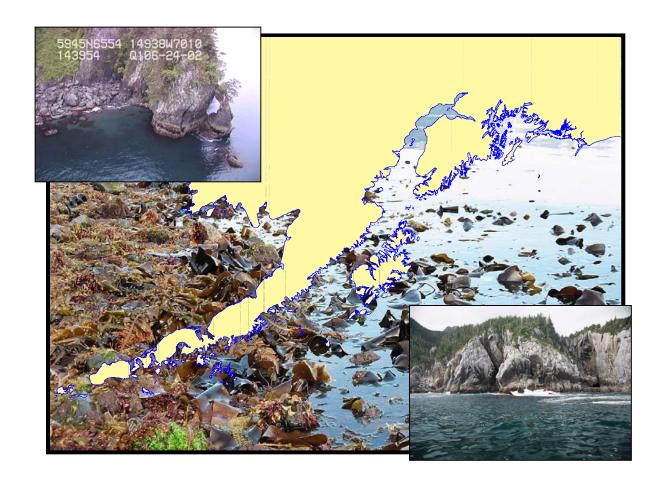
Exxon Valdez Oil Spill Trustee Council Gulf of Alaska Ecosystem Monitoring Project Final Report


ShoreZone Mapping of the Outer Kenai Coast, Alaska Gulf of Alaska Ecosystem Monitoring Project 02613

John Harper

Coastal and Ocean Resources, Inc. 214-9865 W. Saanich Road Sidney, BC V8L 5Y8 www.coastalandoceans.com CORI Project: 02-14 8 May 2003

EVOS Project: 02613

Shore-Zone Mapping of the Outer Kenai Coast, Alaska

for The Exxon Valdez Oil Spill Trustee Council 441 W. 5th Ave, Suite 500 Anchorage, Alaska 99501-2340

The Exxon Valdez Oil Spill Trustee Council administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The Council administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. If you believe you have been discriminated against in any program, activity, or facility, or if you desire further information, please write to: EVOS Trustee Council, 441 West 5th Avenue, Suite 500, Anchorage, Alaska 99501-2340; or O.E.O. U.S. Department of the Interior, Washington D.C. 20240.

Exxon Valdez Oil Spill Trustee Council Gulf of Alaska Ecosystem Monitoring Project Final Report

ShoreZone Mapping of the Outer Kenai Coast, Alaska Gulf of Alaska Ecosystem Monitoring Project 02613

John Harper

Coastal and Ocean Resources, Inc. 214-9865 W. Saanich Road Sidney, BC V8L 5Y8 www.coastalandoceans.com This project documented and mapped coastal habitat on the Outer Kenai Coast of Alaska and was funded by the Exxon Valdez Oil Spill Trustee Council (EVOS). This report is intended as a general overview of the project and as a description of deliverables.

The shoreline was flown and imaged during extremely low tides of June 2002. In addition to the georeferenced imagery, narration on the tapes provides a description of intertidal and subtidal biota, intertidal substrate and morphology and man-made features of interest. The 1,400, km of shoreline is documented on 17 miniDV (digital) videotapes. The video imagery and associated narration are the raw data for characterizing coastal habitat.

The digital imagery was sampled and is posted to the web to allow complete public access. In a unique interactive website, sections of the coast can be windowed, a flight starting point selected and the user can "fly" the shoreline using forward-reverse and speed buttons of the imagery player (http://imf.geocortex.net/mapping/cori/launch.html).

The Alaska ShoreZone Mapping Protocol (draft) was used to classify the shoreline in terms of biota, morphology and substrate. The mapping system has been applied to the entire BC and Washington shorelines, to Cook Inlet and an EVOS-funded project is currently underway to define an Alaskan standard. The system subdivides the shoreline into alongshore units and across-shore components and a variety of physical and biological data is recorded for each unit and component. This data can be displayed on maps through GIS. A total of 3,019 units and 9,993 across-shore components were defined for the 1,381 km of shoreline.

Maps of a few selected coastal habitat themes are included as part of this report. More precise habitat units can be delineated by using specific queries of the database (e.g., delineation of sandlance spawning habitat by searching for protected shorelines with sand berms or sand & pebble berms). The complete spatial data set, documented by the meta-data forms, and the ShoreZone database are included as part of this deliverable.

The data is potentially useful for a wide-variety of applications, including oil spill response, delineation of essential fish habitat, recreational planning and marine protected area planning.

Harper, J. 2003. Mapping Marine Habitats: Prince William Sound to McCarty Fjord. EVOSTC Restoration Project 02195 Final Report.

		CONTENTS					
ACK	NOWL	EDGEMENTS					
1.0	Introduction						
	1.1	Overall Description of the Project					
	1.2	Summary of Data Projects					
2.0	Maps						
	2.1	Meta Data					
	2.2	Shape Files					
	2.3	Selected Thematic Maps					
3.0	Database						
	3.1	Database Organization					
	3.2	Data Dictionary					
4.0	Sumn	Summary of Deliverables					
	4.1	Videotapes, Flightline Manual and Navigation Files	1				
	4.2	Gulf of Alaska Website	1				
	4.3	ArcView Map Files	1				
	4.4	Access97 Data Files	1				
5.0	Refer	rences	1				
Appe	endices						
	A	Meta Data Forms					
	В	Selected Thematic Maps of Mapping Region					
	C	Bio-band Descriptions					
	D	Data Dictionary					
	Е	Data CD					

We gratefully acknowledge the funding support form the Exxon Valdez Oil Spill Trustee Council (EVOS) for this project. The Cook Inlet Citizens Advisory Council (CIRCAC) and the Kenai Peninsula Borough also provided support for a field survey, and although that field program is not discussed within this report, the information significantly improved our imagery interpretation. We also appreciate the support of the Kenai Fiords National Park and the Port Graham Corporation for providing access for fuel caches that were required during the survey. Joel Cusick of the National Park Service greatly assisted with advice on GIS data handling procedures and with provision of tide-controlled digital photography within Kenai Fiord National Park. Bill Hauser did a great job managing this contract on behalf of ADF&G.

The following individuals and organizations participated in the project.

Individual	Organization	Notes		
John Harper	Coastal and Ocean Resources Inc	Principal Investigator		
Neil Borecky, Rachel Speller, Sheri	Coastal and Ocean Resources Inc	physical shore-zone mapping		
Ward				
Kitty Lloyd, Mary Morris, Nonnie	Archipelago Marine Research Ltd.	biological shore-zone mapping		
Smith				
Chau Kum Liu	Archipelago Marine Research Ltd.	database design		
Peter Amatto	Kenai Fiords National Park	provided unpublished reports on		
		intertidal biota		
Bill Hauser	Alaska Department of Fish and	contract management		
	Game			
Arnie Johnson	Evergreen Helicopters	pilot and helicopter charter		
Susan Saupe	Cook Inlet Citizens Advisory	advice on biota distributions		
	Council (CIRCAC)			
Steven Myhill-Jones, Jackson	Latitude Geographics Group Ltd.	imagery website design and support		
Harper				
Andy Wilder	Weather Permitting (water taxi)	fuel placement		

1.1 Overall Description of the Project

This project was funded as part of the Gulf of Alaska Ecosystem Monitoring Program (GEM), a program to establish environmental monitoring sites within the Gulf of Alaska ecoregion. One component of the GEM program is the *Nearshore* and the ShoreZone Mapping Project (ShoreZone) was selected as part of the Nearshore GEM program. ShoreZone provides high resolution coastal habitat data that can be rapidly acquired, processed and distributed. By mapping coastal habitats over a wide region, the ShoreZone data provides a uniform spatial framework for selecting areas for more detailed mapping or monitoring.

ShoreZone has been widely used within the Pacific Northwest with the entire shoreline of British Columbia and Washington recently mapped (see Bookheim *et al* 2001, Howes 2001, Howes *et al* 1994, Morris *et al* 1995) as well as portions of Cook Inlet and the western Outer Kenai coast (funded by CIRCAC and the Kenai Peninsula Borough). Actual mapping procedures are described in these documents and an Alaska ShoreZone Mapping Protocol is currently in preparation.

Imagery was collected for this project between 24 and 28 June 2002, a period of very low tides, so that the entire intertidal zone could be imaged. The flightline data is summarized in a separate report to EVOS (CORI 2002). Figure 1 shows the extent of the shoreline that was mapped as part of this project.

The general procedure is defined as a series of Steps:

- 1. collect imagery,
- 2. assemble electronic bases maps (shape files), video imagery and still photos.
- 3. subdivide shoreline into alongshore units based on morphology and exposure,

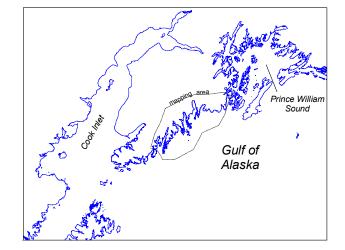


Figure 1. Mapping area for Outer Kenai Coast mapping project.

- 4. digitize electronic base maps into shore units (generally line segments but can be points or polygons).
- 5. classify physical attributes of alongshore units and across-shore components (Access97 database),
- 6. classify biological attributes of alongshore units and across-shore biobands (Access97 database)
- 7. QAQC data products

This procedure results in a segmented base map with linked database attributes so that a variety of themes can easily be displayed using GIS (e.g., ArcView).

1.2 Summary of Data Projects

Flightline Manual and Videotapes

Copies of the 16 videotapes collected as part of the survey have previously been provided to EVOS. A flightline manual showing the location of each tape and including a tape log has also been provided. Navigation data, consisting of 1-sec DGPS fix locations, tapes numbers and still photo locations, was provided on CD-ROM to EVOS.

Gulf of Alaska Coastal Imagery Site

The aerial video imagery was captured at 1-second intervals, georeferenced and posted to a publicly accessible website (http://imf.geocortex.net/mapping/demos/cori/launch.html). A portion of the Gulf of Alaska can be selected for more detailed viewing by zooming in so that individual 1-sec fix points can be viewed. The users then selects a starting point and starts the image player to literally *fly* the shoreline. The site runs under ArcIMS allowing interactive GIS manipulation by the user.

ShoreZone Mapping Data

The aerial imagery is interpreted and classified by geologists and biologists to produce electronic maps and databases of coastal habitat attributes. The points, lines and polygons on the maps are linked to the databases (Fig. 2) so that any of the attributes included in the databases can be displayed as a map. The actual attributes that are recorded are discussed in detail in the Data Dictionary (Appendix D). Data for the entire 1,400 km of shoreline is included in Appendix E as a CD-ROM.

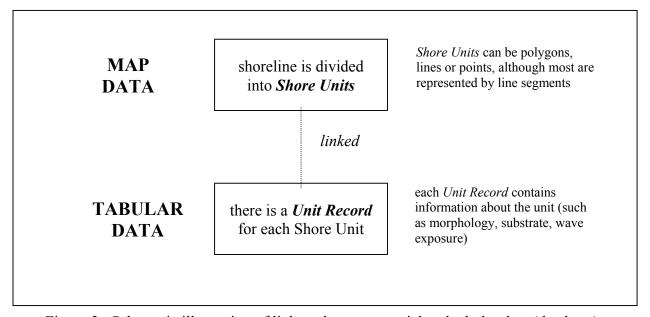


Figure 2. Schematic illustration of linkage between spatial and tabular data (database).

Selected thematic maps are included as part of this report. The selection provides a representative collection of themes but is by no means complete – there are literally hundreds of attributes or combinations of attributes that might be queried and displayed on maps. An example of using combinations of themes as a habitat management tool is included in the inset at right.

Using ShoreZone Data for Habitat Management

Sandlance are a small coastal fish that are present in the nearshore and are a major prey item for salmonids and for seabirds. Sandlance spawn in the upper intertidal zone of beaches and, as such, are sensitive to contaminant impacts as well as coastal development that can damage or remove spawning habitat. By querying the database for locations of *protected* or *semi-protected* wave exposure and for locations of *sand* or *sand/pebble berms*, potential sandlance spawn habitat can be identified. Maps show that the possible spawn sites are rare within the mapping region.

Maps are one of the primary products of this project. Maps include a collection of lines segments, points and polygons, each of which is linked to one or more database records describing attributes of that unit. Figure 3 shows a small map section of units (line segments).

The original shoreline is taken from the USGS 1:63,000 electronic shoreline, which is generally a representation of the high-water line. In locations where there are significant errors from our interpretation of the high-water line, we have made corrections in the line work to reflect a more accurate shoreline. The corrections have generally been developed from digital aerial photos, which are registered to the line-work and then the questionable line work is replaced.

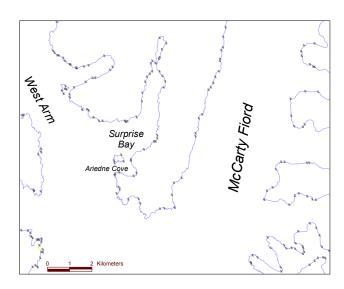


Figure 3. Section of shoreline showing line segments or units (defined by unit breaks) and point features (red dots). The are about 90 units shown in this example.

There are some areas of coastline where the line work is incorrect (e.g., Seward small boat Harbor) and for which new aerial photos were not easily obtainable. Problems with the shoreline have been noted in the database and will require future correction.

2.1 Meta Data

The vector dataset directly utilizes the Alaska Department of Natural Resources' 1:63,360 coastline circa. January 1998, including islands. This is also known as **coast63** shoreline. The Outer Kenai Shore Zone Map has clipped the coast63 shoreline to the area bounded by Kenai Fiords National Park's western boundary (Petroff Point), and in the east by Bainbridge Passage in Port Bainbridge (Pt. Waters). This vector dataset has been segmented in shore zone mapping process that utilizes oblique aerial video imagery to identify distinct shoreline units based upon geological and biological homogeneity. Segmentation has been achieved through the use of a split poly-line script written in Avenue for ArcView v. 3.2. Minor changes to the shoreline have been identified in the spatial database as "1" in the field **SHORE_MOD**, based upon DOQ and 1:12,000 scale air photo interpretation of the high-water shoreline. We expect to make more detailed changes to the shoreline in the near future.

Meta data forms are included in Appendix A.

2.2 Shape Files

The spatial data is provided as ESRI ArcView shape files. There are three sets of shape files included with the data products:

- line segment files the USGS shoreline has been subdivided into a series of arcs or segments; each segment has a unique unit identifier to which data attributes are linked. Locations where the base shoreline has been modified are documented in the SHORE_MOD field of the coverage. Line segments are linked to the database via the PHY IDENT field.
- **point variant files** points where each point has a unique identifier that can be linked to data attributes. Points are linked to the database via the PHY_IDENT field.
- **point segment deliminators** a point coverage that shows the beginning and end of each lines segment. These points have no associated attribute data they are merely for deliminating the line segments.

2.3 Selected Thematic Maps

A collection of thematic maps is presented to illustrate generalized information for the region (Appendix B). More detailed maps can be plotted from the ArcView data and combinations of data can be plotted.

