Õ	Ō	1	Ō	Ō	Ó	Ō	Ō		YE 56
		045		15	F	91YE			0	4	8-6-91		3	1	2	ΰ	D	0	1	1	1	D	1	0	1	Ō	1	Ō	0	Ó	1	0	0	1	0	0		YE 61
		054		15	М	91YE				0	8-7-91	0	1	0	1	0	0	0	2	1	1	1	1	0	1	0	1	0	0	Û	2	0	0	2	0	0		YE 64
		060		9	F	91YE			-	0	8-7-91	1	0	0	1	0	0	0	1	1	1	0	0	0	1	0	1	0	0	0	1	0	0	0	0	٥		YE 70
		046		15	M	91YE			-	4	8-6-91		D	0	1	0	0	0	2	1	3	0	0	0	2	0	1	0	0	Ô	1	0	Ô	1	0	1	-	YE 97
		051		17	F	91YE			-	,	8-6-91		0	0	0	0	0	0	1	0	2	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0		YE 100
		056 1		34 10	F ប	91YE 91YE			0	4 0	8-7-91 8-7-91		0	1	1	0	1	2 0	2	2	1	0 0	U D	0	1	0	1	0 0	0	0 0	1	0 0	0	ר 0	0 0	0		YE 111 YE 112
		069		27	M	91YE			0		8-7-91		2	0	1	0	0	1	1	1	2	0	0	0	2	0	1	0	0	0 0	0 N	0	n	1	0	0	-	YE 112
_											<u> </u>		<u>د.</u>						·		<u> </u>		<u> </u>		<u> </u>					<u> </u>								

#	ADF&G L #	-	Age (yrs)	Sex		NTON		SITE	os		SAMP Da		GLY	LIP		iver LY	_	MEG	<u> </u>		KMA	<u>Kid</u>	ney VD	NEO	GBM		Hear GR 1		FL	K XEN CTD LY	Gill EGL MCH	SCH AN	HINT
			():=)																														
																			н	into	n#	C	omme	nts	(gil)	lle	sion	s)					
	note: t	he fol	lowing	had					ere				ed.						-				• • •										
	1036E					032E		DI			7-27									YE			pith										
	1031E					E34E		DI			7-26										97		pith										
	1098E					E36E		DI			9-9-										112		pith		•								
	1038E 1029E					037E		DI		-	7-27										110		uge			arcn							
						B60E		VINA	4		7-22										65		rich										
	1042E 1020E					075E 882E		DI VINA			7-27 7-22									. –	73 31		riche										
	1020E					802E 095E		VINA		-	7-22 7-21										35												
	1009E						E GR/				7-21										55 66		rich										
	TUUDE				710	0102		(VINA	•	?	1-21	- 7 1								16	00	'	rich	bain	a								
														N	lear	n les	ion	sco	res														
						ι	iver			S	pl_		Ki	dney				Hea	art					G	ilt								
SPE	CIES		ā	LY L	IP L	MA L	Y S	N ME	G F	IB S	ma k	MA K			NEC (GBM L	LY (GRI	MA F	LK X	EN (CTD L	Y E	GL M	CH SC	H A	NU PI	AR CI	H				
																												Coj	oper	• rockfish			
	ombined													.8				0	.4	0			.2	-	1.8 .	_	.1	.2	0				
С	combined	oiled	sites	.7	.5	1.5	.8	0	.4	.5	2.7	1.6	.2	.6	.1	.7	1.1	0	.6	0	0	0	.7	0	1.7 .	.3	.3	0	0				
			- 1		•																• - • •				••••								
	llback							~ 7										-		~ .	•		•••										
	ombined																						.36										
С	combined	oiled	sites	1.6	.0	1.2	-8	.25	2	1.2	2.6	2.1	. >>	.8	.5	.55	.55	.05	.6	.1	.1	.29	.41	U	1.2	.76	.41	. 24	U				
ام۷	loweye	rockfi	ch																														
	combined			1 1	0	1 1	1 1	n	37	67	1 7	1 /	1	0	0	.33	1 1	n	.78	0	0	0	.44	0	ο.	.67	0	.67	1				
	:ombined																		.77	-	-	-	.54	-	.04								
~										. 7	1.0	· • • •				. 10						.07					. 14 .						

,

~

.

	Exposure	e Status
Site	Speculated*	Actual ^b
Danger Island	oiled	oiled
Gravina Rocks	clean	clean
Herring Bay	oiled	oiled
Zaikof/Schooner	clean	clean

RF-Table 14. Exposure history (oiled vs. clean) of rockfish sampled from Prince William Sound, Alaska, in 1991.

*Speculated in progress report, 7-3-91.

^bActual exposure history revealed by Andy Hoffman, 5-18-92.

- Statistics: For general details about the types of statistical analysis used, see part III, "Statistical Analysis" on page 14.
- Statistical Consultant Neil Willits, Senior Statistician, Division of Statistics, 2116 Wickson Hall, University of California, Davis, 95616

The SAS statistical program was used to analyze for differences in individual scale values with MANOVA, nested for site effect and blocked for species (RF-Table 15). The program listed in RF-Table 15 also computed comparisons without nesting for site effects; results from those analyses were similar and are not reported here.

Due to missing values, only 99 of 107 (93%) rockfish were used in the analysis. With principal components analysis (PCA), a correlation matrix, eigenvalues of the correlation matrix, and eigenvectors were calculated (RF-Table 16). From the proportion part of "eigenvalues of the correlation matrix," the first principal component accounted for 15% of the variability; the second principal component, 8.4%; the third, 7.8%; and the fourth, 7.8%. From individual scale values for the first principal component, liver megalocytes, and spleen and kidney macrophages were most important (eigenvectors with the greatest absolute value contribute most to variability). Hepatic lipidosis, a lesion that occurred in greater frequency in rockfish from oiled sites, contributed little to variability in the first 6 principal components, but was a major part of variability in the seventh principal component (which accounted for 5.2% of overall variability).

Oiled vs. clean differences were significant for the first principal component (RF-Table 17), but were not significantly different for the second, third, and fourth principal components (RF-Tables 18, 19, and 20). Species differences were significant for the first, third, and fourth principal components. Age differences were significant for the first, second, and fourth principal components. Finally, differences within site type (oiled or

d,

clean) were significantly different for only the first principal component. Tests for overall effects were significant for oiled vs. clean effects (RF-Table 21), not significant for site (within oil status; RF-Table 22), but were significantly different for age (RF-Table 23).

Hepatic lipidosis occurred in greater frequency in rockfish—especially yelloweye rockfish—from oiled sites (see RF-Table 13). Lipidosis contributed little to variability in the first four principal components, but was a major part of variability in the seventh principal component (which accounted for 5.2% of overall variability). To determine if oiled vs. clean differences were significant for the seventh principal component, analysis was repeated and MANOVA was done on the first seven principal components (program output not shown); in addition, overall MANOVA was computed combining the first seven principal components. Note that Neil Willits was reluctant to place much weight on these additional analyses because in all other analyses, we used only the first four principal components to determine significance. Oiled vs. clean differences were not significant for the fifth principal component (results not shown), but were highly significant for the sixth and seventh principal components (RF-Table 24). Overall MANOVA using the first seven principal components were highly significant for oil status and age (Wilks' Lambda, Pillai's Trace, et al., P < 0.01, data not shown).

Significance of Results:

Lesions that were used to separate oiled from clean sites in the first principal component—hepatic megalocytosis, plus spleen and kidney macrophages—have been associated with oil or toxicant exposure (Haensly et al. 1982; Kent et al. 1988). Therefore, differences in lesion scores between oiled and clean sites are probably real. In the gill, epithelial hyperplasia (squamous cell hyperplasia) has been associated with oil exposure in many studies (see general literature review, section XI), but in 1991-rockfish contributed to variability primarily as a species effect (third principal component).

Additional analysis using the fifth, sixth, and seventh principal components yielded valuable results. Heart xenoma scores contributed most to variability in the sixth principal component (RF-Table 16); however, this lesions occurred only twice: in two quillback rockfish from oiled sites. It seems unlikely that the xenomas were of great biological significance. By comparison, hepatic lipidosis has been described in relation to oil exposure in several studies (Eurell and Haensly 1981; Khan and Kiceniuk 1984; McCain et al. 1978; Solangi and Overstreet 1982). Despite reservations by our statistician in using these additional analyses, hepatic lipidosis is likely a real biomarker of exposure, particularly in yelloweye rockfish.

