Exxon Valdez Oil Spill Restoration Project Annual Report

Injury to Pink Salmon Embryos in Prince William Sound - Field Monitoring

> Restoration Project 95191A-1 Annual Report

This annual report has been prepared for peer review as part of the *Exxon Valdez* Oil Spill Trustee Council restoration program for the purpose of assessing project progress. Peer review comments have not been addressed in this annual report.

Andrew K. Craig¹ Brian G. Bue² T. Mark Willette¹

¹Alaska Department of Fish and Game Commercial Fisheries Management and Development Division 401 Railroad Avenue P.O. 669 Cordova, AK 99574

²Alaska Department of Fish and Game Commercial Fisheries Management and Development Division 333 Raspberry Road Anchorage, AK 99518-1599

April 1996

Exxon Valdez Oil Spill Restoration Project Annual Report

Injury to Pink Salmon Embryos in Prince William Sound - Field Monitoring

> Restoration Project 95191A-1 Annual Report

This annual report has been prepared for peer review as part of the *Exxon Valdez* Oil Spill Trustee Council restoration program for the purpose of assessing project progress. Peer review comments have not been addressed in this annual report.

Andrew K. Craig¹ Brian G. Bue² T. Mark Willette¹

¹Alaska Department of Fish and Game Commercial Fisheries Management and Development Division 401 Railroad Avenue P.O. 669 Cordova, AK 99574

²Alaska Department of Fish and Game Commercial Fisheries Management and Development Division 333 Raspberry Road Anchorage, AK 99518-1599

April 1996

Injury to Pink Salmon Embryos in Prince William Sound - Field Monitoring

Restoration Project 95191A-1 Annual Report

Study History: This study originated in March 1989 and continued through February 1991 as Natural Resource Damage Assessment Fish/Shellfish Study Number 2. The project consisted of embryo sampling in the fall and preemergent fry sampling in the spring at oil-contaminated and unimpacted reference streams to determine if the *Exxon Valdez* oil spill affected incubating pink salmon. This work continued in 1992 as Restoration Study Number R60C. At that time the project was expanded to include the previously described field sampling as well as (1) laboratory evaluation of field results through the controlled incubation of pink salmon embryos on oiled substrate (NOAA); (2) an experiment designed to determine if the results observed in the field were due to environmental factors (ADFG); and (3) a search for evidence of genetic damage (ADFG). This work was continued as Restoration Project 93003, Restoration Project 94191, and this project, Restoration Project 95191. Final reports have been printed for Fish/Shellfish Study Number 2, Restoration Study Number R60C, and Restoration Project 93003 (all entitled Injury to Salmon Eggs and Preemergent Fry in Prince William Sound). Restoration Project 94191 (Injury to Salmon Embryos and Preemergent Fry in Prince William Sound) was accepted as an annual report.

Abstract: We examined pink salmon embryo mortality in intertidal and upstream areas of both oilcontaminated and reference streams in Prince William Sound. Embryo mortality was elevated in oil-affected streams during the falls of 1989, 1990, 1991, 1992 and 1993 (P < 0.023 for all years). However; no statistical difference was observed in the fall of 1994 (P=0.283). We also tested the hypothesis that differences in embryo mortality observed in the field were due to naturally occurring environmental variables that differed systematically between the oil-contaminated and reference streams. Gametes were collected from adults in spawning condition from eight oilcontaminated and eight reference streams, and matings were conducted at a hatchery. The resulting embryos were incubated in controlled environmental conditions. Embryos originating from oil-contaminated streams showed elevated mortalities when compared to the embryos from reference streams in 1993 (P=0.012), but not in 1994 (P=0.343). Results from the controlled incubation study support the results from the field study.

Key Words: Crude oil, embryo mortality, embryos, Exxon Valdez oil spill, flow cytometry, genetic damage, Oncorhynchus gorbuscha, pink salmon, preemergent fry, Prince William Sound.

<u>Citation</u>:

 Craig, A.K., B.G. Bue, and T.M. Willette. 1996. Injury to pink salmon embryos in Prince William Sound - field monitoring, *Exxon Valdez* Oil Spill Restoration Project Annual Report (Restoration Project 95191A-1), Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Cordova, Alaska.