The following thematic plots are included in Appendix B (Windows metafiles that can be inserted into Word documents are included on the Data CD):

general substrate types sediment types Oil Residence Index shoreline modifications distributions of bio-bands (Table 1; Appendix C) **Table 1 BioBand Distribution Maps**

Zone	Code	Name		
n]	VER	'Verrucaria'		
ida		salt-tolerant		
ra-t	PUC	herbs and		
Supra-tidal		grasses		
S	GRA	grasses		
per rtida	BAR	upper barnacle		
up] Inte	FUC	'Fucus'		
mid Intertidal	ULV	'Ulva'		
	HAL8	'Halosaccion'		
	BMU	blue mussel		
	RED8	mixed		
dal		filamentous &		
erti		blade reds		
lower Intertidal	ALA	Alaria		
/er		marginata		
low		morph		
	SBR8	soft browns		
	CHB8	chocolate		
		browns		
	ZOS	'Zostera'		
Sub- tidal	NER	Nereocystis		
1 3	MAC	Macrocystis		

Note: complete descriptions of *BioBands* are provided in Appendix C.

3.1 Database Organization

In addition to the spatial data, all of the coastal habitat data is characterized in the database, that can be linked to the spatial data. The database is developed in Access97 and includes five data tables (in other data management systems, these data tables would be considered stand-alone databases that can be linked using unique identifiers in each record). The relations between the various tables are schematically illustrated in Figure 4.

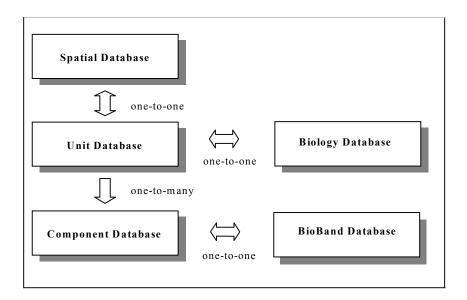


Figure 4. Schematic illustration of linkages or relationships between data tables.

3.2 Data Dictionary

The Data Dictionary (Appendix D) provides a field-by-field description of the data attributes. All the coding information that is used in the database is described in the Data Dictionary. Most users will require the Data Dictionary for conducting searches within the data.

4.1 Videotapes, Flightline Manual and Navigation Files

The following products were supplied to EVOS immediately following the aerial video imaging survey:

- 2 sets of VHS copies of the 17 aerial videotapes
- 1 set of 17 original miniDV digital videotapes (archived at CORI)
- 2 hard-copies of the flightline manual
- 1 electronic copy of the flightline manual (on CD)
- 1 electronic copy of the survey navigation data (1-sec fix marks during flight) in Access 97 and Exce 97 formats.

4.2 Gulf of Alaska Coastal Imagery Website

The Gulf of Alaska Coastal Imagery Website is accessible at:

http://imf.geocortex.net/mapping/demos/cori/launch

There are presently two sets of \sim 50,000 images on the site, all of which are georeferenced. One set of images is small for use in the video player and the other set is large for use in viewing individual frames of interest

4.3 ArcView Map Files

The ArcView files that have been burned to the CD-ROM are listed in Table 2:

Table 2 Listing of ArcView Files Provided on Data CD

File Type	File Names
lines features	Reg3Ar12.dbf
	Reg3Ar12.sbn
	Reg3Ar12.sbx
	Reg3Ar12.shp
	Reg3Ar12.shx
	Reg3Ar12.txt
point features	Reg3Ar12points.dbf
	Reg3Ar12points.shp
	Reg3Ar12points.shx
	Reg3Ar12points.txt
points indicating the ends	Unitbreaksreg3ar12.dbf
of linear units (e.g., line	Unitbreaksreg3ar12.sbn
segments)	Unitbreaksreg3ar12sbx
	Unitbreaksreg3ar12shp
	Unitbreaksreg3ar12shx

4.4 Access97 Data Files

The latest version of the Access97 ShoreZone data file with the Outer Kenai Coast is:

Reg3Area1 2v2.mdb

The file contains data for mapping Region 3, Areas 1 & 2, which are part of a region-wide mapping project in the Gulf of Alaska. It is anticipated that the data files will eventually be combined with CIRCAC and Kenai Peninsula Borough datasets to provide regional coverage.

The information, and mapping standards conforms to the DRAFT version of the EVOS-funded Coastal Mapping Protocol for the Gulf of Alaska.

- Bookheim, B, H. Berry and J.R. Harper 2001. An Inventory of Washington State's Marine Shorelines using the ShoreZone Mapping System. Proceedings of the 2001 Puget Sound Research Conference, Seattle, Washington. (poster).
- Coastal and Ocean Resources Inc. (CORI) 2002. 2002 Aerial Video Imaging Survey, Outer Kenai, Alaska (24-28 June 2002). Contract Report by Coastal and Ocean Resources Inc. of Sidney, British Columbia to the Exxon Valdez Oil Spill Trustee Council, Anchorage, Alaska.
- Howes, D. E., 2001. BC Biophysical shore-zone mapping system a systematic approach to characterize coastal habitats in the Pacific Northwest. Proceedings of the 2001 Puget Sound Research Conference, Seattle, Washington: 11p.
- Howes, D.E., J.R. Harper and E.H. Owens 1994. Physical shore-zone mapping system for British Columbia. Technical Report by Coastal & Ocean Resources Inc, Sidney, BC for the Coastal Task Force of the Resource Inventory Committee (RIC), RIC Secretariat. Victoria, B.C. 71p.
- Morris, M., J.R. Harper, P.D. Reimer, H.R. Frith and D.E. Howes 1995. Coastal biotic mapping system using aerial video imagery. In: Proceedings of the Third Thematic Conference on Remote Sensing for Marine and Coastal Environments. Seattle, WA. p.200-210.
- Peterson, J., J. Michel, S. Zengel, M. White, C. Lord and C. Plank. 2002. Environmental Sensitivity Index Guidelines, Version 3. NOAA Technical Memorandum NOS OR&R11, 192 pp.

Appendix A

Meta Data

Reg3ar12v1: Eastern Outer Kenai Shore Zone Map version 1, 1:63,360

Metadata also available as

Frequently-anticipated questions:

- What does this data set describe?
 - 1. How should this data set be cited?
 - 2. What geographic area does the data set cover?
 - 3. What does it look like?
 - 4. Does the data set describe conditions during a particular time period?
 - 5. What is the general form of this data set?
 - 6. How does the data set represent geographic features?
 - 7. How does the data set describe geographic features?
- Who produced the data set?
 - 1. Who are the originators of the data set?
 - 2. Who also contributed to the data set?
 - 3. To whom should users address questions about the data?
- Why was the data set created?
- How was the data set created?
 - 1. From what previous works were the data drawn?
 - 2. How were the data generated, processed, and modified?
 - 3. What similar or related data should the user be aware of?
- How reliable are the data; what problems remain in the data set?

1.	How well have the observations been checked?
2	How accurate are the geographic locations?
3	How accurate are the heights or depths?
4	Where are the gaps in the data? What is missing?
5	How consistent are the relationships among the
data including topology?	The woodstone are the relationships among the

• How can someone get a copy of the data set?

1.	Are there legal restrictions on access or use of the
<u>data?</u>	
2.	Who distributes the data?
3.	What's the catalog number I need to order this
data set?	
4.	What legal disclaimers am I supposed to read?
5	How can I download or order the data?

• Who wrote the metadata?

What does this data set describe?

Title:

Reg3ar12v1: Eastern Outer Kenai Shore Zone Map version 1, 1:63,360

Abstract:

This data consists of three main components: A line coverage, a point coverage and a master database. The line coverage is known as the Shore Unit. It segments the shoreline into distinct units that characterize shore morphology, shore-zone substrate, wave exposure and shore-zone biota. It is linked to the master database. The point coverage is a type of Shore Unit, but typically includes features that are too small to be captured in line unit. Examples of these point features are stream sources, boat ramps, jetties. The master database consists of geological and biological information both about the alongshore and cross-shore characteristics of each Shore Unit. The vector dataset utilizes the Alaska Department of Natural Resources' 1:63,360 coastline circa. January 1998, including islands. It has been clipped to the area bounded by Kenai Fiords National Park's western boundary and Pt. Waters/Bainbridge Passage in Port Bainbridge, just west of Prince William Sound. This vector dataset has been segmented in a shorezone mapping process that utilizes oblique aerial video imagery to identify distinct units. Segmentation has been achieved through the use of a split poly-line script written in Avenue for ArcView version 3.2. Minor changes to the shoreline have been identified in the spatial database, based upon air photo interpretation of the high-water shoreline.

1. How should this data set be cited?

Coastal and Ocean Resources Inc, Exxon Valdez Oil Spill Trustee Counci, 20030226, Reg3ar12v1: Eastern Outer Kenai Shore Zone Map version 1, 1:63,360.

2. What geographic area does the data set cover?

West Bounding Coordinate: -150.7977

East Bounding Coordinate: -148.2581

North Bounding Coordinate: 60.2239

South Bounding Coordinate: 59.4291

- 3. What does it look like?
- 4. Does the data set describe conditions during a particular time period?

Calendar Date: 2003

Currentness Reference: Publication Date

5. What is the general form of this data set?

Geospatial Data Presentation Form: Vector Digital Data

- 6. How does the data set represent geographic features?
 - a. How are geographic features stored in the data set?

This is a Vector data set. It contains the following vector data types (SDTS terminology):

- Point (259)
- GT-polygon composed of chains (2885)
- b. What coordinate system is used to represent geographic features? The map projection used is Albers Conical Equal Area.

Projection parameters:

Standard Parallel: 55

Standard Parallel: 65

Longitude of Central Meridian: -154

Latitude of Projection Origin: 50

False Easting: 0.00000

False Northing: 0.00000

Planar coordinates are encoded using coordinate pair

Abscissae (x-coordinates) are specified to the nearest 1.0

Ordinates (y-coordinates) are specified to the nearest 1.0

Planar coordinates are specified in METERS

The horizontal datum used is North American Datum of 1927.

The ellipsoid used is Clarke 1866.

The semi-major axis of the ellipsoid used is 6378206.4.

The flattening of the ellipsoid used is 1/294.98.

7. How does the data set describe geographic features?

Reg3ar12v1.dbf

Arview 3.2 database format attribute file (Source: From the map)

Reg3ar12pointv1.dbf

Arview 3.2 database format attribute file (Source: From the map)

PHY_IDENT

This field is the primary key for linking the physical shorezone data to the master attribute database for this shorezone project. (Source: from the map)

Value	Definition		
form 00/00/0000/0	see above		

Shore_mod

This field defines alterations to the coast63 map. A value of one indicates modification or addition of the line segment to the original coast63 high-water shoreline. (Source: from the map)

Value	Definition
0 or 1	Modified = 1 Original coast63 = 0

Length

Length of shore unit in meters. (Source: from the map)

Value	Definition		
from the map	see above		

Who produced the data set?

- 1. Who are the originators of the data set? (may include formal authors, digital compilers, and editors)
 - Coastal and Ocean Resources Inc.,
- 2. Who also contributed to the data set?

EVOS Trustee Council, Coastal and Ocean Resources Inc; Sidney BC, Alaska Department of Natural Resource; Land Records Information Section, Alaska National Parks Service, US Geologic Survey US Forest Service; Chugach, US Forest Service; Tongass

3. To whom should users address questions about the data?

John R. Harper Coastal and Ocean Resources Inc. 214-9865 W. Saanich Rd. Sidney, British Columbia V8L 5Y8 Canada

250/655-4035 (voice) 250/655-1290 (FAX) john@coastalandoceans.com

Hours_of_Service: 900-1700 PST

Why was the data set created?

The shore-zone resource data is useful for identifying and mapping sensitive resource distributions such as eelgrass or marsh, for mapping the distribution of intertidal habitats, for identifying rare habitats or features and for providing information for sensitivity models such as an oil spill sensitivity model.

How was the data set created?

1. From what previous works were the data drawn?

none (source 1 of 7)

Alaska Department of Natural Re, Land Records Information Section, 1990, ITM hydrography: ITM hydrography data hydro, ADNR, LRIS, Anchorage, AK.

Type of Source Media: online

Source Scale Denominator: 63360

Source Contribution:

Source used USGS 1:63,360 topographic maps ranging in date from 1950's to 1990's. These were photo revised by BLM. Only hydrography meeting the needs of the State Status Plats were automated. Arc features were coded with source and water type. US Forest Service, Tongass hydrography data was integrated into datbase to fit DNR's model.

none (source 2 of 7)

USGS, 1950-1990, ITM hydrography: DLG hydrography, USGS, Reston, Virginia.

Type of Source Media: web

Source Scale Denominator: 63360

Source Contribution:

Selected coastline information where needed and where available.

none (source 3 of 7)

USFS, Chugach, 1996, Chugach National Forest coastline: USFS, Anchorage, AK.

Type of Source Media: magnetic tape

Source Scale Denominator: 63360

Source Contribution:

Chugach National Forest has had significant changes in their shoreline, particularly near Columbia Glacier and Copper River Delta. They have generated a new coastline to reflect these changes. This information was selected and added as the best source for Prince William Sound.

none (source 4 of 7)

and, EVOS Habitat/Restoration ADNR, 1996, EVOS Research and Restoration CD-ROM: State Coastline coastst, ADNR, Anchorage, AK.

Type of Source Media: CD-ROM

Source Scale Denominator: 63360

Source Contribution: Was used to fill in missing areas of data.

none (source 5 of 7)

and, EVOS Habitat/Restoration ADNR, 1996, EVOS Research and

Restoration CD-ROM: State Coastline coastst, ADNR, Anchorage, AK

Type of Source Media: on line

Source Contribution: most up to date sources of coastline

none (source 6 of 7)

and, EVOS Habitat/Restoration ADNR, 1996, EVOS Research and Restoration CD-ROM: State Coastline coastst, ADNR, Anchorage, AK.

Type of Source Media: CD-ROM

Source Scale Denominator: 63360

Source Contribution: Was used to fill in missing areas of data.

none (source 7 of 7)

ADNR, EVOS and , 20030224, Outer Kenai Shore Zone Mapping: Alaska Shore Zone Mapping AKSHZN, EVOS, Anchorage, Alaska.

Online Links:

Other Citation Details:

Type of Source Media: to be announced

Source Scale Denominator: 63360

Source Contribution:

OuterKenai Shorezone Mapping clipped the AKDNR 1:63 360 shoreline maps in an area bounded by the western extremity of Kenai Fiords National Park and in the east, by Pt. Waters by Port Bainbridge passage. Minor shoreline fixes were performed using DOQ orthophotos in combination with oblique aerial video imagery.

2. How were the data generated, processed, and modified?

Date: 01-Jan-1998 (process 1 of 2)

From the DNR, LRIS hydrogrpahy, the arcs were selected where water-type = 'S' for shoreline or 'N' for null (closing mouth of streams). This information was used first as it had the most logical coding for arc attributes. The USGS information was downloaded from the web where holes existed. EVOS was used to fill in also. USFS, Chugach was used to completely replace the Prince William Sound area. The statewide 1:250000 alaska coastline was used to fill in where no other data was available. Attributes are structured the same as the ADNR, LRIS hydrography and were added. The attributes were not qc'ed and has errors.