The finding that overall oiled vs. clean effects were significant for 1991-rockfish (RF-Table 21), but not significant for 1990-rockfish (RF-Table 10), is evidence for continued deleterious effects of the *Exxon Valdez* oil spill on rockfish. Lipidosis was a useful lesion in yelloweye rockfish for separating oiled from clean sites in both 1990 and 1991. By comparison, hepatic megalocytosis was different in copper rockfish in 1991 than in 1990. In 1990, two of three copper rockfish sampled from Prince William Sound clean sites had megalocytosis, but 0 of 10 had megalocytosis from these sites in 1991. Although the presence of megalocytosis in 4 of 10 copper rockfish sampled in 1991 was used to speculate on exposure history of oiled sites, comparison with the 1990 results suggests that differences in megalocytosis were likely a result of small sample size rather than the Oil Spill [note, however, that copper rockfish were not sampled from sites in Prince William Sound in 1990]. Megalocytosis occurred in quillback rockfish regardless of exposure history in both 1990 and 1991: evidence that hepatocellular karyomegaly is normal in adult quillback rockfish.

1

- **RF-Table 15.** Copy of program and output used by Neil Willits and SAS for statistical analysis of 1991 rockfish (here, 91rf_r.txt) samples.
 - 23 data rf91;
- NOTE: The PROCEDURE GLM used 19.00 seconds.
- 24 infile 'c:\home\t\marty\new\91rf_r.txt' firstobs=29 obs=137 lrecl=512;
- 25 input id1 adfngno length age hinton1 species \$ hinton3 site \$ os \$ mfo \$
- 26 date \$ lgly llip lmac lly lscn lmeg lfib smac kmac kly kvd knec
- kgbm hly hgri hmac hflk hxen gctd gly gegl gmch gsch ganu gpargclh;
- 29 proc princomp out=pcs prefix=scale;
- NOTE: The infile 'c:\home\t\marty\new\91rf_r.txt' is file
- C:\HOME\T\MARTY\NEW\91RF R.TXT.
- NOTE: 137 records were read from the infile C:\HOME\T\MARTY\NEW\91RF_R.TXT. The minimum record length was 0.
 - The minimum record rength was 0.
 - The maximum record length was 424.
- NOTE: SAS went to a new line when INPUT statement reached past the end of a line.
- NOTE: The data set WORK.RF91 has 107 observations and 37 variables.
- NOTE: The DATA statement used 8.00 seconds.
 - 30 var lgly--gclh;
 - 31 title 'PCA on data 91rf_r.txt';
- 32 data big;
- WARNING: 8 of 107 observations in data set WORK.RF91 omitted due to missing values. NOTE: The data set WORK.PCS has 107 observations and 63 variables.
- NOTE: The PROCEDURE PRINCOMP used 21.00 seconds.
 - 33 merge rf91 pcs;
 - 34 proc glm data=big;
- NOTE: The data set WORK.BIG has 107 observations and 63 variables.
- NOTE: The DATA statement used 5.00 seconds.
 - 35 class os site species;
 - 36 model scale1-scale4 = species os age/solution;
 - 37 manova h=os age/printh printe;
 - 38 title 'initial MANOVA on 1991 rockfish data';
 - 39 title2 'blocked by species';
 - 40 proc glm data=big;
- NOTE: The PROCEDURE GLM used 16.00 seconds.
- 41 class os site species;
- 42 model scale1-scale4 = species os site(os) age/solution;
- 43 lsmeans os/pdiff;
- 44 manova h=os site(os) age/printh printe;
- 45 title 'MANOVA on 1991 rockfish data with nested site effect';
- 46 title2 'blocked by species';

RF-Table 16. Principal components analysis on 1991 rockfish: eigenvalues of the correlation matrix, and eigenvectors. Important values are highlighted. See RF-Table 13 (p. 376) for list of abbreviations.

	-			ion Matrix			
	Eigenvalue	Diffe	erence	Proportion	Cumulative		
SCALECALE	1	3.70276	1.5	9285	0.148110	0.14811	
SCALE2	2.10990	Ο.	.15030	0.084396	0.23251		
SCALE3	1.95961	0.	.00117	0.078384	0.31089		
SCALE4	1.95844	0.	20674	0.078338	0.38923		
SCALE5	1.75170	0.	.31330	0.070068	0.45930		
SCALE6	1.43840	0.	.13398	0.057536	0.51683		
SCALE7	1.30441	Ο.	.16795	0.052177	0.56901		
SCALE8	1.13646	0.	.05582	0.045459	0.61447		
SCALE9	1.08064	Ο.	10042	0.043226	0.65769		
SCALE10-2	6: omit						
		Eige	envectors				
SCALE1	SCALE2	SCALE3	SCALE4	SCAL	E5 SCALE6	SCALE7	SCI
0.009682	186853	0.360352	35548	9 0.122	611263421	0.212985	(no
004832	032373	0.170816	0.09562	6 0.027	230 0.079474	0.498886	•
0.287090	394891	0.106977	0.07594	0 0.065	161251015	0.028549	
069050	0.000632	0.069724	04085	0 0.223	378093848	017026	
0.084970	0.074892	037203	19779	4 0.292	399 0.279948	176921	
0.320031	0.038504	0.141941	14694	0.089	032 0.317407	0.018417	
0.103601	150322	0.419582	30610	3 0.186	651030850	0.008270	
0.358556	228337	035127	0.24734	6 0.049	324 0.038258	0.093049	
0.350761	007904	007439	0.30353	8 0.125	131144951	034912	
291192	0.060844	0.180542	0.27895	2002	487 0.093156	0.047037	
0.268090	0.330263	126172	0.00433	1 0.040	533233492	079108	
0.163321	0.340769	116281	0.14416	8 0.172	873293560	000081	

			Eige.	nvectors				
	SCALE1	SCALE2	SCALE3	SCALE4	SCALE5	SCALE6	SCALE7	SCALES 9-2
LGLY	0.009682	186853	0.360352	355489	0.122611	263421	0.212985	(not shown
LLIP	004832	032373	0.170816	0.095626	0.027230	0.079474	0.498886	•
LMAC	0.287090	394891	0.106977	0.075940	0.065161	251015	0.028549	
LLY	069050	0.000632	0.069724	040850	0.223378	093848	017026	
LSCN	0.084970	0.074892	037203	197794	0.292399	0.279948	176921	
LMEG	0.320031	0.038504	0.141941	146940	0.089032	0.317407	0.018417	
LFIB	0.103601	150322	0.419582	306103	0.186651	030850	0.008270	
SMAC	0.358556	228337	035127	0.247346	0.049324	0.038258	0.093049	
KMAC	0.350761	007904	007439	0.303538	0.125131	144951	034912	
KLY	291192	0.060844	0.180542	0.278952	002487	0.093156	0.047037	
KVD	0.268090	0.330263	126172	0.004331	0.040533	233492	079108	
KNEC	0.163321	0.340769	116281	0.144168	0.172873	293560	000081	
KGBM	0.251962	079066	231793	0.145688	0.040035	0.219646	0.316247	
HLY	203141	0.038235	0.073280	0.123722	0.163348	109698	0.238020	
HGRI	000000	0.00000	000000	000000	0.00000	0.00000	000000	
HMAC	0.105739	283192	0.216000	0.382404	0.075426	155390	261161	
HFLK	0.113333	0.210266	0.057876	0.162367	0.493401	0.207700	036570	
HXEN	0.136043	025172	022544	0.021137	169920	0.409970	165565	
GCTD	0.202766	0.107540	0.263458	116593	087284	0.158845	260868	
GLY	0.030851	0.361360	0.128447	0.136620	074402	057233	0.387431	
GEGL	0.224477	0.310372	0.253670	060752	282824	188860	043619	
GMCH	0.260510	0.058611	201314	310829	144181	115322	0.040279	
GSCH	0.114710	0.206629	0.401255	0.132537	373478	0.139775	0.079735	
GANU	0.098744	164734	023983	004239	089034	0.292075	0.322986	
GPAR	107710	0.224302	0.215014	0.005330	0.399296	0.137925	028137	
GCLH	123580	049984	0.235689	0.301579	158492	0.059816	260422	

RF-Table 17. Initial MANOVA on the first principal component for 1991 rockfish, with nested site effect blocked for species effect. Significant P values (P < 0.05) are highlighted.