TABLE OF CONTENTS

Page

STUDY HISTORY/ABSTRACT/KEY WORDS/CITATION	i
LIST OF FIGURES ii	i
LIST OF APPENDICES iv	V
EXECUTIVE SUMMARY	V
INTRODUCTION	1
OBJECTIVES	5
Recovery Monitoring of Injury to Pink Salmon Embryos in Prince William Sound	5
Verification of Injury to Pink Salmon Gametes in Prince William Sound	5
METHODS	5
Recovery Monitoring of Injury to Pink Salmon Embryos in Prince William Sound . Study Sites	5 5 7 8
Verification of Injury to Pink Salmon Gametes in Prince William Sound 10 Embryo Rearing 10	0 0
RESULTS 12	3
Recovery Monitoring of Injury to Pink Salmon Embryos in Prince WilliamSound1	3
Verification of Injury to Pink Salmon Gametes in Prince William Sound 1	3
DISCUSSION 1	6
CONCLUSIONS 1	7
ACKNOWLEDGEMENTS 1	7
LITERATURE CITED 1	8

-

LIST OF FIGURES

Page

Figure 1.	Pink salmon embryo mortality observed during past field sampling	2
Figure 2.	Pink salmon embryo to preemergent fry survival observed during past field sampling	4
Figure 3.	Streams examined during the 1989, 1990, 1991, 1992, 1993 and 1994 pink salmon preemergent fry and egg deposition surveys	6
Figure 4.	Map of study area in southwestern Prince William Sound, Alaska	11
Figure 5.	Mean pink salmon embryo mortality and corresponding 90% confidence bounds by tide zone for oil-contaminated and reference streams in Prince William Sound, 1994	14
Figure 6.	Mean pink salmon embryo mortality observed under hatchery conditions in 1994	15

125

LIST OF APPENDICES

Page

Appendix A.	Summary of pink and chum salmon egg dig data from Prince William Sound, 1994.	20
Appendix B.	Estimated Mean Mortality and Corresponding Standard Errors for Pink Salmon Embryos Incubated at the Armin F. Koernig Hatchery in 1994	30

~ ~*

EXECUTIVE SUMMARY

This study was designed to monitor recovery of pink salmon *Oncorhynchus gorbuscha* populations in Prince William Sound that were impacted by the *Exxon Valdez* oil spill. Embryo mortality and embryo to preemergent fry survival were examined in intertidal and upstream areas of oil-contaminated and unaffected (reference) streams since the spring of 1989, and the potential of crude oil to induce genetic damage was examined since the fall of 1992. This report focuses upon work performed between October 1, 1994 and September 30, 1995.

Embryo mortality was significantly greater in oiled streams in 1989 and 1990 with the differences observed in all intertidal areas in 1989 and in the highest intertidal area in 1990. These results were consistent with observations of intertidal oiling from other studies. Among oiled streams, all intertidal areas were contaminated in 1989 whereas in 1990 oil remained only in the upper intertidal zone.

The 1991 evaluation demonstrated a significant difference in embryo mortality between oilcontaminated and reference streams in both the intertidal and upstream zones. This finding was unexpected, as the presence of oil was dramatically reduced in all areas. This result led investigators to hypothesize that:

(1) oil-induced damage to the 1989 brood was manifested in the form of functional sterility and these damages were transmitted genetically within the oiled populations, or

(2) the difference in embryo mortality was due to naturally occurring environmental factors that differed uniformly between oiled and non-oiled streams.

Both hypotheses were supportable. The genetic-damage hypothesis seemed credible because oil is a known clastogenic substance (breaks chromosomes), and pink salmon have an obligate two-year life cycle. The pink salmon which spawned during the fall of 1991 were from the 1989 brood year, the brood year which incubated in oiled gravels during the fall of 1989 and spring of 1990. Also, a pattern of embryo mortality similar to, but not as extreme as 1991, was observed in 1992 and 1993. No statistical difference in embryo mortality was detected in 1994.

The 1993 embryos were two generations removed from oil exposure in 1989. The environmental-difference hypothesis seemed credible because, in fact, it was environmental factors (wind and currents) that determined the fate of the oil. Such environmental factors might also influence the survivability of salmon embryos incubating intertidally.