Date: 24-Feb-2003 (process 2 of 2)

The vector dataset utilizes the Alaska Department of Natural Resources' 1:63,360 coastline circa. January 1998, including islands. It has been clipped to the area bounded by Kenai Fiords National Park's western boundary (Petroff Point) and in the east by Pt. Waters/Bainbridge Passage in Port Bainbridge, just west of Prince William Sound. This vector dataset has been segmented in a shorezone mapping process that utilizes oblique aerial video imagery to identify distinct shoreline units. Segmentation has been achieved through the use of a split-poly line tool constructed in ArcView's Avenue programming language. Minor changes to the shoreline have been identified in the spatial database, based upon air photo interpretation of the high-water shoreline in combination with oblique aerial video imagery.

Person who carried out this activity:

Neil Borecky Coastal and Ocean Resources Inc 214-9856 W. Saanich Rd Sidney, British Columbia V8L 5Y8 Canada

(250) 384 9963 (voice) john@coastalandoceans.com

3. What similar or related data should the user be aware of?

How reliable are the data; what problems remain in the data set?

1. How well have the observations been checked?

Since a mix of sources were used, this was not always calculated. Minor QC was done to check accuracy of original coast63 shoreline. Some shoreline inconsistencies were corrected using a mix of oblique aerial video, DOQ and 1:12,000 digital orthophotos. Will be corrected as problems arrise or more time is allowed. Attribute information was QA/QC'd by previous biological and geological mapper.

2. How accurate are the geographic locations?

Information was cleanup on the screen. Polygons were closed, dangles deleted, and information edgematched.

3. How accurate are the heights or depths?

4. Where are the gaps in the data? What is missing?

DNR, LRIS - reselected the hydrography features coded WATER_TYPE = 'S' or 'N' Did some clean up. EVOS - selected and added as need to fill in. USGS - downloaded ITM quads, where needed to fill in. Selected coastline arcs and closing arcs. USFS, Chugach - selected Prince William Sound coastline and filled in. USFS, Tongass - was included into

DNR, LRIS hydrography database.

There are attribute errors.

Coastal and Ocean Resources Inc. made minor shoreline corrections to shoreline as noted. Physical attributes carry the same caveats as the coast63 data.

5. How consistent are the relationships among the observations, including topology? chain-node topology present.

How can someone get a copy of the data set?

Are there legal restrictions on access or use of the data?

Access Constraints:

To ensure distribution of the most current public information, please refer requests for data or products to the Exxon Valdez Oil Spill Trustee Council.

Use Constraints:

It is not recommended the data be used at a scale larger than 1:63,360. Not to be used for navigation.

Any hardcopies or published datasets utilizing these data sets shall clearly indicate their source. If the user has modified the data in anyway they are obligated to describe the types of modifications they have performed.

1. Who distributes the data set? (Distributor 1 of 1)

Hours_of_Service:

Contact Instructions:

- 2. What's the catalog number I need to order this data set?
- 3. What legal disclaimers am I supposed to read?

The State of Alaska, EVOS, or associated contractors make no express or implied warranties (including warranties of merchantability and fitness) with respect to the character, function, or capabilities of the electronic services or products or their appropriateness for any users purposes. In no event will the State of Alaska, EVOS, or associated contractors be liable for any incidental, indirect, special, consequential or other damages suffered by the user or any other person or entity whether from the use of the electronic services or products, any failure thereof or otherwise, and in no event will the State of Alaska, EVOS or associated contractors' liability

to the requestor or anyone else exceed the fee paid for the electronic service or product.

- 4. How can I download or order the data?
 - Availability in digital form:

Data format:

Media you can order: CD-ROM (format CD)

• Cost to order the data:

Who wrote the metadata?

Dates:

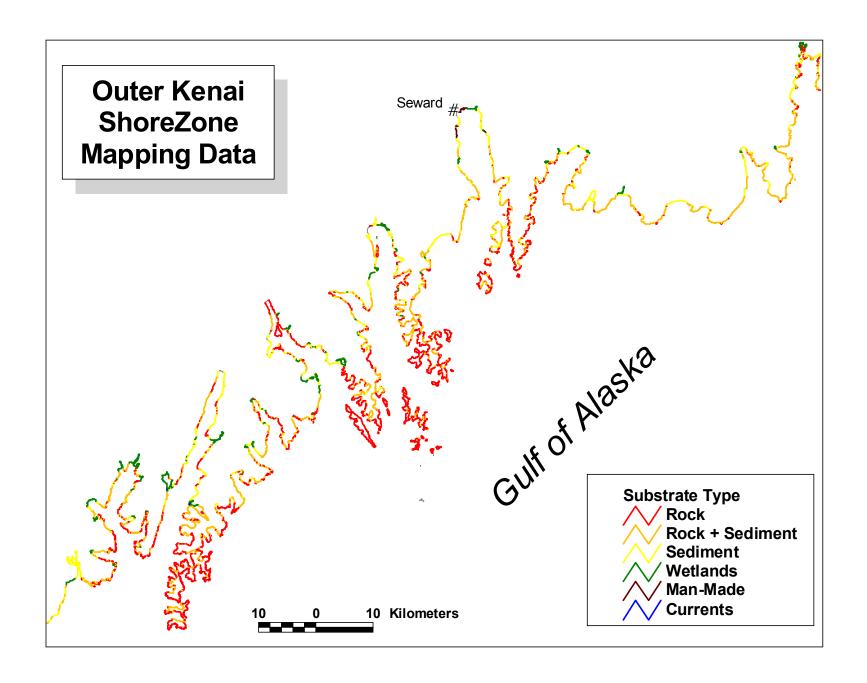
Last modified: 24-Feb-2003 Last Reviewed: 24-Feb-2003 To be reviewed: 24-Feb-2003

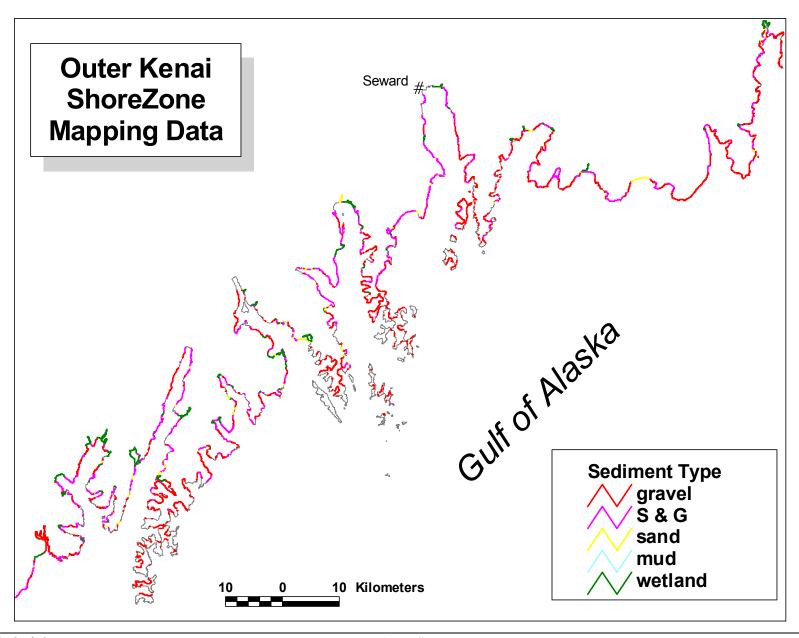
Metadata author:

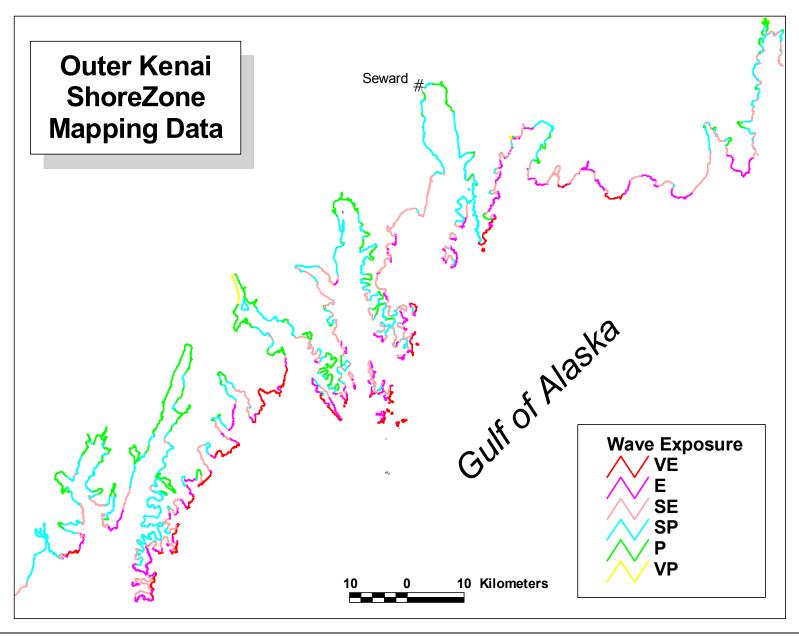
Coastal and Ocean Resources Inc. c/o Neil Borecky Project Scientist/GIS Analyst 214-9865 W. Saanich Rd. Sidney, BC V8L 5Y8 Canada

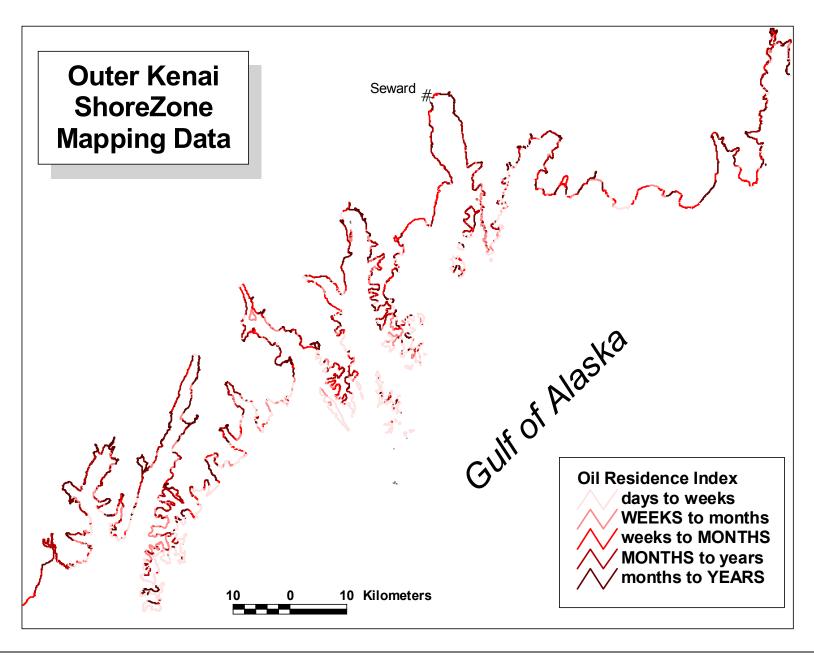
(250) 655 4035 (voice) (250) 655 1290 (FAX) neilb@coastalandoceans.com

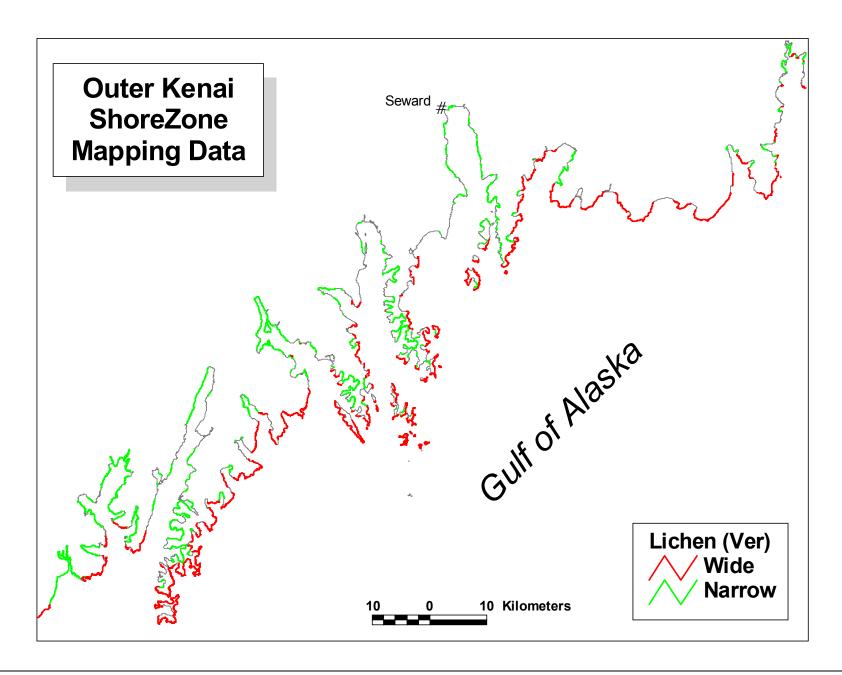
Hours of Service: 900-1700 PST

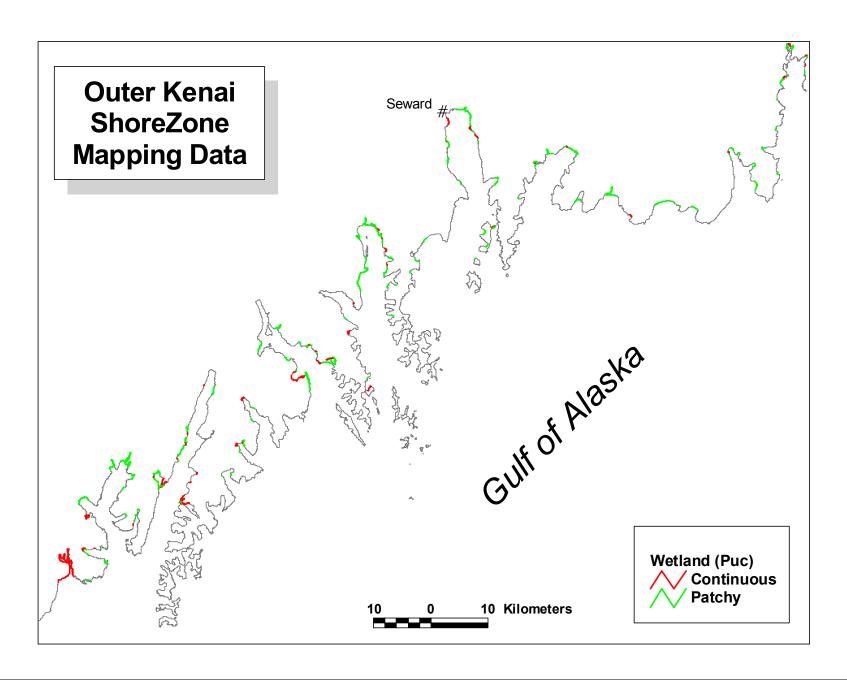

Metadata standard:

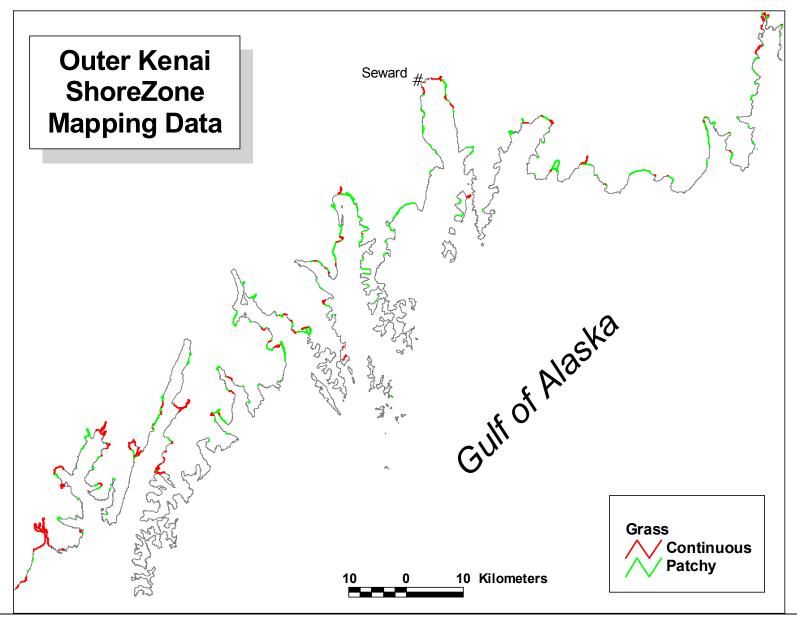

FGDC Content Standards for Digital Geospatial Metadata (FGDC-STD-001-1998)