Dependent Variable: S	CALE1 Ge	neral Linear Models Proce	edure		
Source	DF Sum	of Squares	Mean Square	F Value	Pr > F
Model		3.27008545	40.54501424	31.19	0.0001
Error		9.60018963	1.30000206	01117	010001
Corrected Total		2.87027508	1.50000200		
oorrected rotar	<i></i>	2.07027300			
R-Square	c.v.		SE	SCALE1 Mea:	n
0.670405	-9999.99	1.1401763	33	-0.000000	0
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SPECIES		1.50314421	60.75157211	46.73	0.0001
Oiled vs. clean (OS)		4.97516303	14.97516303	11.52	0.0010
SITE(OS)	2 2	3.11920261	11.55960131	8.89	0.0003
AGE		3.67257559	83.67257559	64.36	0.0001
Source	DF 1	ype III SS	Mean Square	F Value	Pr > F
SPECIES		8.76283854	99.38141927	76.45	0.0001
Oiled vs. clean (OS)		9.28094651	9.28094651	7.14	0.0089
SITE(OS)		4.66624863	2.33312431	1.79	0.1719
AGE		3.67257559	83.67257559	64.36	0.0001
		510/20/555	03.07237333	04.50	0.0001
	- · · · ·	T for HO:	Pr > T	Std Error of	
Parameter	Estimat	e Parameter=0)	E	stimate
INTERCEPT	-3.71645795	6 B -10.28	3 0.0	001 0	.36142974
SPECIES CO	2.77750147	ОВ 7.17	7 0.0		.38730747
QB	3.59270992	5 B 12.26	5 0.0		.29294523
YE	0.0000000				•
OS C	-0.99182835	8 B -2.55	5 0.0	125 0	.38909050
0	0.0000000				
SITE(OS) GRAVINA C	0.71524040		0.0	615 0	.37778049
ZAIKOFF C	0.0000000			0	
Danger I O	0.11631946		3 0.7	411 n	.35101210
Herring O	0.00000000	0 P			
AGE	0.08591732		2 0.0	001 0	.01070930
	0.00091/02	- 8.02	. 0.0	001 0	· 010/0320

RF-Table 18. Initial MANOVA on the second principal component for 1991 rockfish, with nested site effect blocked for species effect. Significant P values (P < 0.05) are highlighted.

Dependent Variable: S	CALE2	General Linea	r Models Procedur	e		
Source Model Error Corrected Total	DF 6 92 98	Sum of Squares 36.98190121 169.78868014 206.77058136	6.	in Square 16365020 84552913	F Value 3.34	Pr > F 0.0051
R-Square 0.178855		C.V. ~9999.99	Root MSE 1.35850253		SCALE2 -0.0000	
Source	DF	Type I SS	Меа	in Square	F Value	Pr > F
SPECIES Oiled vs. clean (OS) SITE(OS) AGE	2 1 2 1	1.91306344 1.65000668 11.29848867 22.12034242	1. 5.	95653172 65000668 64924434 12034242	0.52 0.89 3.06 11.99	0.5973 0.3469 0.0516 0.0008
Source	DF	Type III SS	Mea	in Square	F Value	Pr > F
SPECIES Oiled vs. clean (OS) SITE(OS) AGE	2 1 2 1	2.08570064 0.37173642 3.23774884 22.12034242	0. 1.	04285032 37173642 61887442 12034242	0.57 0.20 0.88 11.99	0.5703 0.6546 0.4194 0.0008
Parameter		T Estimate	for HO: Parameter=O	Pr > T	Std Er	ror of Estimate
INTERCEPT SPECIES CO QB YE		1.346435522 B -0.488389744 B -0.205006869 B 0.000000000 B	3.13 -1.06 -0.59	0.0024 0.2927 0.5584	1	0.43063797 0.46147088 0.34903973
OS C O		-0.073530188 B 0.000000000 B	-0.16	0.8743	l	0.46359534
SITE(OS) GRAVINA C Zaikoff C		-0.128080989 B 0.000000000 B	-0.28	0.7766	5	0.45011964
Danger_I O Herring_ O		-0.552274422 B 0.000000000 B	-1.32	0.1899		0.41822551
AGE	-	-0.044175868	-3.46	0.0008	8	0.01275997

RF-Table 19. Initial MANOVA on the third principal component for 1991 rockfish, with nested site effect blocked for species effect. Significant P values (P < 0.05) are highlighted.

Dependent Variable: S	CALE3	General Linear	Models Procedure		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	6	44.98604481	7.49767414		0.0003
Error	92	147.05543976	1.59842869		0.0000
Corrected Total	98	192.04148457			
R-Square		c.v.	Root MSE	SCALI	I3 Mean
0.234252		-9999.99	1.26428980	-0.00	000000
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SPECIES	2	37.19984290	18.59992145	11.64	0.0001
Oiled vs. clean (OS)	1	0.18449049	0.18449049	0.12	0.7348
SITE(OS)	2	6.02417008	3.01208504	1.88	0.1577
AGE	1	1.57754133	1.57754133	0.99	0.3231
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SPECIES	2	27.76152349	13.88076175	8.68	0.0004
Oiled vs. clean (OS)	1	0.01289257	0.01289257	0.01	0.9286
SITE(OS)	2	4.01380329	2.00690165	1.26	0.2898
AGE	1	1.57754133	1.57754133	0.99	0.3231
Parameter		Estimate	T for HO: Parameter=0	Pr > T	Std Error of Estimate
			T dI dine e e i = o		Escimace
INTERCEPT		0.081216489 B	0.20	0.8399	0.40077304
SPECIES CO	•	-1.760112723 В	-4.10	0.0001	0.42946768
QB	-	-0.410936248 B	-1.27	0.2090	0.32483368
YE		0.00000000 B	•	•	•
OS C	-	-0.137619216 B	-0.32	0.7505	0.43144480
0		0.00000000 B	•	•	•
SITE(OS) GRAVINA C		0.621434062 B	1.48	0.1414	0.41890365
ZAIKOFF C		0.00000000 B	•	•	•
Danger_I O		0.294584845 B	0.76	0.4511	0.38922139
Herring_ O		0.00000000 B	•	•	•
AGE		0.011797216	0.99	0.3231	0.01187506

RF-Table 20. Initial MANOVA on the fourth principal component for 1991 rockfish, with nested site effect blocked for species effect. Significant P values (P < 0.05) are highlighted.

Dependent Variable: S	CALE4 Gen	eral Linear Models F	Procedure		
Source Model Error Corrected Total	6 66 92 125	f Squares .39906963 .52788392 .92695355	Mean Square 11.06651161 1.36443352	F Value 8.11	Pr > F 0.0001
R-Square 0.345960	C.V. 9999.99		ot MSE 308969		4 Mean 0000000
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SPECIES Oiled vs. clean (OS) SITE(OS)	1 5	.82459977 .07900842 .58323129	23.41229988 5.07900842 1.79161564	17.16 3.72 1.31	0.0001 0.0568 0.2740
AGE	1 10	.91223015	10.91223015	8.00	0.0057
Source SPECIES Oiled vs. clean (OS) SITE(OS) AGE	2 14 1 4 2 3	pe III SS .92153163 .30343467 .91190374 .91223015	Mean Square 7.46076582 4.30343467 1.95595187 10.91223015	F Value 5.47 3.15 1.43 8.00	Pr > F 0.0057 0.0790 0.2437 0.0057
Parameter	Estimate	T for Paramet		Pr > T	Std Error of Estimate
INTERCEPT SPECIES CO QB YE	0.3337122457 5803827512 9919494156 0.0000000000	B - B -	0.90 -1.46 -3.31	0.3698 0.1470 0.0014	0.37027813 0.39678938 0.30011701
OS C O	8775122876	в -	-2.20	0.0302	0.39861607
SITE(OS) GRAVINA C ZAIKOFF C Danger I O	0.3407404192 0.0000000000 4713564799	B	0.88	0.3809	0.38702917
Herring_ O AGE	0.0000000000000000000000000000000000000		2.83	0.0057	0.01097148

RF-Table 21. MANOVA on all data for 1991 rockfish, with nested site effects, blocked by species, to test the hypothesis of "no overall oiled vs. clean effect." Significant P values are highlighted.

.