In this study, we tested the hypothesis that differences in pink salmon embryo mortality

observed in recent years were due to naturally occurring environmental differences. Gametes were collected from adults in spawning condition as they amassed on or near the spawning grounds from eight oil-contaminated and eight reference streams during the 1993 spawning season. The gametes were flown to the Armin F. Koernig hatchery in southwest Prince William Sound where intrastream crosses were made. The resulting embryos from each stream were placed in a common incubator. The pink salmon embryos from oil-contaminated streams showed elevated mortalities when compared to the embryos from reference streams. This finding clearly indicated that the elevated embryo mortalities observed in the field monitoring portion of the study were not due to systematic differences between the incubating environments of oiled and reference streams. This embryo incubation experiment was repeated in 1994, but no significant difference in embryo mortality between oil-contaminated and reference streams was detected. This result is consistent with results obtained from the field monitoring portion of the project in 1994.

INTRODUCTION

Wild salmon play a major role in the Prince William Sound (PWS) ecosystem while also contributing to the region's commercial fisheries. Migrating salmon fry are an important food source in the spring for various mammals, birds, and fishes. Marine mammals prey on the ocean life stages of Pacific salmon while terrestrial mammals and birds, such as bears, river otters, eagles, and gulls depend on salmon for a large portion of their summer diet. Salmon also provide a pathway for transferring nutrients from marine ecosystems to near-shore and terrestrial ecosystems. In recent years, commercial catches of wild salmon have ranged from 10 to 15 million pink salmon and from 0.8 to 1.5 million chum salmon.

Up to 75% of spawning pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon in PWS use intertidal areas (Helle et al. 1964). These areas are highly susceptible to contamination from marine oil spills. Moles et al. (1987) and Rice et al. (1975) found that pink salmon embryos and preemergent fry were adversely affected by exposure to crude oil and that the affect was most acute in intertidal environments. The March 24, 1989 oil spill from the T|V Exxon Valdez contaminated many intertidal spawning areas in central and southwest PWS just prior to the spring migration of salmon fry.

Embryo mortality was significantly greater in all intertidal areas of oiled streams in 1989 (P=0.004) and in the highest intertidal area of oiled streams in 1990 (P=0.023, Figure 1) (Sharr et al. 1994a, Bue et al. *in press*). These results were consistent with observations of intertidal oil-contamination (Wolfe et al. *in press*). Among oiled streams, all intertidal areas were contaminated in 1989 whereas in 1990 oil remained only in the upper intertidal zone.

The 1991 evaluation demonstrated a very significant difference in embryo mortality (P=0.003) between oil-contaminated and reference streams (Figure 1; Sharr et al. 1994a). This finding was unexpected and raised several questions about the source of the elevated mortality in oiled streams, including the possibility that oil-induced damage was transmitted genetically. Petrochemicals have been shown to damage chromosomes (Longwell 1977; McBee and Bickham 1988; Hose et al. *in press*). The pink salmon which spawned during the fall of 1991 were from the 1989 brood year. These fish incubated in oiled gravels during the fall of 1989 and spring of 1990. A pattern of embryo mortality similar to but not as extreme as 1991 was observed in 1992 (P=0.010; Figure 1; Sharr et al. 1994b).

These field findings were interesting, but they did not conclusively prove that genetic damage caused by exposure to crude oil caused elevated embryo mortality. Two alternative hypotheses were proposed during the Trustee Council review process to explain the mortality differences (in addition to the genetic damage hypothesis): (1) systematic, naturally occurring environmental differences between oiled and reference streams, and (2) outbreeding depression resulting from elevated rates of straying into oiled streams.

1

Figure 1. Pink salmon embryo mortality observed during past field sampling. Solid circles indicate the means for oil-contaminated streams (n=10) while open circles identify reference streams (n=15). Note: Y-axes differ among years.

Š.,

No difference in embryo to preemergent fry survival between oil-contaminated and reference streams has been observed since the initiation of the study in 1989 (Figure 2; Sharr et al. 1994a, 1994b, and 1994c). We expected embryo to preemergent fry survival to be reduced in oiled streams given that an increase in embryo mortality had been detected. This result can potentially be explained by (1) compensation in the environment, or (2) problems in the experimental design. Geiger et al. (in press) found no evidence to suggest that compensation in the intragravel life stages is playing a role in determining the number of emerging fry for the years in the study. We believe that the experimental design is inadequate for detecting differences in embryo to preemergent fry survival. The power analysis for the survival from embryo to preemergent fry test indicated statistical power was adequate to detect a biologically meaningful difference if present. However, unexpected changes in stream characteristics may have prevented sampling the same areas for embryos in the fall and fry in the spring. Also, stream channels in PWS are not well defined in intertidal areas. Some intertidal stream segments were found to migrate along the beach, especially if the beach is usually exposed to winter storms. The magnitude of these changes was unexpected when this study was designed and initiated.