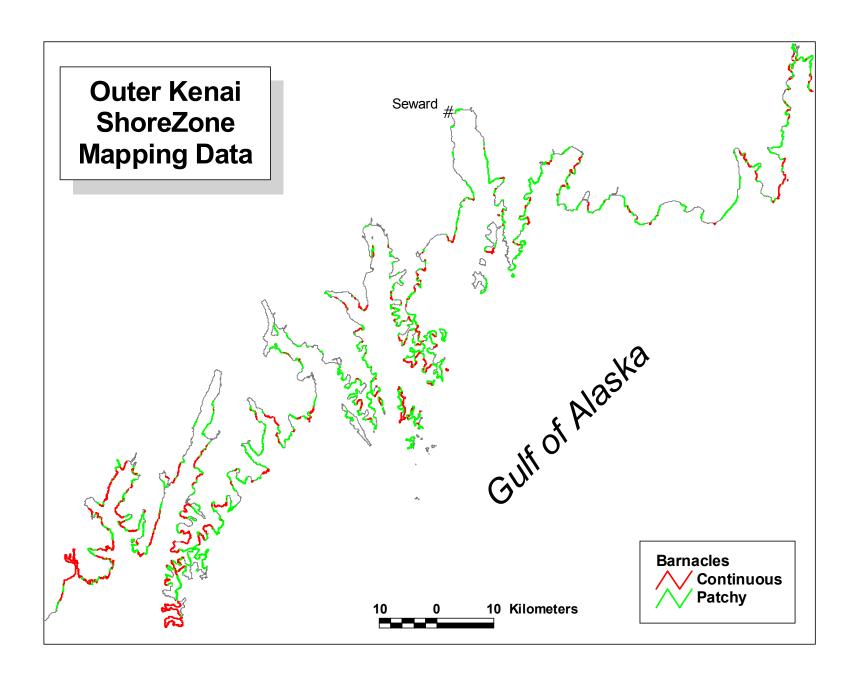

Generated by mp version 2.7.34 on Thu Feb 27 11:51:28 2003

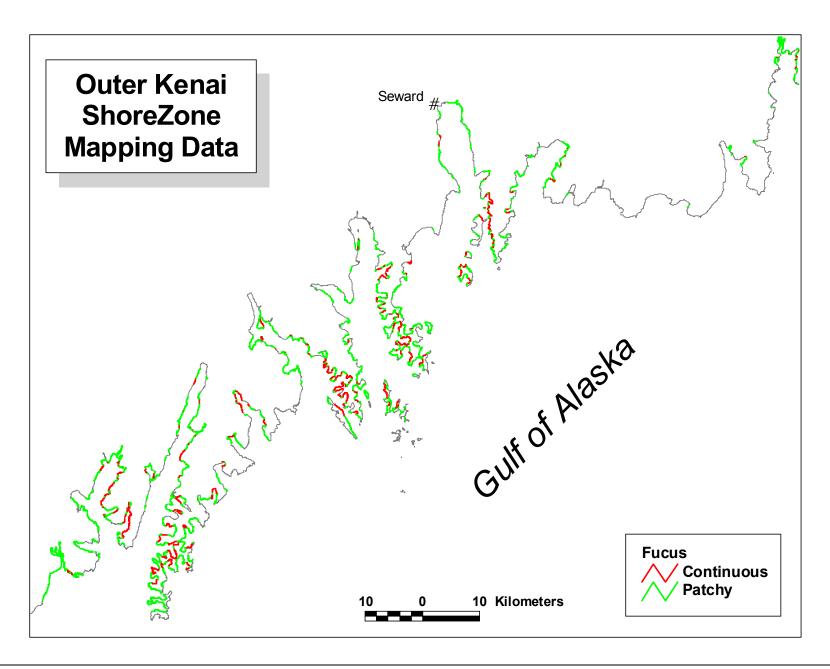

A .	_	_		. A	:		D
A	DI	D)	eп	ıu	1	Х	D

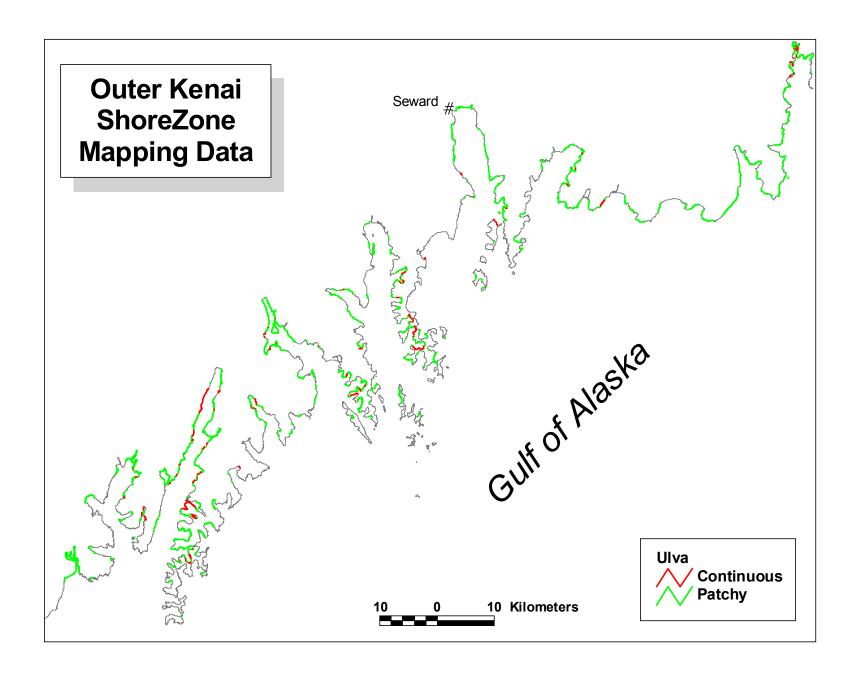

Selected Distribution Plots of Mapping Data

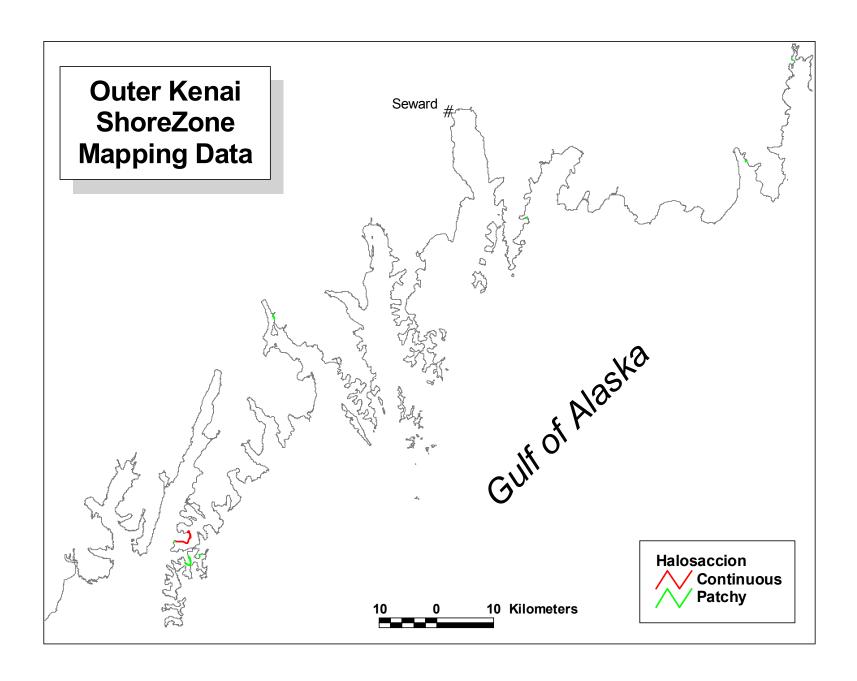


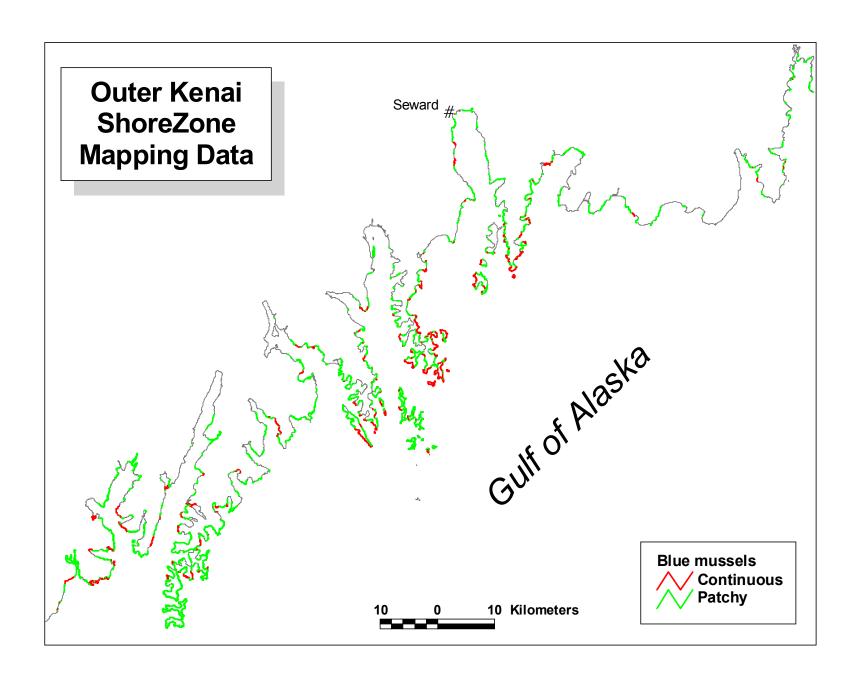


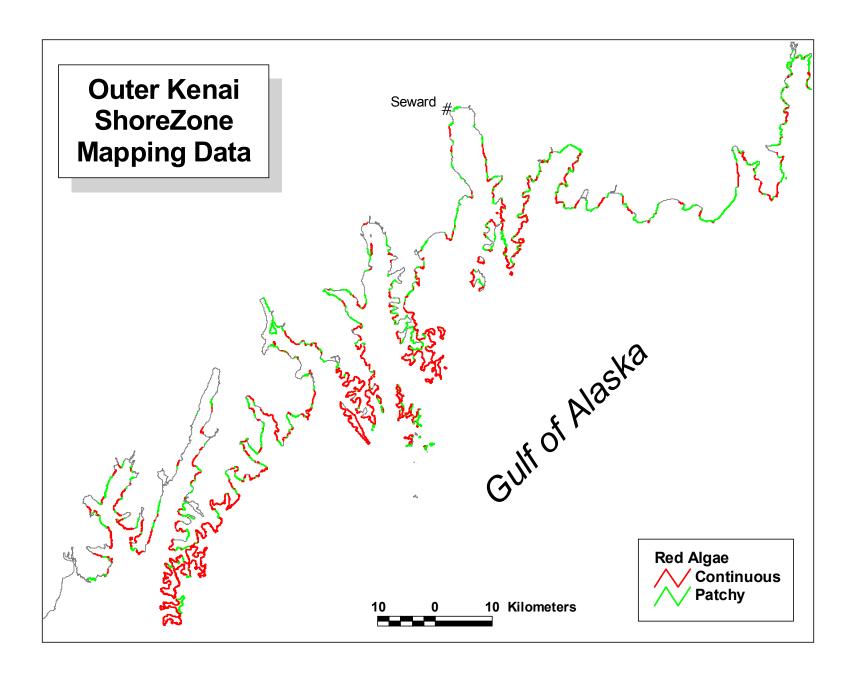


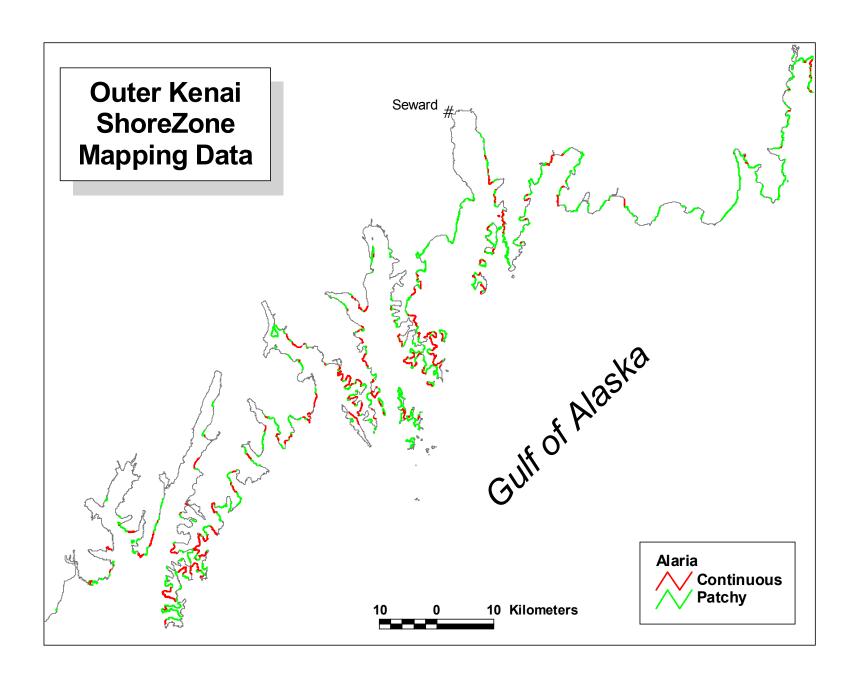


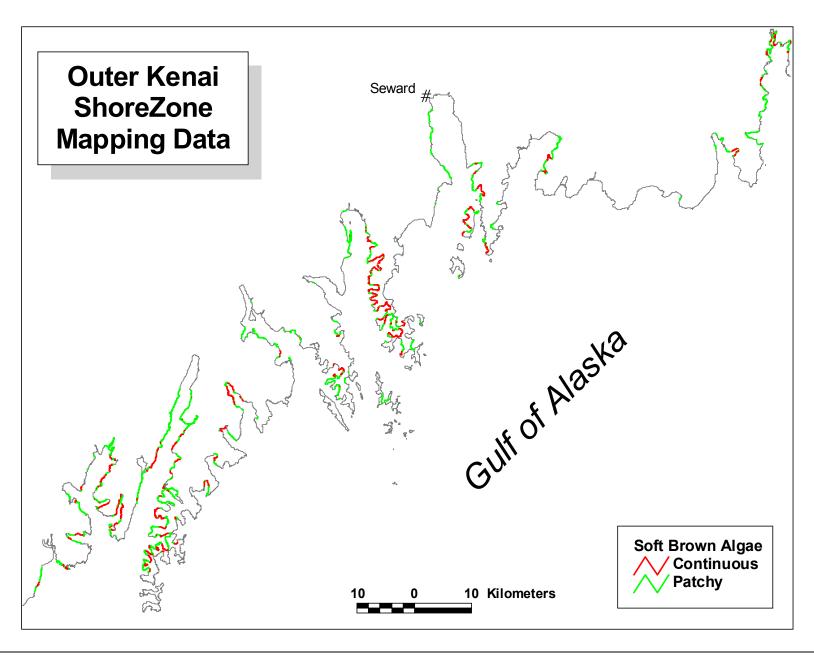


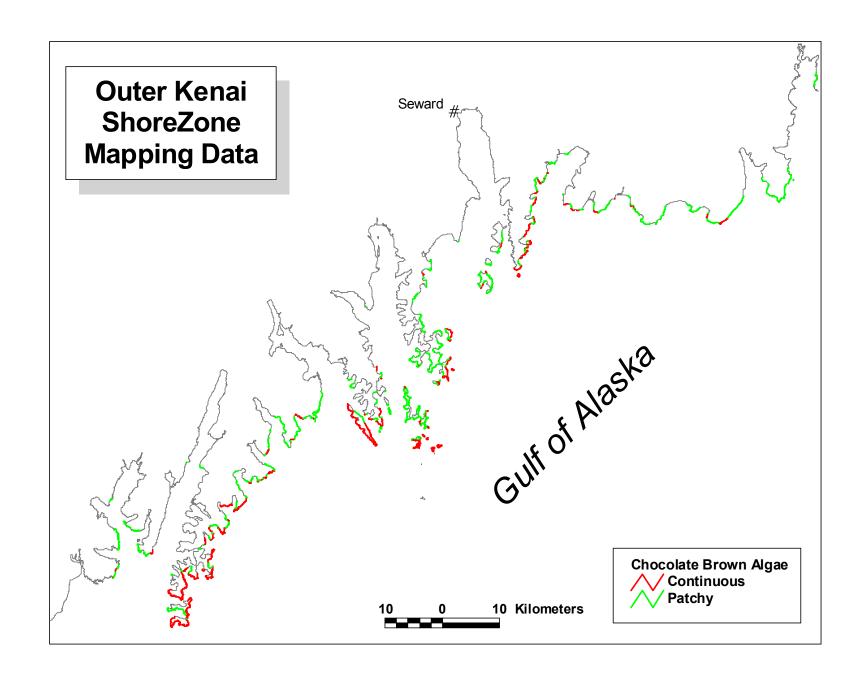


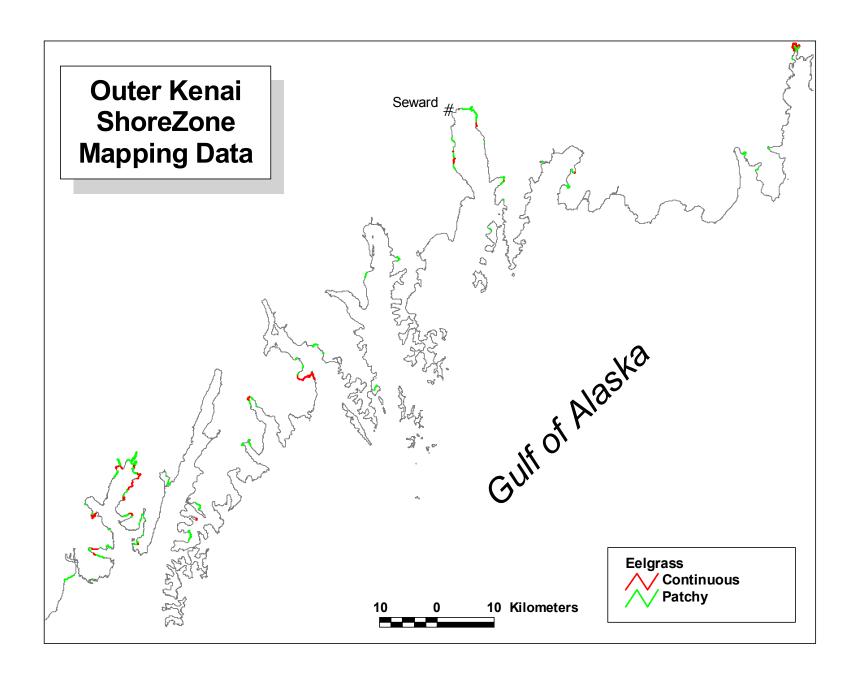


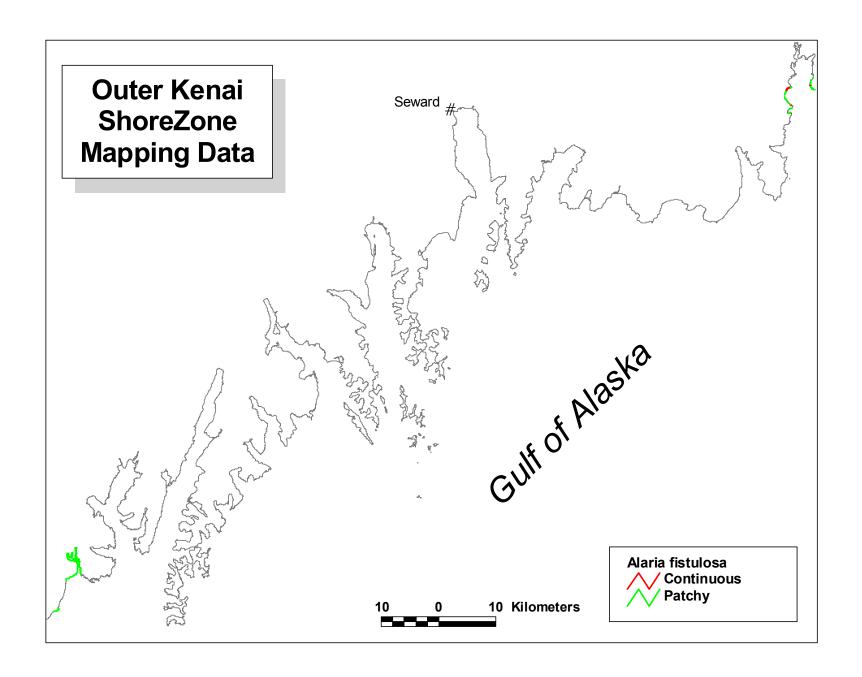


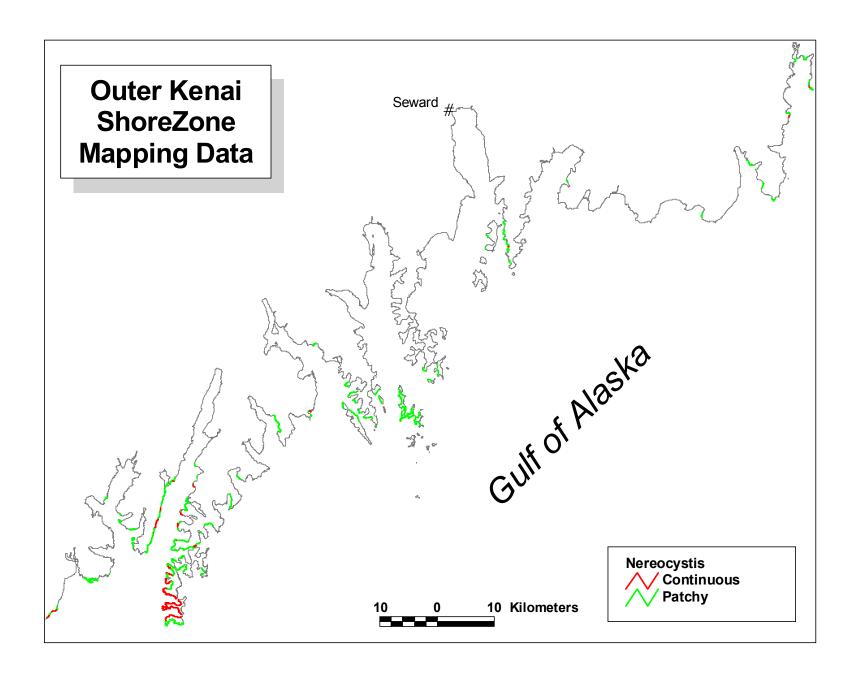












				_
1 m	n 0	nd	• •	
Аp	De	пu	IΧ	·

BioBands Descriptions and Notes

Attributes of the Bio-bands

The following bio-band table (Table C-1) is arranged from the supra-tidal, across the intertidal to the nearshore subtidal. By definition, bio-bands occur in certain across-shore elevations. The methodology and definitions used here are developed and applied in British Columbia in Searing and Frith (1995) and Harper *et al* (1996).

The across-shore intervals are called 'zones' and are defined as:

- Zone A Supratidal
- Zone B Intertidal
- Zone C Nearshore Subtidal

The occurrence of observed bio-bands (for all bands *except* the VER band) are coded as either:

- 'P' for patchy, and irregular through the unit or, as
- 'C' for continuous through the unit and an estimate of over 50% cover in the unit.

No entry in the band data field (i.e., the field is blank), indicates that the bio-band was not observed in that unit. The combination of bio-bands that are present and/or absent in the unit, together with the unit's substrate and wave exposure, are used to determine the overall summary *Bio-exposure* (the EXP_BIO category) and the *Habitat Observed* (the HAB_OBS) for the overall unit (see Table ???2). Substrate mobility in a shore unit is determined by the amount of bedrock and the size of coarse substrate, together with the wave exposure at the shoreline.

For the VER band (*Verrucaria* splash zone band in the supratidal), the observed banding is recorded by width as:

- N narrow < 1m
- M medium width 1 5 m
- W wide, > 5m

Table C-1 Bio-Bands for theOuter Kenai Coast

Zone	Colour Band Name	Code Name	Colour	Description	Exposure Category
A	'Verrucaria'	VER	black or bare rock	splash zone: may be marked by black encrusting lichen & blue-green algae. Best observed on bedrock & sometimes visible on low energy boulder/cobble shorelines Extensive bare zones typically occur only in association with VER on high energy bedrock shorelines.	width can be an index of wave exposure
A	salt-tolerant herbs and grasses	PUC	light/bright green	Puccinella, Plantago maritima, Triglochin, Carex, other marsh grasses, and salt-tolerant herbaceous plants	SP, P, estuary
A	grasses	GRA	light green	Elymus mollis, dune grasses. May be the only band observed on high energy beaches.	any beaches
B upper	upper barnacle	BAR	grey-white	B. glandula and/or S. balanoides in upper intertidal, also can include bare rock. Common algae associated with BAR of upper intertidal are Endocladia muricata, Gloipeltis furcata and Bangia sp. Some Porphyra are associated with upper BAR in early spring. Observation of this band may be used to indicate a low cover of other bands.	E,SE,SP, P
B upper	'Fucus'	FUC	golden brown	dominated by Fucus, includes B. glandula and/or S. balanoides. Epiphytic Ulva are common on exposed areas and epiphytic Pilayella occur in protected areas.	SE, SP, P
B mid	'Ulva'	ULV	bright green	Ulva/'Ulvaria' blade greens and Enteromorpha-type filamentous greens. May appear as thick patches or as green haze of small plants. Chladophora and Acrosiphonia are common fine filamentous greens that can also appear as green band.	SP, P, estuary
B lower	'Halosaccion'	HAL8	golden yellow	Named for golden-yellow colour of Halosaccion which may not be present or dominate the band. Band may occur as an assemblage of bleached reds in the lower intertidal. Typical species are: Palmaris spp., Odonthalia, Mazzaella and other bleached blade and filamentous reds.	SP,P
B lower	blue mussel	BMU	dark blue- black	continuous bands of dense Mytilus trossulus. Often also associated with Fucus, S. cariosus, Porphyra abbotae, Endocladia or Odnonthalia. Occurs in high wave exposures and in areas of current or areas influenced by freshwater input, river deltas	E, SE, SP,P, currents, freshwater
B lower	mixed filamentous & blade reds	RED8	dark red- brown	Algal-rich band of lower intertidal, complex of filamentous and blade red algae, including Neoptilota, Odonthalia, Neorhodomela, Palmaria and others. Common invertebrates include Pisaster, Nucella, Katharina. Includes foliose coralline algae.	E, SE, SP, currents
B lower	Alaria marginata morph	ALA	dark brown	pure stand of large or small morph of <i>Alaria</i> spp. Usually also includes mixed REDs with foliose and encrusting corallines. <i>Pisaster</i> and Katharina commonly associated. <i>Alaria</i> can also be a component of CHB8.	SE, E
B lower	soft browns	SBR8	brown	large bladed <i>Laminaria spp.</i> - the unstalked blade browns, which are seen in the lower intertidal and nearshore subtidal. Includes <i>L. 'saccharina'</i> morph: large blades, ruffled edges and <i>Cymathera</i> , <i>Cystoseira</i> , <i>Alaria</i> species.	SP, P

B lower	chocolate browns	СНВ8	dark brown	shiny, leathery dark browns, including <i>Alaria</i> marginata morph, <i>L. setchelli, L.</i> bongardiana morph, <i>Lessoniopsis</i> , <i>L. yezoensis</i> , <i>Cymathera</i> . CHB often occurs with foliose and encrusting coralline algae and other lush REDs, such as <i>Odonthalia</i> and <i>Neoptilota</i> .	E, SE
C upper	'Zostera'	zos	dark green	eelgrass, (<i>Zostera marina</i>) fine sediment, may extend slightly upslope into intertidal. Often encrusted with epiphytic blade red.	P, SP, estuary
C upper	dragon kelp	ALF		giant <i>Alaria fistulosa</i> kelp band. Limited geographic distribution.	SE?
C upper	Nereocystis	NER	dark brown, shiny	bull kelp beds, floating blades and fronds in nearshore	E, SE, SP, current
C upper	Macrocystis	MAC	brown	leafy, soft kelp beds, usually indicator of fully-marine waters	SE, SP, P