General Linear Models Procedure Multivariate Analysis of Variance

H = Type III SS&CP Matrix for Oiled vs. clean

	SCALE1	SCALE2	SCALE3	SCALE4
SCALE1	9.2809465103	-1.857435287	-0.345912154	6.3198059257
SCALE2	-1.857435287	0.3717364218	0.0692288701	-1.264809631
SCALE3	-0.345912154	0.0692288701	0.0128925663	-0.235546846
SCALE4	6.3198059257	-1.264809631	-0.235546846	4.3034346652

Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SS&CP Matrix for Oiled vs. clean E = Error SS&CP Matrix

Characteristic Root	Percent				
		SCALE1	SCALE2	SCALE3	SCALE4
0.1191874795 0.0000000000 0.0000000000 0.0000000000	100.00 0.00 0.00 0.00	0.08127202 -0.01739342 -0.03154229 0.04812972	-0.03977612 0.01343610 0.05052508 0.04994274	0.00088285 0.08300061 -0.02003005 -0.00889334	0.03542671 0.03403506 0.06007475 -0.05648912

Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall "Oiled vs. clean" Effect H = Type III SS&CP Matrix for Oiled vs. clean E = Error SS&CP Matrix

	S=1 M=1	N=43.5			
Statistic	Value	F	Num DF	Den DF	Pr > F
Wilks' Lambda	0.89350535	2.6519	4	89	0.0383
Pillai's Trace	0.10649465	2.6519	4	89	0.0383
Hotelling-Lawley Trace	0.11918748	2.6519	4	89	0.0383
Roy's Greatest Root	0.11918748	2.6519	4	89	0.0383

.

RF-Table 22. MANOVA on all data for 1991 rockfish, with nested site effects, blocked by species, to test the hypothesis of "no overall site (within oiled or clean site) effect." Note that none of the values are significant.

General Linear Models Procedure Multivariate Analysis of Variance

H = Type III SS&CP Matrix for SITE(oiled or clean)

	SCALE1	SCALE2	SCALE3	SCALE4
SCALE1	4.6662486261	-0.975364794	4.1051460953	2.0844683854
SCALE2	-0.975364794	3.2377488355	-1.962839361	2.5714856302
SCALE3	4.1051460953	-1.962839361	4.0138032923	0.7387733234
SCALE4	2.0844683854	2.5714856302	0.7387733234	3.9119037368

Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SS&CP Matrix for SITE(oiled or clean) E = Error SS&CP Matrix

Characteristic Root	Percent	c	Characteristic V	ector V'EV=1	
		SCALE1	SCALE2	SCALE3	SCALE4
0.0830632870	68.02	0.07041202	-0.04490246	0.04721645	0.01418877
0.0390525656	31.98	-0.01063790	0.03738257	0.01238232	0.07636821
0.000000000	0.00	-0.07142337	-0.00710634	0.06393113	0.03065592
0.000000000	0.00	0.00683696	0.05784066	0.03000448	-0.04733101

Manova Test Criteria and F Approximations for the Hypothesis of no Overall SITE(oiled or clean) Effect H = Type III SS&CP Matrix for SITE(oiled or clean) E = Error SS&CP Matrix

	3-2 M-0.	5 N-45.5			
Statistic	Value	F	Num DF	Den DF	Pr > F
Wilks' Lambda Pillai's Trace Hotelling-Lawley Trace Roy's Greatest Root	0.88860478 0.11427770 0.12211585 0.08306329	1.3535 1.3635 1.3433 1.8689	8 8 8 4	178 180 176 90	0.2201 0.2154 0.2250 0.1228

M-0 5 N-43 5

S=2

NOTE: F Statistic for Roy's Greatest Root is an upper bound. NOTE: F Statistic for Wilks' Lambda is exact.

RF-Table 23. MANOVA on all data for 1991 rockfish, with nested site effects, blocked by species, to test the hypothesis of "no overall age effect." Significant P values are highlighted.

General Linear Models Procedure Multivariate Analysis of Variance

H = Type III SS&CP Matrix for AGE

	SCALE1	SCALE2	SCALE3	SCALE4
SCALE1	83.672575595	-43.02169248	11.488992388	30.216790074
SCALE2	-43.02169248	22.120342423	-5.90726285	-15.53648183
SCALE3	11.488992388	-5.90726285	1.5775413289	4.1490353163
SCALE4	30.216790074	-15.53648183	4.1490353163	10.912230153

Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SS&CP Matrix for AGE E = Error SS&CP Matrix

Characteristic Root	Percent	c	haracteristic V	ector V'EV=1	
		SCALE1	SCALE2	SCALE3	SCALE4
1.2242274308	100.00	0.08750288	-0.05353655	0.00674235	0.01385634
0.000000000	0.00	0.02428914	0.05621511	0.03641300	-0.00106611
0.000000000	0.00	-0.02695265	-0.02787724	0.07551764	0.00622998
0.000000000	0.00	-0.03529727	0.00250761	0.01720159	0.09477071

Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall AGE Effect H = Type III SS&CP Matrix for AGE E = Error SS&CP Matrix

S=1	M=1	N=43.5

Statistic	Value	F	Num DF	Den DF	Pr > F
Wilks' Lambda	0.44959431	27.2391	4	89	0.0001
Pillai's Trace	0.55040569	27.2391	4	89	0.0001
Hotelling-Lawley Trace	1.22422743	27.2391	4	89	0.0001
Roy's Greatest Root	1.22422743	27.2391	4	89	0.0001

RF-Table 24. Initial MANOVA on the sixth and seventh principal component for 1991 rockfish, blocked for species effect. Significant P values (P < 0.05) are highlighted.

Source Model Error Corrected	Total	DF 4 94 98	Sum of Squares 23.86184971 117.10111603 140.96296574	Nean Square 5.96546243 1.24575655		Pr > F 0.0015
	R-Squ 0.169		C.V. 9999.99	Root MSE 1.11613465		SCALE6 Mean 0.00000000
Source SPECIES OS AGE Source SPECIES OS AGE		DF 2 1 1 DF 2 1 1	Type I SS 8.98048906 13.60312636 1.27823429 Type III SS 12.84188720 14.46608490 1.27823429	Nean Square 4.49024453 13.60312636 1.27823429 Nean Square 6.42094360 14.46608490 1.27823429	3.60 10.92 1.03 F Value 5.15	Pr > F 0.0310 0.0013 0.3137 Pr > F 0.0075 0.0010 0.3137
Parameter INTERCEPT SPECIES OS AGE	CO QB YE C O		Estimate 0.5184109024 B 5262111951 B 0.4457286617 B 0.000000000 B 8268717176 B 0.000000000 B 0100772766	T for HO: Parameter=0 1.51 -1.55 1.59 -3.41 -1.01	Pr > [T] 0.1355 0.1241 0.1159 0.0010 0.3137	Std Error of Estimate 0.34425825 0.33914040 0.28092164 0.24264940 0.00994843

Dependent Variable: SCALE6

NOTE: The X'X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters.

Dependent Variable: SCALE7

Source Model Error Corrected T	DF 4 94 otal 98	Sum of Squares 17.86245487 109.97000627 127.83246114	Mean Square 4.46561372 1.16989368	F Value 3.82	
	R-Square 0.139733	C.V. -9999.99	Root MSE 1.08161624		SCALE7 Mean -0.00000000
Source SPECIES OS AGE	DF 2 1 1	Type I SS 4.95256225 12.66874937 0.24114325	Wean Square 2.47628112 12.66874937 0.24114325	2.12	0.1261
Source SPECIES DS AGE	DF 2 1 1	Type III SS 3.08476312 12.01313936 0.24114325	Nean Square 1.54238156 12.01313936 0.24114325	1.32	
Parameter		Estimate	T for HO: Parameter=O	Pr > {T}	Std Error of Estimate
INTERCEPT OS C O AGE		0.1801974309 B 7535132447 B 0.0000000000 B 0.0043769895	0.54 -3.20 0.45	0.5904 0.0018 0.6509	0.33361147 0.23514504 0.00964076

NOTE: The X'X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters.

Figure Legends. 1991 Rockfish

Pathologist/Photographer - Mark S. Okihiro

- RF-Figure 1. Normal liver in fish QB1-91. Glycogen laden hepatocytes are organized into orderly tubules. Hepatic veins (V) contain small amounts of blood. HE 110X.
- RF-Figure 2. Normal liver in fish QB1-91. Higher magnification of figure 1. HE 220X.
- RF-Figure 3. Normal liver in fish QB1-91. Hepatocytes lining sinusoids (S) are glycogen laden and have small, round, regular nuclei (arrow heads). V = hepatic vein. HE 440X.
- RF-Figure 4. Severe megalocytosis in fish QB28-91. Many hepatocytes contain large vacuoles (arrow heads) and karyomegalic nuclei. V = hepatic vein and BD = bile duct. HE 220X.
- RF-Figure 5. Megalocytosis in fish QB28-91. Many hepatocytes have markedly enlarged nuclei (arrow heads) and scattered hepatocytes are necrotic and rounded up (arrows). HE 440X.
- RF-Figure 6. Megalocytosis in fish QB28-91. Marked karyomegaly in some hepatocytes (arrow heads) and some have multiple nucleoli. HE 440X.
- RF-Figure 7. Scattered macrophage aggregates (M) and sinusoidal fibrosis (arrow heads) in fish QB71-91. HE 110X.
- RF-Figure 8. Marked sinusoidal fibrosis (arrow heads) and scattered macrophage aggregates (M) in fish QB71-91. HE 220X.
- RF-Figure 9. Focal bile duct hyperplasia in fish QB68-91. M = macrophage aggregate. HE 220X.
- RF-Figure 10. Numerous greatly enlarged macrophage aggregates (M) in the spleen of fish QB68-91. HE 44X.
- RF-Figure 11. Large numbers of macrophage aggregates (M) in the kidney of fish QB78-91. HE 110X.
- RF-Figure 12. Tubular degeneration. Acidophilic round bodies are likely cellular blebs which have sloughed into the lumen (arrow heads) of fish QB22-91. HE 220X.

RF-Figure 13. Vacuolar degeneration (arrow heads) and macrophage aggregates (M) in the kidney of fish QB22-91. HE 220X.

- RF-Figure 14. Vacuolar degeneration and necrosis (arrow heads) in the renal tubular epithelium of fish QB22-91. HE 440X.
- RF-Figure 15. Tubular adenoma (arrow heads) in the kidney of fish QB105-91 from an oiled site (Herring Bay). HE 44X.
- RF-Figure 16. Endocardial macrophage aggregates (arrow heads) in the atrium (heart) of fish QB78-91. HE 110X.
- RF-Figure 17. Pericardial lymphocytic inflammation (arrow heads) and fibrosis over the ventricular myocardium (heart) of fish QB1-91. HE 110X.
- RF-Figure 18. Adult trematodes (flukes, F) in the ventricular lumen of fish QB27-91. There are scattered small foci of lymphocytic endocardial inflammation (arrow heads). HE 110X.
- RF-Figure 19. Normal gill filaments (F) in fish YE31-91. C = filament cartilage. HE 44X.
- RF-Figure 20. Normal gill filament (F) in fish YE31-91. Note the thin lamellae (L) coming off the filament.
- RF-Figure 21. Severe, focal, filament cartilage (C) dysplasia in fish QB60-91. HE 44X.
- RF-Figure 22. Lamellar fusion in fish QB22-91. HE 44X.
- RF-Figure 23. Severe squamous epithelial hyperplasia (arrow heads) in the gill of fish QB22-91. Note the complete loss of interlamellar spaces. HE 44X.
- RF-Figure 24. Mucous cell (goblet cell) hyperplasia (arrow heads) in fish QB22-91. There is mild mononuclear inflammation in the filament interstitium (I) surrounding the cartilage (C). HE 110X.
- RF-Figure 25. Massive, diffuse chloride cell hyperplasia in the gill of fish YE104-91. HE 44X.
- RF-Figure 26. Severe chloride cell hyperplasia in the gill of fish YE2-91. HE 220X.

C. Significance of Lesions in rockfish from 1990, 1991, and beyond (?).

Principal components analysis was used to identify significant differences in oiled vs. clean effects; graphical presentations included here only approximate the highlights of this analysis. Sampling from eight sites in 1990 (4 in PWS and 4 off the Kenai peninsula) included eight species of rockfish. Statistical analysis revealed significant species differences, and fish from PWS seemed more affected by EVOS. Therefore, sampling was streamlined in 1991 to include only the same four sites in PWS; in 1991, only copper, quillback, and yelloweye rockfish were sampled. Each RF-Graphic is designed to compare findings in 1990 with 1991 (i.e., only PWS). Because of the small number of fish of a given species at each site in 1990, only comparisons between Quillback and Yelloweye rockfish are relevant for most lesions. Although sex differences were not analyzed statistically, mean scores were determined for each sex for copper, quillback, and yelloweye rockfish from PWS (RF-Table 25).

RF-Graphic 1 shows that hepatic lipidosis, particularly in yelloweye rockfish, is more related to exposure status than to sex. At oiled sites in PWS, female yelloweye rockfish had greater mean lipidosis scores in 1990 whereas scores for males were higher in 1991. For quillback rockfish, mean lipidosis scores were low for both sexes in 1990, but were higher in fish (both sexes) from oiled sites in 1991.

RF-Graphics 2-5 show several trends in mean scores for liver, spleen, and kidney lesions:

1) hepatocellular glycogen depletion (GLY) - was more severe for all sexspecies combinations from oiled sites in 1990, but differences were less in 1991— Evidence for decreasing effect from 1990 to 1991.

2) hepatocellular lipidosis (LIP) - was more severe for all sex-species combinations (except female quillbacks) from oiled sites in 1990. In 1991, mean lesion scores were more severe in all fish groups from oiled vs. clean sites—evidence for increasing effect from 1990 to 1991.

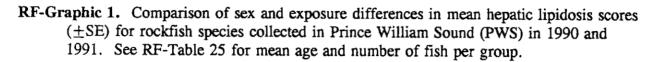
3) liver macrophage aggregates (LMA) - were more severe for most sex-species combinations from oiled sites in 1990, but not 1991—evidence for decreasing effect from 1990 to 1991.

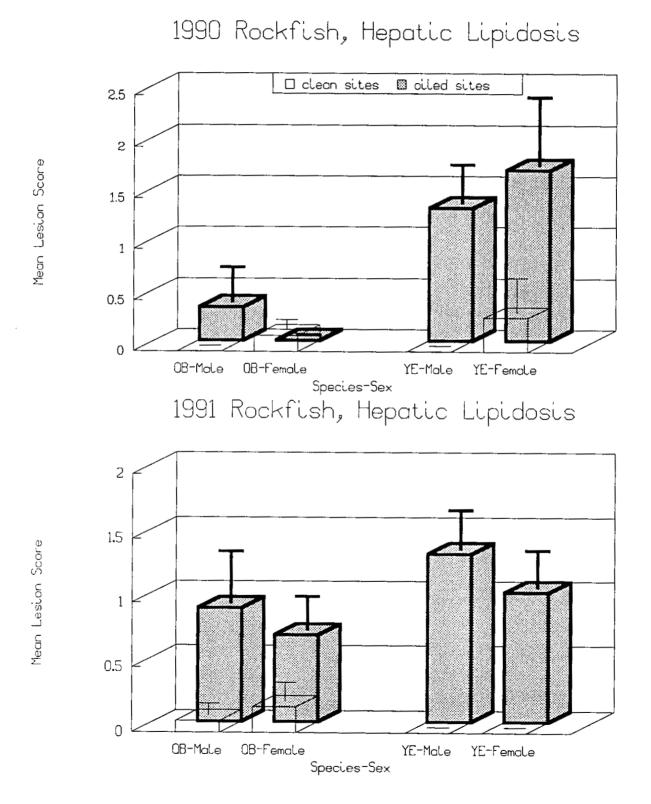
4) hepatocellular megalocytosis (MEG) and hepatic fibrosis (FIB) - mean scores were elevated for all species-sex combinations from oiled sites in 1990 and for all but female quillback rockfish in 1991—evidence for continued effect from 1990 to 1991.

5) splenic (SMA) and kidney (KMA) macrophage aggregate - scores were more severe for all rockfish from oiled sites in 1990 except male yelloweye. In 1991, scores for fish from oiled sites were more severe for quillback but not yelloweye rockfish—evidence for continued or decreased effect from 1990 to 1991. 6) other lesions - no clear trends emerge, except possibly that single cell hepatocellular necrosis was less severe in 1991 than 1990 (evidence for decreasing effects from 1990 to 1991).