Appendix D

Data Dictionary

Appendix D Table of Contents	
Data Dictionary for Unit Database	D-2
Data Dictionary for BioUnit Database	D-9
Data Dictionary for Component Database	D-12
Data Dictionary for BioBand Database	D-17
Appendix D List of Tables	
D-1 Summary of Unit Database Fields	D-1
D-2 Rationale for Unit Type Definition	D-5
D-3 BC Shore Type Classification	D-6
D-4 ESI Shore Type Classification	D-7
D-5 Wave Exposure Matrix	D-7
D-6 Oil Residence Index Categories	D-8
D-7 Look-up Table for Defining Oil Residence Index	D-8
D-8 Summary of Fields for BioUnit Database	D-9
D-9 Definitions of Biology QA/QC Changes	D-11
D-10 Summary of Component Database Fields	D-12
D-11 Codes for Across-shore-Forms	D-14
D-12 Codes for Across-shore Materials or Sediments	D-15
D-13 Component ORI Matrix	D-16
D-14 Summary of Biology Database Fields	D-17
D-15 Bio-Band Codes and Definitions	D-19
D-16 Habitat Types	D-21

Table D-1 Summary of Data Fields in the Unit Database

Field Names	Type	Description	
UnitRecID	I	unique numerical number for each record	
PHY_IDENT	Т	unique alphanumeric identifier made up of the REGION, AREA, PHY_UNIT and SUBUNIT numbers	
REGION	T	coastal region number	
AREAS	T	coastal area number	
PHY UNIT	T	physical unit number	
SUBUNIT	T	sub unit number	
TYPE	T	indicator of polygon, line or point unit type	
BC_CLASS	I	shoreline type, BC classification system	
ESI CLASS	T	shoreline type, ESI classification system	
LENGTH M	N	alongshore length of unit in meteres	
AREA M2	N	area of unit in square meters	
GEO_MAPPER	T0	last name of geology mapper	
GEO EDITOR	T0	last name of individual responsible for reviewing and editing	
GEO MAP DATE	D/T	date of geological mapping	
GEO SOURCE	T	data sources for geological interpretation	
SCALE	T	scale of base maps used to delineate units	
VIDEOTAPE	T	the videotape id number	
SCRN TIME	T	the screen time burned onto the video image	
QUAD MAP	T	identifier number of orthophoto map	
MAP NO	I	page number from the DeLorme Alaska Atlas	
CHART	Т	NOAA chart number	
EXP_IDENT	T	cross-reference to EXPOSURE database	
EXP CALC	T	exposure calculated from fetch info	
EXP OBSER	T	exposure observed by geomorphologist	
EXP CLASS	T	"best" estimate of exposure from calculated-, observed- and bio-exposure	
ORI	I	oil residence index	
SED SOURCE	Т	source of sediment within the unit	
SED ABUND	T	qualitative index of sediment in the unit	
SED DIR	T	estimate of sediment transport direction based on indicators within the unit	
CHNG TYPE	T	accretional, stable, erosional status	
CHNG RATE	N	rate of change	
SHORENAME	T	local geographic name	
OTHER	T	comment	
SHORE PROB	T	indicator of significant base map problem	
SM1 TYPE	Т	type of primary shore modification (e.g., type of seawall)	
SM%	I	estimate % occurrence of SM1 in unit	
SM1 M	I	calculated length of SM1 in unit	
SM2 TYPE	T	type of secondary shore modification (e.g., type of seawall)	
SM2%	I	estimate % occurrence of SM2 in unit	
SM2 M	I	calculated length of SM2 in unit	
SM3 TYPE	T	type of tertiary shore modification (e.g., type of seawall)	
SM3%	I	estimate % occurrence of SM3 in unit	
SM3 M	I	calculated length of SM3 in unit	
SMOD TOT	I	total % occurrence of shore modification in the unit	
RAMPS	I	number of boat ramps in the unit	
PIERS DOCKS	I	number of docks or pier within the unit	
REC SLIPS	I	number of "recreational slips within the unit	
DEEPSEA SLIP	I	number of "recreational stips within the unit	
ITZ	N	intertidal width; sum of the width for across-shore components	

<u>Data Dictionary for UNIT Databases</u> (Adapted from methods and codes outlined in Harper *et al* 1999)

Field Name	Type	Description	Field Name	Type	Description
Unit_RecId	N	space for unique id for each record	SCALE	T	scale of the base map used to code and map original data
PHY_IDENT	T	unique Physical Ident	VIDEOTAPE	T	videotape identifier code(s)
		number for the unit, a combination of region, area, unit, and sub-unit. (RR/AA/UUUU/SS)	SCRN_TIME	T	the "burned-in" tape time from the GPS that appears on the video image.
REGION	T	coastal region number; see Appendix E	MAP_NO	T	the page number of the map in the DeLorme Alaska Atlas where the Unit is
AREAS	T	coastal area number; see Appendix E			plotted
PHY_UNIT	T	physical shore unit number;	CHART	T	the NOAA chart number(s) for the Unit
		the unit is the primary alongshore subdivision during the mapping	EXP_IDENT	T	cross reference number to exposure database
SUBUNIT	T	sub-unit number: "0" for main Unit and "1, 2, 3" for variants or point features;	EXP_CALC	T	The calculated exposure from fetch measurements (see D-5)
		the sub-units may be added at a latter date to reflect additional mapping detail (e.g., degree of oiling)	EXP_OBSER	T	an estimate of the wave exposure as observed by geomorphologist during mapping based on Table D-
TYPE	T	a description of Unit type: a polygon-type with (A)rea, a combination unit with (B)oth area and length, a (L)ine-type unit, or a (P)oint variant (see Table D-2)	EXP_CLASS	N	a numeric code for best exposure estimate where EXP_BIO better than EXP_OBS better than EXP_CALC and 1=VP,
BC_CLASS	N	a number indicating the BC 'coastal class' or 'shoreline type' (see Table D-3)			2=P, 3=SP, 4=SE, 5=E, 6=VE (see Table D-5)
ESI_CLASS	T	a number code for the ESI coastal classification system (see Table D-4)	ORI	N	a code indicating the potential oil residence index, see Tables D-6 and D-7.
LENGTH_M	N	the unit or sub-unit along- shore length in M, to be calculated by the GIS software	SED_SOURCE	T	a code indicating the estimated sediment source for the unit, (B)ackshore, (A)longshore, (F)luvial, (O)ffshore
AREA_M2	N	the polygon area in sq m to be calculated by GIS software	SED_ABUND	Т	code indicating the relative sediment abundance within the shore-unit, (A)bundant, (M)oderate, (S)carce
GEO_MAPPER	T	last name of mapper.	SED_DIR	Т	one of the eight cardinal
GEO_EDITOR	T	last name of editor or reviewer	_		points of the compass indicating dominant sediment transport direction
GEO_MAP_DATE	D	date of original mapping	CHNG_TYPE	T	a code indicating the
GEO_SOURCE	T	the data source for the interpretations: (V)ideotape, (P)hoto-aerial, (T)opo maps, (C)harts, (O)ther.	_		stability of the shore unit, (A)ccretional, (E)rosional, (S)table

Data Dictionary for UNIT Databases (continued)

Field Name	Type	Description	Field Name	Type	Description
CHNG_RATE	T	the rate of change of the shoreline within the unit in m/yr	SM3_TYPE	T	the <i>tertiary</i> type of seawall occurring within the unit where: BR = boat ramp; CB = concrete bulkhead; LF =
SHORENAME	T	the name of a prominent geographic feature near the unit; used to facilitate			landfill; RR = rip rap and WB = wooden bulkhead
OTHER	Т	searches a text field used for	SM3%	N	the estimated % occurrence of the <i>tertiary</i> seawall type in tenths (i.e., "2" = 20%
OTILK		miscellaneous comments and notes during the mapping	SM3_M	N	occurrence within the unit) the calculated length in
SHORE_PROB	Т	comment on nature of the shore problem, usually the			meters of the <i>Tertiary</i> seawall type
		difference between electronic shoreline and	SMOD_TOTAL	N	the total % occurrence of seawall in the unit, in tenths
SM1_TYPE	Т	observed shoreline the <i>primary</i> type of seawall occurring within the unit where:BR = boat ramp; CB = concrete bulkhead; LF = landfill; SP= sheet pile; RR = rip rap and WB = wooden bulkhead	RAMPS	N	the number of boat ramps that occur within the shore zone of the unit or subnunit. Ramps must impact some portion of the shore-zone and generally be constructed of concrete, wood or aggregate. Public boat ramps are shown as variants
SM1%	N	the estimated % occurrence of the <i>primary</i> seawall type in tenths (i.e., "2" = 20% occurrence within the unit)	PIERS/DOCKS	N	the number of piers or wharves that occur within the unit. Piers or docks must extend at least 10m into the
SM1_M	N	the calculated length in meters of the <i>Primary</i> seawall type	DEC CLIDS	N	shore zone. Category does not include anchored floats.
SM2_TYPE	Т	the secondary type of seawall occurring within the unit where: BR = boat ramp; CB = concrete bulkhead; LF	REC_SLIPS	N	the estimated number of recreational (or small) slips associated with the piers/docks of the unit based on small boat length (~<50')
		= landfill; SP = sheet pile; RR = rip rap and WB = wooden bulkhead	DEEPSEA_SLIPS	N	the estimated number of slips for ocean-going vessels (~>100')
SM2%	N	the estimated % occurrence of the <i>secondary</i> seawall type in tenths (i.e., "2" = 20% occurrence within the unit)	ITZ_WIDTH	N	the sum of the across-shore width of all the intertidal components (B-Zone) within the unit
SM2_M	N	the calculated length in meters of the <i>Secondary</i> seawall type			

Table D-2 Protocol for Unit Delineation

The primary goal of the mapping program is to catalog shore-zone features that may be of interest in resource management. As such the mapping should capture the key ecological features of the shore-zone. Units may be delineated as either *points*, *lines* or *polygons* within the spatial framework. This protocol provides criteria for assigning the most appropriate spatial characteristics to a unit.

- 1. the Alaska Shore-Zone mapping system is primarily a lineal system (length but not width) so that *a line segment representation is the preferred unit type*. These units are coded as **L** in the "Type" Field.
- 2. point and polygon features should be used in certain cases to *provide a clear* characterization of the physical and biological characteristics of the unit as well as the processes that affect the unit. These cases are outlined below.
- 3. **points** are used to identify features that are of interest to resource managers but are too small (in terms of alongshore length) to be represented by a line segment. The following features are represented by points: stream mouths, public boat ramps, and other small features within a unit with ecological or management significance such as wetlands. Stream mouths or marshes are normally identified from the aerial video imagery. These units are coded as **P** in the "Type" Field.
- 4. *polygons* are used when a feature has unique spatial characteristics that are not captured by a single line segment representation. Examples of possible polygons include: a wetland where the shape of the wetland does not allow a reasonable approximation of area by length and width estimates, an intertidal ebb-tidal delta where controlling processes (tidal currents) differ substantially from surrounding units or a very wide mudflat backed by a gravelly sand beach. The minimum area for a polygon is 1cm² at a 1:12,000 mapping scale or 15,000 ft².

Two types of polygons are represented:

- a. a polygon that incorporates features that span the entire "shore-zone" from supratidal to subtidal, and therefore have an associated alongshore length on the electronic shoreline. A large wetland area with associated fringing mudflat is an example of this type of polygon. In that the polygon has both an area and an alongshore length (where it intersects the electronic), the feature type is coded as **both** and both area and length measurements are added to the database. This type of unit is coded as **B** in the "Type" field.
- b. a polygon that describes only a portion of the shore-zone (equivalent to an across-shore component) and that does not intersect the MHWL shoreline. An ebb-tidal delta or a large, intertidal mudflat are examples of this type of polygon. This type of unit is coded as **A** in the "Type" field.

Table D-3 Rationale for BC Shore Types¹

SUBSTRATE	<u>SEDIMENT</u>	<u>WIDTH</u>	SLOPE	Shore Type Code & Description
ROCK	n/a	WIDE (>30m)	STEEP(>20°) INCLINED(5-20°) FLAT(<5°)	n/a (1) Rock Ramp, wide (2) Rock Platform, wide
		NARROW (<30m)	STEEP(>20°) INCLINED(5-20°) FLAT(<5°)	(3) Rock Cliff(4) Rock Ramp, narrow(5) Rock Platform, narrow
	CDAVE	WIDE (>30m)	STEEP(>20°) INCLINED(5-20°) FLAT(<5°)	n/a (6) Ramp w gravel beach, wide (7) Platform w gravel beach, wide
	GRAVEL	NARROW (<30m)	STEEP(>20°) INCLINED(5-20°) FLAT(<5°)	(8) Cliff w gravel beach(9) Ramp w gravel beach(10) Platform with gravel beach
ROCK +	SAND &	WIDE (>30m)	STEEP(>20°) INCLINED(5-20°) FLAT(<5°)	n/a (11) Ramp w gravel & sand beach, wide (12) Platform w G&S beach, wide
SEDIMENT	GRAVEL	NARROW (<30m)	STEEP(>20°) INCLINED(5-20°) FLAT(<5°)	(13) Cliff w gravel/sand beach(14) Ramp w gravel/sand beach(15) Platform with gravel/sand beach
	SAND	WIDE (>30m)	STEEP(>20°) INCLINED(5-20°) FLAT(<5°)	n/a (16) Ramp w sand beach, wide (17) Platform w sand beach, wide
	SAND	NARROW (<30m)	STEEP(>20°) INCLINED(5-20°) FLAT(<5°)	(18) Cliff w sand beach(19) Ramp w sand beach, narrow(20) Platform w sand beach, narrow
		WIDE (>30m)	FLAT(<5°)	(21) Gravel flat, wide
	GRAVEL	NARROW (<30m)	STEEP(>20°) INCLINED(5-20°) FLAT(<5°)	n/a (22) Gravel beach, narrow (23) Gravel flat or fan
SEDIMENT	SAND &	WIDE (>30m)	STEEP(>20°) INCLINED(5-20°) FLAT(<5°)	n/a n/a (24) Sand & gravel flat or fan
SEDIMENT	GRAVEL	NARROW (<30m)	STEEP(>20°) INCLINED(5-20°) FLAT(<5°)	n/a (25) Sand & gravel beach, narrow (26) Sand & gravel flat or fan
		WIDE (>30m)	STEEP(>20°) INCLINED(5-20°) FLAT(<5°)	n/a (27) Sand beach (28) Sand flat (29) Mudflat
	SAND/MUD	NARROW (<30m)	STEEP(>20°) INCLINED(5-20°) n/a	n/a (30) Sand beach
	ORGANICS/FINES	n/a	n/a	(31) Organics/Fines
ANTHRO- POGENIC	MAN-MADE	n/a	n/a	(32) Man-made, permeable (33) Man-made, impermeable
CURRENT-DOM ICE	MINATED			(34) Channel (35) Glacial ice shoreline

¹Shore Type code is used to provide a generalized summation of the detailed physical data complied for each shore unit (from Howes *et al.* 1994).