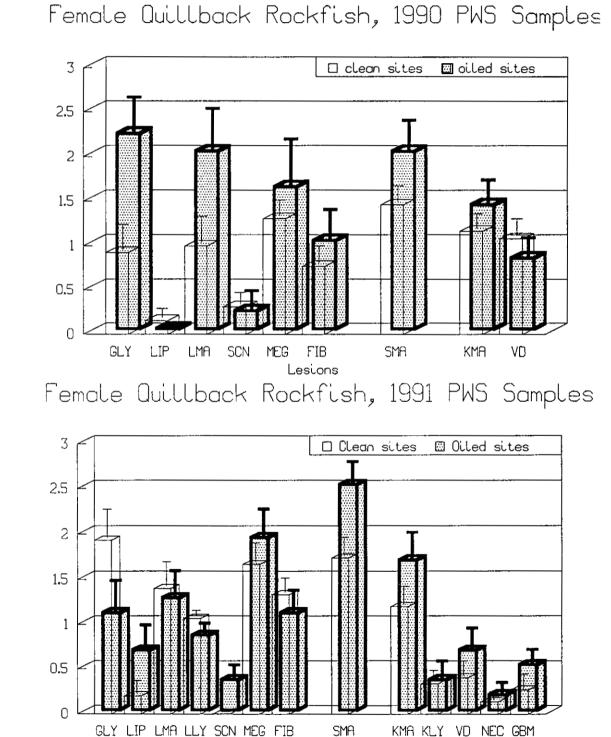
In summary, comparison of significant lesions in 1990 and 1991 reveals an increasing effect on one lesion (hepatocellular lipidosis), continued effect on four lesions (hepatocellular megalocytosis, hepatic fibrosis, splenic and kidney macrophage aggregates), and decreasing effect on one lesion (liver macrophage aggregates).

RF-Table 25. Rockfish samples from Prince William Sound in 1990 and 1991: mean length, age, and lesion scores by species and sex. Individuals for which sex was not reported/determined are not included in this table.


1990 Prince William Sound Rockfish:

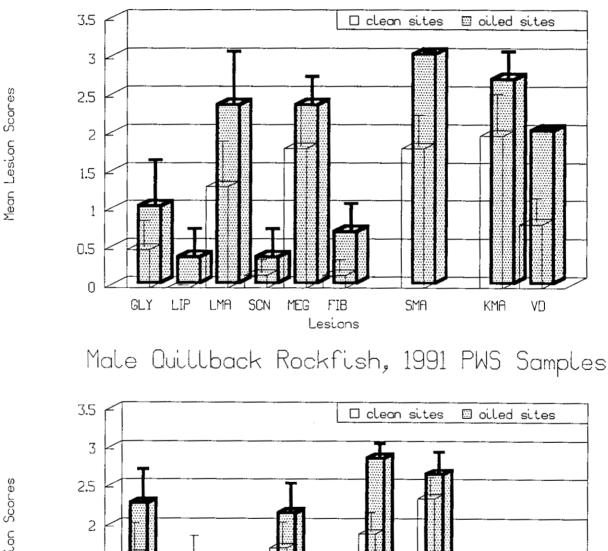

											Mea	an Lo	esio	n Sci	ores		
	Length	Age						Spl	Ki	Iney							
N	(mm)	(yrs)	SEX	Species	Oiled Status	GLY	LIP	LMA	SCN	MEG	FIB	SMA	KMA	VD			
13	276.769	13.4	F	Quillback	clean sites	.92	.15	1	.31	1.3	.77	1.5	1.2	1.1			
5	385.8	24.2	F	Quillback	oiled sites	2.2	0	2	.2	1.6	1	2	1.4	.8			
6	322.833	26.6	м	Quillback	clean sites	.5	0	1.3	.17	1.8	.17	1.8	2	.83			
3	362.333	29.33	M	Quillback	oiled sites	1	.33	2.3	.33	2.3	.67	3	2.7	2			
3	419.333	19.33	F	Yelloweye	clean sites	1	.33	.67	0	.33	1	1.3	.67	1.3			
3	549	41	F	Yelloweye	oiled sites	2.7	1.7	1.7	.67	.67	1.3	2	1	.67			
2	477.5	19	M	Yelloweye	clean sites	0	0	1	0	0	.5	1.5	1	.5			
10	527.4	26.6	M	Yelloweye	oiled sites	2.2	1.3	1	.1	.3	1.5	1.4	1	1			

112


1991 Prince William Sound Rockfish:

	M							Mean Lesion Scores																									
	Mean I Length	Age		Rockfish				_			Live							(idn					leart						Gíl				
N	(mm) (yrs)	Sex	Species	Oiled	Statu	s	GLY	LIP	LMA		SCN	MEG	FIB	SMA	KMA	KLY	VD	NEC	GBM	LY	GRI	MAC	FLK	XEN	CTD	LY	EGL	мсн	SCK	ANU	PAR	
5				Copper Copper	Combined Combined					1.8 2							.2 0		0 0	-	1 1.5	-	.6 .5	0 0							0 .25		
4		12	M	Copper Copper	Combined Combined																										.25 .33		
	329.133 353.333			Quillback Quillback																											.07 .5		
	361.818 365.375																														0 .29		
	462.333 481.294																														0 .13		
2 10	548.5 555.2			Yelloweye Yelloweye						1 1.1		0 0	0 .3	1 1	2.5 2.2	1 1.1	1.5 1.4	0 - 33	0 .33												0 .2		

RF-Graphic 2. Comparison of mean lesion scores (±SE) for female quillback rockfish collected from clean vs. oiled sites in Prince William Sound (PWS) in 1990 and 1991. See RF-Table 25 for mean age and number of fish per group, and RF-Table 13 (p. 376) for lesion abbreviations.


Mean Lesion Scores

Mean Lesion Scores

Lesions

RF-Graphic 3. Comparison of mean lesion scores $(\pm SE)$ for male quillback rockfish collected from clean vs. oiled sites in Prince William Sound (PWS) in 1990 and 1991. See RF-Table 25 for mean age and number of fish per group, and RF-Table 13 (p. 376) for lesion abbreviations.

Male Quillback Rockfish, 1990 PWS Samples

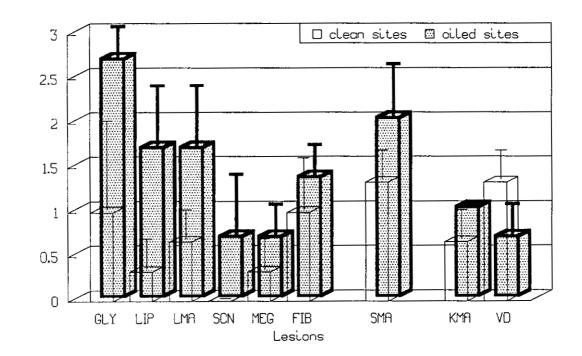
Mean Lesion Scores

1.5

1

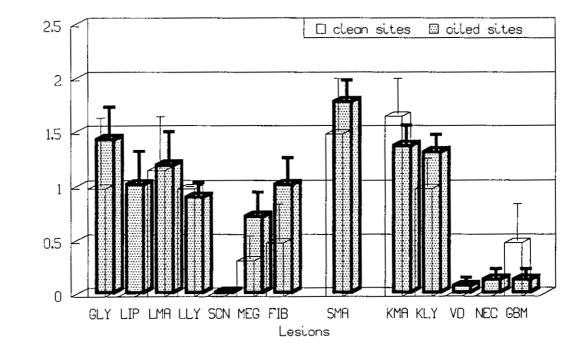
0.5

0


SMA

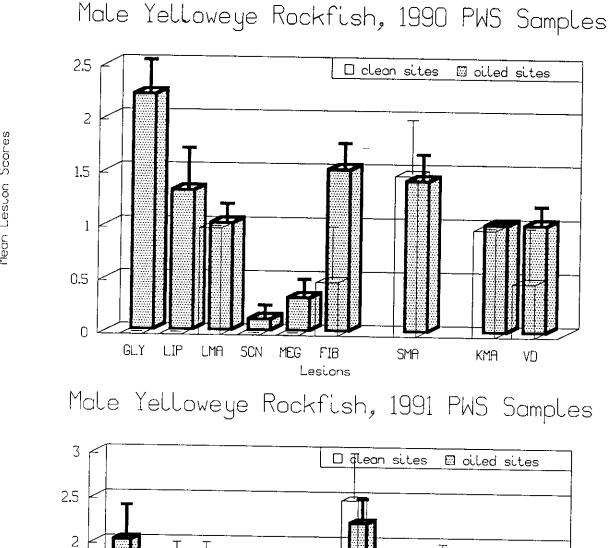
Lesions

KMA KLY VD NEC GBM


GLY LIP LMA LLY SCN MEG FIB

RF-Graphic 4. Comparison of mean lesion scores (±SE) for female yelloweye rockfish collected from clean vs. oiled sites in Prince William Sound (PWS) in 1990 and 1991. See RF-Table 25 for mean age and number of fish per group, and RF-Table 13 (p. 376) for lesion abbreviations.