Table D-4 ESI Shore Type Classification (after Peterson et al 2002)

ESI	
No.	Description
1A	Exposed rocky shores; Exposed rocky banks
1B	1B Exposed, solid man-made structures
1C	Exposed rocky cliffs with boulder talus base
2A	Exposed wave-cut platforms in bedrock, mud, or clay
2B	Exposed scarps and steep slopes in clay
3A	Fine- to medium-grained sand beaches
3B	Scarps and steep slopes in sand
3C	Tundra cliffs
4	Coarse-grained sand beaches
5	Mixed sand and gravel beaches
6A	Gravel beaches; Gravel Beaches (granules and pebbles
6B	Riprap; Gravel Beaches (cobbles and boulders)*
6C	Riprap
7	Exposed tidal flats
8A	Sheltered scarps in bedrock, mud, or clay; Sheltered rocky shores (impermeable)
8B	Sheltered, solid man-made structures; Sheltered rocky shores (permeable)
8C	Sheltered riprap
8D	Sheltered rocky rubble shores
8E	Peat shorelines
9A	Sheltered tidal flats
9B	Vegetated low banks
9C	Hypersaline tidal flats
10A	Salt- and brackish-water
	marshes
10B	Freshwater marshes
10C	Swamps

Table D-5 Exposure Matrix Used for Estimating Calculated Exposure (EXP_CALC)

Maximum	Modified Effective Fetch (km)				
Fetch (km)	<1	1 - 10	10 - 50	50 - 500	>500
<1	very protected	n/a	n/a	n/a	n/a
<10	protected	protected	n/a	n/a	n/a
10 - 50	n/a	semi-protected	semi-protected	n/a	n/a
50 - 500	n/a	semi-exposed	semi-exposed	semi-exposed	n/a
>500	n/a	n/a	semi-exposed	exposed	exposed

exposure definitions are the same categories listed in EXP_BIO - Table D-15.

Codes for exposures:	very protected	VP
•	protected	P
	semi-protected	SP
	semi-exposed	SE
	exposed	E
	very exposed	VE

Table D-7 Look-Up Table of Calculated ORI Classes Defined by Shore Type and

Exposure

	Oil	
	Residence	Estimated
Persistence	Index	Persistence
short	1	days to weeks
	2	weeks to months
\downarrow	3	weeks to months
	4	months to years
long	5	months to years

Shore Type	Calculated Exposure					
CLASS	VE	Е	SE	SP	P	VP
1	1	1	1	2	3	3
2	1	1	1	2	3	3
3	1	1	1	2	3	3
4	1	1	1	2	3	3
5	1	1	1	2	3	3
6	2	3	5	4	4	4
7	2	3	5	4	4	4
8	2	3	5	4	4	4
9	2	3	5	4	4	4
10	2	3	5	4	4	4
11	1	2	3	4	5	5
12	1	2	3	4	5	5
13	1	2	3	4	5	5
14	1	2	3	4	5	5
15	1	2	3	4	5	5
16	1	2	3	3	4	4
17	1	2	3	3	4	4
18	1	2	3	3	4	4
19	1	2	3	3	4	4
20	1	2	3	3	4	4
21	2	3	5	4	4	4
22	2	3	5	4	4	4
23	2	3	5	4	4	4
24	1	2	3	4	5	5
25	1	2	3	4	5	5
26	1	2	3	4	5	5
27	2	2	3	3	4	4
28	2	2	3	3	4	4
29	999	999	999	3	3	3
30	2	2	3	3	4	4
31	5	5	5	5	5	5
32	2	2	3	3	5	5
33	1	1	1	2	2	2
34	999	999	999	4	4	4

Table D-8 Summary of Data Fields in the BioUnit Database

Field Names	Type	Description
UnitRecID	I	unique numerical number for each record
PHY_IDENT	Т	unique alphanumeric identifier made up of the REGION, AREA, PHY_UNIT and SUBUNIT numbers
EXP_BIO	T	exposure estimated from biota indicator species
HAB_OBS	I	observed habitat
HAB_CALC	I	predicted habitat based on BC_CLASS and EXP_CALC
BIO_SLIDE	T	roll number and frame number of 35 mm slide
BIO_SOURCE	T	data sources for biological interpretation
BIO_SITE	T	number of ground station
RIPARIAN%	I	% occurrence of coastal riparian (terrestrial vegetation overhang within the unit)
RIPARIAN_M	I	length of coastal riparian in meters
COMMENTS	T	comment field
BIO_MAPPER	T	last name of biology mapper
BIO_MAP_DATE	D/T	date of biological mapping
QAQC	Y/N	yes/no if unit reviewed in QAQC
QAQC_NAME	T	last name of QAQC reviewer
QAQC_CHANGE	T	QAQC change type code
%MOBILE	I	estimate of the % of unit with mobile substrate
HAB_OBS_OVERRIDE	Y/N	yes/no if HAB_OBS is over-ride of HAB_CALC lookup

Data Dictionary for BioUnit Databases

Field Name	Type	Description
UnitRecID	N	unique id for each record
PHY_IDENT	T	unique Physical Ident number for the unit, a combination of region, area, unit, and sub-unit. (RR/AA/UUUU/SS)
EXP_OBSER	T	an estimate of the wave exposure as observed by geomorphologist during mapping based on Tabl e D- 5.
HAB_OBS	N	the observed biotic assemblage from the imagery and classified according to Table D-17
HAB_CALC	N	the predicted intertidal biotic assemblage from the mapped BC_Class and the EXP_CALC (Table D-17)
BIO_SLIDE	T	oblique aerial slide-format image ident, film roll/ frame number
BIO_SOURCE	Т	the source that was used to interpret shore-zone biota, (V)ideotape, (S)lide, (I)nferred
BIO_SITE	T	
BIO_SLIDE	T	oblique aerial slide-format image ident, film roll/ frame number

Field Name	Type	Description
BIO_SOURCE	T	the source that was used to interpret shore-zone biota, (V)ideotape, (S)lide, (I)nferred
BIO_SITE	T	the Station number of an ground surveys that were conducted in the unit
BIO_MAPPER	T	the last name of the biologist that provided the biological interpretation of the imagery.
BIO_EDITOR	T	last name of biologist that is responsible for reviewing and editing data
BIO_MAP_DATE	D	the date of the bio mapping
QAQC_NAME	T	last name of QAQC reviewer
QAQC_CHANGE	T	code (Table D-9) to indicate degree of discrepancy between original mapper and reviewer
%MOBILE	I	an estimate by the biological mapper of the percentage of the unit length that has mobile substrate (i.e., precludes development of epiflora or epifauna

Table D-9. Definitions of the Biology QA/QC Checks

Code for	Definitions of the biology QA/QC cheeks	Significance
Change	Definitions & Discussion	of change?
Type		
	Change band distribution code – from patchy to continuous or vice	least significant
1	versa. A revision of this type is defined as the least significant and is	
	considered as an example of variation of interpretation between	
	observers.	
	Add a bio-band – Adding a band was the most common revision	
2	made in QA/QC review and the frequency of this change decreased as	
	junior mappers' experience with video interpretation increased. These	
	changes are defined as an 'error of omission', not an error in	
	interpretation	
	Delete a bio-band – Deleting a band that had been mapped was	
3	considered an error in interpretation. Usually these changes were	
	associated with an 'add band' change and were subject of discussion	
	for assisting in clarifying bio-band descriptions. Change the HAB OBS classification – a discrepancy between the	
4	HAB OBS and the HAB CALC, which is computed as a function of	
4	the exposure (from biota) and the shore-type (BC_CLASS) may	
	indicate that an error was made in the HAB OBS classification. Only	l 7
	those QAQC'd units where a <i>change</i> was made in the HAB_OBS are	\ /
	flagged.	\ /
	Change the EXP BIO – The correct interpretation of the Exposure	\/
5	category was considered the most significant QA/QC change type.	V
	cutogory was considered the most significant Qrivee change type.	most significant

Table D-10 Summary of Data Fields in the Component Database (XSHR)

Field Names	Type	Description
UnitRecID	N	unique record number that relates across-shore records to a unit
		record
XshrRecID	N	unique record number for each across-shore record
PHY_IDENT	T20	unique alphanumeric identifier made up of the REGION, AREA,
		PHY_UNIT and SUBUNIT numbers
CROSS_LINK	T20	unique alphanumeric identifier of component made up of:
		REGION, AREA, PHYS_UNIT, SUBUNIT, ZONE and
		COMPONENT
ZONE	T1	portion of shore-zone: supratidal, intertidal, subtidal
COMPONENT	Is	number of component
Form1	T20	descriptor of primary morphology of component
MatPrefix1	T1	descriptor holding "v" = veneer surface layer
Mat1	T20	descriptor of sediment of Form1
Form2	T20	descriptor of primary morphology of component
MatPrefix2	T1	descriptor holding "v" = veneer surface layer
Mat2	T20	descriptor of sediment of Form2
Form3	T20	descriptor of primary morphology of component
MatPrefix3	T1	descriptor holding "v" = veneer surface layer
Mat3	T20	descriptor of sediment of Form3
Form4	T20	descriptor of primary morphology of component
MatPrefix4	T1	descriptor holding "v" = veneer surface layer
Mat4	T20	descriptor of sediment of Form4
WIDTH	Is	average width of the primary component in metres
SLOPE	Is	estimated slope of primary component
PROCESS	T4	dominant coastal process modifying the primary component
COMPONENT	I	an estimate by the GeoMapper of the ORI of the primary
ORI		component (see Table D7)

Data Dictionary for Across-Shore Component Databases (XSHR)

(Adapted from methods and codes outlined in Howes et al 1994)

Field Name	Type	Description	Field Name	Type	Description
UnitRecId	N	the record number of the Unit to which the component is related	FormMat2Txt	T	translation of Form and Material codes into a sentence descriptor
XshrRecID	N	a unique record number for each X-SHR record	Form3	T	describes tertiary physical Form within each across-shore
PHYS_IDENT	T	unique id combining the region-area-unit-subunit fields (see UNIT Table data dictionary, above).	MatPrefix3	Т	component (see Table D- 10 for codes)
CROSS_LINK	Т	a unique alphanumeric id combining the region- area- unit-subunit-zone-	Mat3	T	blank = no veneer; "v" = veneer describes substrate
ZONE	T	component fields a text code indicating the	Wiats	1	associated with tertiary form (see Table D-11 for codes)
		across-shore position of the component: (A) supratidal, (B) intertidal or	FormMat3Txt	T	translation of Form and Material codes into a sentence descriptor
COMPONENT	N	(C) subtidal zone further subdivision of Zones, numbered from highest elevation in across-shore profile	Form4	T	describes forth most common physical Form within each across-shore component (see Table D- 10 for codes)
Form1	T	within Zone to lowest. describes primary physical Form within each across-shore	MatPrefix4	Т	veneer indicator field; blank = no veneer; "v" = veneer
		component (see Table D- 10 for codes)	Mat4	T	describes substrate associated with forth- order form (see Table D-
MatPrefix1	T	veneer indicator field; blank = no veneer; "v" = veneer	FormMat4Txt	T	11 for codes) translation of Form and Material codes into a
Mat1	T	describes substrate associated with primary form (see Table D-11 for	SUB_WIDTH	N	sentence descriptor the mean across-shore
FormMat1Txt	Т	codes)	SOB_WIDTH	14	width of the component in meters.
Form2	T	Material codes into a sentence descriptor describes secondary	SUB_SLOPE	N	the estimated across- shore slope of the component in degrees;
		physical Form within each across-shore component (see Table D-	PROCESS	T	not coded in Carr Inlet the dominant coastal
MatPrefix2	T	10 for codes) veneer indicator field; blank = no veneer; "v" = veneer			process affecting the morphology of the component (F)luvial, (M)asswasting, (W)aves, (C)currents, (O)ther, (E)olean
Mat2	Т	describes substrate associated with secondary form (see Table D-11 for codes)	COMPONENT_ ORI	N	a numeric index between 1 and 5 that indiccates the potential oil residency based on Table D-12

Table D-11 'Form' Code Dictionary. (after Howes et al 1994).

A = Ani	thropogenic	Cliff co		$\mathbf{O} = \mathbf{O}$	ffshore Island
a	dolphin	heigi		b	barrier
b	breakwater	1	low (<5m)	c	chain of islets
c	log dump	m	moderate (5-10m)	t	table shaped
d	derelict shipwreck	h	high (>10m)	р	pillar/stack
f	float			w	whaleback
h	shell midden	D = De	lta	elevati	on
-		b	bars	1	low (<5m)
1	cable/ pipeline	f	fan	m	moderate (5-10m)
J	jetty	i	levee	h	high (>10m)
k	dyke	m	multiple channels	11	mgn (* 10m)
m	marina		plain (no delta, <5°)	$\mathbf{p} = \mathbf{p}_{\mathbf{l}}$	atform
n	ferry terminal	p		f - 11	horizontal
O	log booms	S	single channel		surge channel
p	port facility	E 5		g	
q	aquaculture	$\mathbf{E} = \mathbf{D}\mathbf{u}$		h	high tide platform
r	boat ramp	b	blowouts	i	irregular
S	seawall	i	irregular	1	low tide platform
t	landfill, tailings	n	relic	r	ramp
W	wharf	О	ponds	t	terraced
X	outfall or intake	r	ridge/swale	S	smooth
y	intake	p	parabolic	p	tidepool
y	make	v	veneer		
B = Bea	ach	w	vegetated	R = Ri	ver Channel
b – в еа	berm			a	perennial
	washover channel	F = Re	ef	t	intermittent
C		f	horizontal	m	multiple channels
f	face	i	irregular	S	single channel
i	inclined (no berm)	r	ramp	5	single chamier
m	multiple bars&troughs	S	smooth	T - Ti	dal Flat
n	relic ridges, raised	8	Sillootii	b	bar,ridge
p	plain	T T		c	tidal channel
r	ridge (single intertidal	I = Ice	1 .	_	
	bar)	g	glacier	e	ebb tidal delta
S	storm ridge			f	flood tidal delta
t	low tide terrace	L = La	0	1	levee
W	washover fan	o	open	S	multiple tidal channels
v	veneer (modifier)	c	closed	t	flats
				p	tidepool
C = Cli	ff	$\mathbf{M} = \mathbf{M}$	arsh		
a	eroding	f	drowned forest		
	passive	h	high		
p c	cave	1	mid to low		
f			(discontinuous)		
	fan,apron	c	tidal creek		
g	surge channel	e	levee		
t	terraced	0	pond		
r	ramp	S	brackish - supratidal		
slope					

[The form code describes the physical 'form' of a component, using a primary form descriptor, with or without a secondary form modifier (e.g. Ap, Bxfbu). Use of one primary form description indicates that it comprises up to 75% of component. If two descriptors shown (separated by a semi-colon) then the second form is >10% of the component

inclined (20to35°) steep (>35°)

Table D-12 'Material' Code Dictionary. (after Howes et al 1994).