Female Yelloweye Rockfish, 1990 PWS Samples


Female Yelloweye Rockfish, 1991 PWS Samples

Mean Lesion Scores

Mean Lesion Scores

RF-Graphic 5. Comparison of mean lesion scores (\pm SE) for male yelloweye rockfish collected from clean vs. oiled sites in Prince William Sound (PWS) in 1990 and 1991. See RF-Table 25 for mean age and number of fish per group, and RF-Table 13 (p. 376) for lesion abbreviations.

Mean Lesion Scores

Mean Lesion Scores

1.5

1

0.5

0

SMA

KMA KLY VD NEC GBM

GLY LIP LMA LLY SON MEG FIB

D. Potential publication involving rockfish histopathology:

TITLE- Histopathology and cytochrome-P450 induction of Rockfish (Sebastes spp.) in Prince William Sound, Alaska: chronic effects of the Exxon Valdez oil spill.

AUTHORS- Okihiro, Marty, Hinton, Smolowitz?, Stegeman, Hepler, Hoffman, others?

JOURNAL- Science ? [not without study in 1993]

E. Recommended Future Work with rockfish:

- Differences between rockfish from oiled and clean sites in 1991 were more pronounced than in 1990. We recommended sampling again in 1992; funding was denied. Although funding was approved for continued study in 1993, it was later rescinded.
- 2) A weak link in our study of oil spill effects on rockfish is lack of histopathologic data from acutely exposed fish in 1989. According to Andy Hoffman (ADF&G), the NMFS Auke Bay Laboratory sampled rockfish in 1989 for hydrocarbon analysis, and livers from many of the fish were frozen. Histopathologic examination of these livers is warranted. If the livers are allowed to melt while immersed in 10% neutral buffered formalin, architecture will likely be sufficient to analyze for necrosis (the major lesion in 1989sampled herring), macrophage aggregates and megalocytosis (common lesions in 1990- and 1991-sampled rockfish. Cytoplasmic vacuolation (e.g., lipidosis or hydropic degeneration), potentially an important lesion, might not be able to be evaluated in these previously frozen tissues.

APPENDIX F

Mixed Function Oxidase Analysis from Woods Hole Oceanographic Institution

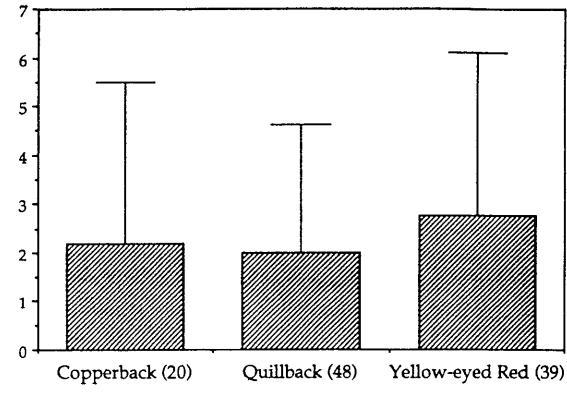
.

Occurrance of the stain

Key

x - tissue not present in section examined 0 = no staining

1 = rare cells are staining (rare)_ 251


3 \mathcal{Z} = many cells are staining (multifocal) 4 β = all cells are staining (confluent, diffuse)

Intensity of the stain when does occurr.

blank space = none 1 = neg/ very mild 2 = mild 3 = moderate4 = strong 5 = very strong

120

Immunostaining results of various rockfish species collected from Prince William Sound

Rockfish Species (n)

P4501A Staining Index

121

Rockfish immunostalning results

ADF&G No.	Hinton No.	semple date	species		hepatocyte		Die ducts	ven. endo	art. endo	mac age	l	
	-			Int.	Occ.	OXI	Occ.	Occ.	Occ.	Int.	Occ.	OXI
										T		1
1006	91-CO-102	21-Jul	copperback	<u> </u>	0	0	0	0	0	1	0	1
1034	91-CO-13	27-Jul	copperback	2	4	8	0	0	0		0	<u> </u>
1039	91-CO-17	27-Jul	copperback		0	0	0	0	0		0	1
1007	91-CO-21	21-Jul	copperback	1	4	4	0	0	0		0	<u>† – – – – – – – – – – – – – – – – – – –</u>
1037	91-CO-29	27-Jul	xadreqqoo	1	4	4	0	0	0	1	0	<u> </u>
	91-00-32	27-Jul	copperback	+	0	0	0	0	0	3	3	
1036	91-CO-37	27-Jul	copperback		0	Ō	0	0	0	<u>+</u>	0	
1038			copperback	+	0	0	0	0	0		0	┢──
1014	91-CO-40	21-Jul		┝───	0	0	x	0	0	<u> </u>	0	┢╼╍╍
1010	91-CO-54	21-Jul	copperback	1	4		Ō	0	0		0	╆────
1085	91-CO-55	9-Sep	copperback	╉╌╌╹┅╼	0	0	0	0	0		0	┟┈──
1041	91-CO-57	21-Jul	copperback		0	0	x	ŏ	ō		0	
1101	91-CO-72	10-Sep	copperback		0	0	ô	0	0	<u> </u>	0	┢──-
1013	91-CO-74	21-Jul	copperback	╂	0	0	0	0	0		0	∤
1042	91-Co-75	27-Jul	copperback		· · · · · · · · · · · · · · · · · · ·		0	0	0			┣──
1019	91-CO-85	22-Jul	copperback	<u> </u>	0	0	0	0		3	3	—
1033	91-CO-89	27-Jul	copperback	2	4	8			0		0	<u> </u>
1003	91-CO-9	21-Jul	copperback	2	4	8	0	0	0	3	4	ļ'
1015	91-CO-92	21-Jul	copperback	↓	0	0	0	0	0			Ļ
1009	91-CO-95	21-Jul	copperback	2	4	8	0	0	0	3	3	
1008	91-CO-99	21-Jบไ	copperback	L	0	0	0	0	X		0	L
1087	91-08-10	9-Sep	quillback	L	0	0	X	0	X		0	
1090	91-OB-3	9-Sep	quilback	2	4	8	0	0	0	3	3	
1065	91-QB-1	7-Aug	quillback	2	4	8	0	0	X	3	3	
1049	91-QB-101	6-Aug	quilback		0	0	0	0	0		0	
1081	91-QB-103	10-Aug	quillback		0	0	0	0	0	3	3	
1043	91-QB-105	6-Aug	quiliback	T	0	0	0	0	0		0	
1106	91-QB-106	13-Seo	quiliback		0	0	0	0	0		0	
1084	91-08-108	12-Aug	quiliback	1	0	0	0	0	0		0	
1053	91-QB-109	6-Aug	quiliback		0	0	0	0	X		0	
1044	91-QB-113	6-Aug	guillback	1	0	0	0	0	0		Ō	
1066	91-08-114	7-Aug	quillback	1	0	0	X	0	X		0	
1074	91-08-116	8-Aug	quiliback	1	0	0	0		X		0	
1078	91-QB-12	10-Aug	quilback	1	4	4	0	0	0		0	
1005	91-QB-16	21-Jul	quiliback	1	4	4	0	0	0	3	3	
1068	91-Q8-19	7-Aug	quillback	<u> </u>	o	0	0	0	0		0	
1071	91-Q8-20	7-Aug	quiliback	1	0	0	0	0	0		0	
1025	91-08-22	22-Jul	guiliback	1	0	0	0	0	0		0	
	91-08-25	9-Sep	quilback	1	4	4	0	0	0	3	3	
1086			quiliback	1	4	4	0	0	0		0	<u> </u>
1067	91-Q8-27	7-Aug	guiliback	+	0	0	0	0	0		0	<u> </u>
1088	91-Q8-28	9-Sep		2	4	8	0	Ō	0		0	t
1080	91-Q8-33	10-Aug	quilback		4	4	0	0	0		0	<u>├</u> ──
1070	91-Q8-38	7-Aug	quiliback	+	0	0	0	0	0		0	
1064	91-Q8-39	7-Aug	quiliback	+	0	0	0	0	0	├ ──┤	0	<u> </u>
1028	91-QB-45	22-Jul	quilback	+	0	0	0	0	0	3	2	
1030	91-QB-46	22-Jul	quiliback	+		4	0	0	0	\parallel	2	<u> </u>
1105	91-QB-48	12-See	quiliback	1	4	+		0	0	┨───┤	0	
1079	91-QB-50	10-Aug	quiliback	1	4	4	× 0	0		3	3	<u> </u>
1083	91-OB-51	12-Aug	quiliback	1	4	4			X 0	3	3	
1076	91-Q8-52	9-Aug	quiliback	1	4	4	0	0	0			<u> </u>
1077	91-QB-58	9-Aug	quiliback	1	4	4	0	0	<u>×</u>	2	0	<u> </u>
1029	91-QB-60	22-Jul	quiliback	1	4	4	0	0	0	┟───┤	3	┣───
1027	91-Q8-62	22-Jul	quiliback		0	0	0	0	×	<u> </u>	0	
1026	91-08-68	22-Jul	quiliback	1	4	4	0	0	0	┟┈╶┥	0	┣
1082	91-Q8-69	12-Aug	quiliback	2	4	8	0	0	0	┟╌ <u></u> ┥	0	 -
1035	91-QB-71	27-Jul	quiliback		0	0	0	0	0	3	3	
1040	91-QB-76	27-Jul	quillback	1	4	4	0	0	0	3	2	
1012	91-QB-78	21-Jul	quiliback		0	0	0	0	0	3	3	I
1021	91-08-79	22-Jul	quiliback		0	0	0	0	0	ļ	0	L
1075	91-Q8-80	8-Aug	quillback	1	4	4	0	0	0		0	L
	91-QB-82	22-Jul	quiilback		0	0	x	0	X	1 7	Ó	