A = Anthropogenic

- a metal (structural)
- c concrete (loose blocks)
- d debris (man-made)
- f fill, undifferentiated mixed
- o concrete (solid cement blocks)
- r rubble, riprap
- t logs (cut trees)
- w wood (structural)

B = Biogenic

- c coarse shell
- f fine shell hash
- g grass on dunes
- l trees, fallen not cut, dead
- o organic litter
- p peat
- t trees (alive)

C = Clastic

- a blocks (angular,>25cm)
- b boulders (round, subround, >25cm)
- c cobbles
- d diamicton (poorly sorted sediment containing a range of particles in a mud matrix)
- f fines or mud (mix of silt, clay)
- g gravel (mix pebble, cobble, boulder >2mm)
- k clay
- p pebbles
- r rubble (boulders>1m)
- s sand
- \$ silt
- x angular fragments (mix block & rubble)
- v sediment veneer

R = Bedrock

rock type:

- i igneous
- m metamorphic
- s sedimentary
- v volcanic

rock structure:

- l bedding
- 2 jointing
- 3 massive

U = Undefined

DESCRIPTION OF SUBSTRATE

Simplified from Wentworth scale

GRAVELS

boulder	> 25cm
cobble	6 to 25 cm
pebble	0.5 to 6 cm
granule	0.2 to 0.5 cm

SAND

from very coarse to very fine: all between .5mm to 2 mm

FINES (MUD)

from silt to clay: smaller than .5mm

[The 'material' descriptor consists of one primary term code and associated modifiers (e.g. Cskb, Ad). Up to three descriptors may be written in order of importance to describe each layer. If only one descriptor is used, indicated material comprises 75% of the volume of the layer (e.g.Cs), if more than one descriptor, they are ranked in order of volume. A surface layer can be described by prefix 'v' for veneer (e.g. vCsk).

Where more than one 'form' is coded for a component, the 'material' code is matched to the correct 'form' by retaining the order used in the 'form' coding. (e.g. form = Bi;Ph, material = At/Cps;Rs indicates log material over pebble & sand beach berm, with platform of sedimentary rock.).

Table D-13 Component ORI Matrix

Component Substrate	VE	E	SE	SP	P	VP
rock	1	1	1	2	3	3
man-made, impermeable	1	1	1	2	2	2
boulder	2	3	5	4	4	4
cobble	2	3	5	4	4	4
pebble	2	3	5	4	4	4
sand	2	2	3	3	4	4
mud	999	999	999	3	3	3
organics/vegetation	999	999	999	5	5	5
man-made, permeable	2	2	3	3	5	5

| |BioBand Database

Table D-14 S	Summar	y of Data	Fields in the	BioBand	Database

Field Names	Type	Description
UnitRecID	N	unique record number that relates across-shore records to a unit
		record
XshrRecID	N	unique record number for each across-shore record
PHY_IDENT	T20	unique alphanumeric identifier made up of the REGION, AREA, PHY_UNIT and SUBUNIT numbers
CROSS_LINK	T20	unique alphanumeric identifier of component made up of: REGION, AREA, PHYS_UNIT, SUBUNIT, ZONE and COMPONENT
VER	T1	occurrence of Verrucaria bio-band
PUC	T1	occurrence of <i>Puccinella</i> and othersalt-tolerant herbaceous plants
GRA	T1	occurrence of dune grasses.
BAR	T1	occurrence of barnacle bio-band
FUC	T1	occurrence of Fucus bio-band
ULV	T1	occurrence of <i>Ulva</i> bio-band
HAL8	T1	occurrence of Halosaccion bioband
BMU	T1	occurrence of blue mussel bio-band
RED8	T1	occurrence of red algae bio-band
ALA	T1	occurrence of Alaria bio-band
SBR8	T1	occurrence of soft brown algae band
CHB8	T1	occurrence of the chocolate brown bio-band
NEO	T1	occurrence of the Neoptilota bioband
ZOS	T1	occurrence of the Zostera bio-band
ALF	T1	occurrence of the giant Alaria fistulosa kelp band
NER	T1	occurrence of the Nereocystis bio-band
MAC	T1	occurrence of the Macrocystus bio-band
COMMENTS	T50	misc. comments by the bio-mapper

<u>Data Dictionary for BIO Databases</u> [Methodology described in Searing & Frith (1995)]

Field Name	Type	Description	Field Name	Type	Description
UnitRecId	N	the record number of the Unit to which the component is related	ВМИ	T	bio-band for blue mussels (Mytilus trossulus) of mid- intertidal, protected areas
XshrRecID	N	a unique record number for each X-SHR record	RED8	T	bio-band for mixed RED algae of lower intertidal
PHYS_IDENT	T	unique id combining the region- area-unit-subunit fields (see UNIT Table data dictionary, above).	ALA	Т	pure stand of large or small morph of <i>Alaria spp</i> . Usually also includes mixed REDs with
CROSS_LINK	T	a unique alphanumeric id combining the region-area- unit-			foliose and encrusting corallines.
Note: all Bio-bands	are coded Pa	subunit-zone-component fields atchy or Continuous (>50% cover)	SBR8	T	large bladed <i>Laminaria spp.</i> - the unstalked blade browns, which are seen in the lower intertidal
	d, coded by	width Narrow (<1m), Medium (1-	av	_	and nearshore subtidal
VER	T	bio-band for 'VERrucaria' in supratidal splash zone	СНВ8	T	shiny, leathery dark browns, including <i>Alaria marginata</i> morph, <i>L. setchelli, L. bongardiana</i> morph, <i>Lessoniopsis</i>
PUC	T	bio-band for PUCcinellia and other salt tolerant grasses			, L. yezoensis, Cymathera
GRA	T	bio-band code for dune GRAsses	SUR	T	bio-band for green SURfgrass of lower intertidal
		of supra-tidal	NEO	T	Neoptilota
BAR	T	bio-band for continuous <i>Balanus</i> glandula BARnacle in upper intertidal	ZOS	T	bio-band for <i>ZOStera</i> (eelgrass) of sheltered areas, lower intertidal and subtidal
FUC	T	bio-band for FUCus-barnacle of upper intertidal	ALF	T	giant Alaria fistulosa kelp band.
ULV	T	bio-band for mixed ULVa-type	NER	T	bio-band for nearshore subtidal NEReocystis bull kelp
HAL8	T	green algae band, mid intertidal Named for golden-yellow colour	MAC	T	bio-band for nearshore subtidal <i>MACrocystis</i> kelp
		of <i>Halosaccion</i> which may not be present or dominate the band.	COMMENT	T	a field for miscellaneous comments

Table D-15 BioBand Descriptions for the Outer Kenai Coast

Zone	Colour Band Name	Code Name	Colour	Description	Exposure Category
A	'Verrucaria'	VER	black or bare rock	splash zone: may be marked by black encrusting lichen & bluegreen algae. Best observed on bedrock & sometimes visible on low energy boulder/cobble shorelines Extensive bare zones typically occur only in association with VER on high energy bedrock shorelines.	width can be an index of wave exposure
A	salt-tolerant herbs and grasses	PUC	light/bright green	Puccinella, Plantago maritima, Triglochin, Carex, other marsh grasses, and salt-tolerant herbaceous plants	SP, P, estuary
A	grasses	GRA	light green	Elymus mollis, dune grasses. May be the only band observed on high energy beaches.	any beaches
B Upper	upper barnacle	BAR	grey-white	B. glandula and/or S. balanoides in upper intertidal, also can include bare rock. Common algae associated with BAR of upper intertidal are Endocladia muricata, Gloipeltis furcata and Bangia sp. Some Porphyra are associated with upper BAR in early spring. Observation of this band may be used to indicate a low cover of other bands.	E,SE,SP, P
B Upper	'Fucus'	FUC	golden brown	dominated by <i>Fucus</i> , includes <i>B.</i> glandula and/or <i>S. balanoides</i> . Epiphytic <i>Ulva</i> are common on exposed areas and epiphytic Pilayella occur in protected areas.	SE, SP, P
B Mid	'Ulva'	ULV	bright green	Ulva/'Ulvaria' blade greens and Enteromorpha-type filamentous greens. May appear as thick patches or as green haze of small plants. Chladophora and Acrosiphonia are common fine filamentous greens that can also appear as green band.	SP, P, estuary
B Lower	'Halosaccion'	HAL8	golden yellow	Named for golden-yellow colour of <i>Halosaccion</i> which may not be present or dominate the band. Band may occur as an assemblage of bleached reds in the lower intertidal. Typical species are: <i>Palmaris spp., Odonthalia, Mazzaella</i> and other bleached blade and filamentous reds.	SP,P

Bioband Database

				continuous bands of dense Mytilus	E, SE, SP,P,
В				trossulus. Often also associated	currents,
Lower	blue mussel	BMU	dark blue-	with Fucus, S. cariosus, Porphyra	freshwater
			black	abbotae, Endocladia or	
				Odnonthalia. Occurs in high wave	
				exposures and in areas of current or	
				areas influenced by freshwater	
				input, river deltas Algal-rich band of lower intertidal,	
В	mixed	RED8	dark red-	complex of filamentous and blade	E, SE, SP,
Lower	filamentous &	KEDO	brown	red algae, including <i>Neoptilota</i> ,	currents
Eo Wei	blade reds		010 1111	Odonthalia, Neorhodomela,	Carrones
				Palmaria and others.	
				Common invertebrates include	
				Pisaster, Nucella, Katharina.	
				Includes foliose coralline algae.	
	Alaria	ALA	dark brown	pure stand of large or small morph	SE, E
В	marginata			of <i>Alaria spp</i> . Usually also includes	
Lower	morph			mixed REDs with foliose and	
				encrusting corallines. <i>Pisaster</i> and	
				Katharina commonly associated. <i>Alaria</i> can also be a component of	
				CHB8.	
				large bladed <i>Laminaria spp.</i> - the	
В	soft browns	SBR8	brown	unstalked blade browns, which are	SP, P
Lower				seen in the lower intertidal and	,
				nearshore subtidal. Includes	
				L. 'saccharina' morph: large blades,	
				ruffled edges and Cymathera,	
				Cystoseira, Alaria species.	
В	chocolate	СНВ8	dark brown	shiny, leathery dark browns,	E, SE
Lower	browns	Спро	dark brown	including <i>Alaria marginata</i> morph, <i>L. setchelli, L. bongardiana</i> morph,	E, SE
Lower	olowiis			Lessoniopsis, L. yezoensis,	
				Cymathera.	
				CHB often occurs with foliose and	
				encrusting coralline algae and other	
				lush REDs, such as Odonthalia and	
				Neoptilota.	
	'Neoptilota'	NEO	bright red	Neoptilota	SE
В				(not sure if this will form	
Lower				identifiable bio-band for AVI) eelgrass, (Zostera marina) fine	
C	'Zostera'	zos	dark green	sediment, may extend slightly	P, SP, estuary
Upper	2000014	200	30111 510011	upslope into intertidal. Often	-, 51, Ostuary
- L.L. 4.				encrusted with epiphytic blade red.	
	dragon kelp			giant <i>Alaria fistulosa</i> kelp band.	SE?
C		ALF		Limited geographic distribution.	
Upper					
C	Nereocystis	NER	dark brown,	bull kelp beds, floating blades and	E, SE, SP, current
Upper	3.6	35.0	shiny	fronds in nearshore	GE GD D
C	Macrocystis	MAC	brown shiny	leafy, soft kelp beds, usually an	SE, SP, P
Upper				indicator of fully-marine waters	
L,		1	<u> </u>		

Codes for exposures: **E** = exposed; **SE** = semi-exposed; **SP** = semi-protected; **P** = protected; **VP** = very protected not a 'true' band but is an indicator species in the subtidal.

Table D-16 (Part 1 of 2) Habitat Classification that Relates Biotic Assemblages to Wave Exposure and Shore Types

MAJOR SUBSTRATE	BEDROCK/BOULDER	BEDROCK/BOULDER	BEDROCK/BOULDER	BEDROCK/BOULDER	BEDROCK/BOULDER
COASTAL CLASS	1-20	1-20	1-20	1-23, 32, 33	1-23, 33
EXPOSURE (EXP BIO)	VE	E	SE	SP	P, VP
HABITAT OBSERVED (HAB_OBS)	1	2	3	4	5
Upper	Verrucaria	Verrucaria	Verrucaria	Verrucaria	Verrucaria
		Balanus glandula	Balanus glandula Fucus distichus	Balanus glandula Fucus distichus	Balanus glandula Fucus distichus
Middle		Semibalanus carriosus Mytilus trossulus	Semibalanus carriosus Mytilus trossulus	Semibalanus carriosus Mytilus trossulus Ulva/ Ulvaria spp.	Mytilus trossulus
mid/low			diverse mixed red algae, including <i>Odonthalia</i>	diverse mixed red algae including Odonthalia	Ulva/ Ulvaria spp.
			Neoptilota	Palmeria spp	
Lower	Lessoniopsis littoralis	Alaria 'nana' morph Lessoniopsis littoralis			
		Laminaria setchellii	Laminaria setchellii Laminaria yezoensis	Cvstoseira	
	foliose coralline reds	foliose coralline reds	Cymathera	Cystosetra Cymathera	
	Torrose corumne reas	Tonose coramne reas	Laminaria bongardiana morph		
			Alaria 'marginata' morph	Pleurophycus Alaria 'marginata' morph	
			•	Laminaria saccharina morph	Laminaria saccharina morph
Subtidal		Nereocystis luetkeana	Nereocystis luetkeana Alaria fistulosa	Nereocystis luetkeana	
				Zostera marina	Zostera marina

Table D-16 (Part 2 of 2) Habitat Classification that Relates Biotic Assemblages to Wave Exposure and Shore Types

MAJOR SUBSTRATE	SAND & GRAVEL	SAND & GRAVEL	SAND/MUD	SEDIMENT	BEDROCK OR SEDIMENT	
COASTAL CLASS	24 to 30, 32	24 to 30, 32	24 to 30, 31 has PUC band ESTUARY	24 - 30	usually bedrock types	
EXPOSURE (EXP BIO)	no PUC band SP	no PUC band P, VP	SP, P, VP	SP, SE, E	VP, P, SP	
HABITAT OBSERVED (HAB_OBS)	6	7	8	9	10	
Upper	Verrucaria	Verrucaria	Triglochin, Plantago maritima, Carex Puccinellia	Elymus mollis	tidal current dominated; may be a Protected wave	
	Balanus glandula	Balanus glandula	Balanus glandula		exposure but shows	
	Fucus distichus	Fucus distichus	Fucus distichus		an assemblage of	
	Tucus aistichus	Tucus disticnus	1 ucus uisiichus		indicator species from	
Middle	Semibalanus carriosus			no visible macrobiota due to sediment mobility or scour	higher wave exposures.	
	Mytilus trossulus	Mytilus trossulus	Mytilus trossulus			
	Ulva/ Ulvaria spp.	Ulva/ Ulvaria spp.	Ulva/ Ulvaria spp.	1		
mid/low						
Lower	Laminaria saccharina morph	Laminaria saccharina morph				
	Alaria 'marginata' morph				Alaria 'marginata' morph	
Subtidal	Nereocystis luetkeana				Nereocystis luetkeana	
	Zostera marina	Zostera marina	Zostera marina			

Bloband Database

Appendix E

CD Pocket

Directories:

ArcViewArcView Shape FilesAccess97ShoreZone Data FilesMetaDataMeta Data Files

Word97 flightline Manual, Data Report (this report)