-

Rockfish immunostaining results

	Hinton No.	sample date	\$090198		hepatocyte		bie ducts	ven. endo.	art. endo	mac age		
ADF&G No.	Plinton 140.			Int.	Occ.	OXI	Occ.	000.	Occ.	Int.	Occ.	OXI
1001	01 08 11	21-Jul	quilibeck	1	4	4	0	0	0	3	2	6
1001	91-Q8-83 91-Q8-86	9-500	quiliback		Ō	0	0	0	0		0	0
1100	91-QB-87	21-Jul	quiliback		0	0	0	0	x		0	0
1002	91-08-90	10-500	quilback		0	0	0	0	X		0	0
1102		21-Jul	guillback	1	4	4	0	0	0	3	3	9
1011	91-QB-91	12-Sep	quilibeck		0	0.	0	0	0	1	0	0
1103	91-QB-94 91-Q8-96	8-Aug	quiliback		0	0	0	0	X	2	3	6
1073	91-08-98	7-Aug	quiliback		0	0	0	0	X		0	0
1072	91-YE-100	6-Aug	yellow-eyed red		0	0	0	0	0		0	0
1051	91-YE-104	22-Jul	yellow-eyed red		0	0	0	0	0		0	0
1017	91-YE-107	14-Sep	yellow-eyed red	1	4	4	0	0	0	3	2	8
1107	91-YE-11	7-Aug	yellow-eyed red	2	4	8	0	0	0		0	0
1058	91-YE-110	22-Jul	yellow-eyed red		0	0	0	0	0		0	0
1018	91-YE-111	7-Aug	yellow-eyed red	1	4	4	0	0	0		0	0
1056	91-YE-112	7-Aug	yellow-eyed red	<u> </u>	0	0	0	0	0		0	0
1069	91-YE-115	7-Aug	yellow-eyed red		0	0	0	0	0	1	0	0
1089	91-YE-14	9-Sep	vellow-eyed red	2	4	8	0	0	0		0	0
	91-YE-15	9-Sep	vellow-eyed red	2	4	8	0	0	0	1	0	0
1096	91-YE-2	7-Aug	yellow-eyed red	1	4	4	0	0	0		0	0
1055	91-YE-23	7-Aug	yellow-eyed red	1	4	4	0	0	0		0	0
1063	91-1E-23	9-Sep	yellow-eyed red	2	4	8	0	0	0	T	0	0
1055	91-YE-30	7-Aug	yellow-eyed red	2	4	8	0	0	0		0	0
1039	91-YE-31	26-Jul	yellow-eyed red	2	4	8	0	0	0		0	0
1032	91-YE-34	28-Jul	yellow-eyed red	<u> </u>	0	0	0	0	0		0	0
1092	91-YE-35	9-500	yellow-eyed red	1	0	0	0	0	0		L	0
1098	91-YE-36	9-Sep	yellow-eyed red	1	0	0	0	0	0		0	0
1023	91-YE-4	22-Jul	yellow-eyed red	2	4	8	0	0	0		0	<u> </u>
1048	91-YE-42	6-Aug	yellow-eyed red	1	0	0	0	0	0	1	0	0
1050	91-YE-44	6-Aug	yellow-eyed red	1	0	0	X	0	x	_	0	0
1104	91-YE-49	12-Sep	yellow-eyed red	1	4	4	0	0	0	<u> </u>	0	<u>0</u>
1047	91-YE-5	6-Aug	vellow-eyed red	1	0	0	0	0	0		0	0
1052	91-YE-53	6-Aug	yellow-eyed red	1	0	0	X	0	X	<u> </u>	0	0
1062	91-YE-56	7 Aug	yellow-eyed red		0	0	0	0	0	<u> </u>	0	<u> </u>
1095	91-YE-6	9-Sep	yellow-eyed red		0	0	0	0	0	_	0	0
1045	91-YE-61	6-Aug	yellow-eyed red		4	4	0	0	0		0	0
1099	91-YE-63	9-Sep	yellow-eyed red		4	4	0	0	0	<u> </u>	<u> </u>	0
1054	91-YE-64	7-Aug	yellow-eyed red		0	0	0	•	0	+	0	-
1024	91-YE-65	22-Jul	yellow-eyed red		0	0	x	0	X	_	0	0
1091	91-YE-66	9-Sep	yellow-eyed red		0	0	0	0	0	<u> </u>	0	0
1057	91-YE-7	7-Aug	yellow-eyed red		4	8	0	0	0	- 	0	0
1060	91-YE-70		yellow-eyed red		0	0	0	0	0		0	0
1004	91-YE-73		yellow-eyed red	1	4	4	0	<u> </u>	0	+	0	0
1022	91 YE 77		yellow-eyed red		0	0	0	0	0		0	
1097	91-YE-81		yellow-eyed red		4	8	0	0	0	- 	0	
1016	91-YE-84		yellow-eyed red		0	0	X	0	X		0	<u> </u>
1094	91-YE-88		yellow-eyed red		0	0	0	0	0		0	
1046	91-YE-97		yellow-eyed red		4	4	0	0	0		0	c

One Factor ANOVA X 1: Rockfish species Y 1: Scaled P4501a response

Source:	DF:	Sum Squares:	Mean Square:	F-test:
Between groups	2	13.0732	6.5366	.717
Within groups	104	948.1231	9.1166	p = .4906
Total	106	961.1963		

Analysis of Variance Table

Model # estimate of between component variance = -.0764

One Factor ANOVA X 1: Rockfish species Y 1: Scaled P4501a response

Group:	Count:	Mean:	Std. Dev.:	Std. Error:
copperback	20	2.2	3.3023	.7384
quilback	48	2	2.6093	.3766
yellow-eyed red	39	2.7692	3.3282	.5329

One Factor ANOVA X 1: Rockfish species Y 1: Scaled P4501a response

Comparison:	Mean Diff.:	Fisher PLSD:	Scheffe F-test:	Dunnett t:
copperback vs. quillback	.2	1.5937	.031	.2489
copperback vs. yellow-ey	5692	1.6469	.2349	.6855
quiliback vs. yellow-eyed	7692	1.2909	.6983	1.1818