This study was initially designed to monitor the effect of intertidal oiling on pink salmon embryo mortality and embryo to preemergent fry survival. The project was amended during the summer of 1992 to evaluate the systematic environmental difference and genetic damage hypotheses. At that time, experiments were initiated to: (1) incubate embryos from oiled and reference streams in a common environment to evaluate the environmental difference hypothesis (administered by Alaska Department of Fish and Game); (2) verify the field findings that oil affected embryo survival through controlled oiling (administered by National Marine Fisheries Service); and (3) test for genetic damage using flow cytometry and androgenesis screens (administered by Alaska Department of Fish and Game).

Finally, after initiation of these studies, an additional hypothesis was proposed by project reviewers that suggested that the differential mortalities we observed in the field studies were caused by the genetic effects of outbreeding depression. Under this hypothesis, elevated rates of straying of non-locally-adapted adults into oiled streams would result in reduced embryo survival through the introgression of the non-locally-adapted genes. This hypothesis grew in part from inferences drawn from NRDA Fish/Shellfish Study 1 and Study 3 (F/S 1 and F/S 3) which suggested that large numbers of pink salmon were straying into streams in or near our study area. We agreed to investigate this hypothesis by (1) further examining the validity of using extrapolations of coded-wire-tag recoveries to infer rates of straying, and (2) testing for the effects of population mixing through analysis of genotype data collected in Project 95320D *Population Genetics of Prince William Sound Pink Salmon*.

Figure 2. Pink salmon embryo to preemergent fry survival observed during past field sampling. Solid circles indicate the means for oil-contaminated streams (n=10) while open circles identify reference streams (n=15). Note: Y-axes differ among years.

OBJECTIVES

Recovery Monitoring of Injury to Pink Salmon Embryos in Prince William Sound

1. Test for differences in mortality of pink salmon embryos between oilcontaminated and reference streams.

Verification of Injury to Pink Salmon Gametes in Prince William Sound

1. Determine if the increased pink salmon embryo mortalities observed in oiled streams can be attributed to systematic environmental differences between the oil-contaminated and reference streams.

METHODS

Recovery Monitoring of Injury to Pink Salmon Embryos in Prince William Sound

Study Sites

This project concentrated on populations inhabiting the southwestern portions of PWS; although, streams from Montague Island and eastern PWS were sampled to provide a sound-wide perspective (Figure 3).

Figure 3. Streams examined during the 1989, 1990, 1991, 1992, 1993 and 1994 pink salmon preemergent fry and egg deposition surveys.

~

204

These streams were selected for the following reasons:

- 1. They have significant spawning populations in both odd and even years.
- 2. They are accessible for sampling in most years.
- 3. They are representative of oiled or reference sites in the oil-impacted area.

Sample Design

The methods used for embryo sampling are described by Craig et al. (1995) and Sharr et al. (1994a and 1994b). Sampling was stratified by tide zone to control for possible differences in salinity, temperature, predation, or a combination of these factors. Zone boundaries were established with a surveyor's level and stadia rod and staked prior to sampling. Four zones were sampled in each stream whenever possible: 1.8 - 2.4 m, 2.4 - 3.0 m, 3.0 - 3.7 m above mean low water, and upstream of mean high tide (3.7 m). No sampling was done below the 1.8 - 2.4 m zone because mortality was expected to be high (Helle et al. 1964).

Separate linear transects were established for each zone on the embryo surveys. Although most transects were 30.5 m long, some were shorter due to steep stream gradients. Transects were placed in riffle areas where spawning was observed during escapement surveys conducted for F/S 1. Transects ran diagonally across the river starting downstream against the left bank and moved upstream to the right bank. A map drawn for each stream indicated the tide zones and transect locations in relation to major landmarks. Each embryo transect was photographed and marked with surveyor's flagging to insure that future transects could be located in the same area of the stream.

Fourteen circular samples (0.186 m^2) were systematically collected along each transect. The number of digs was a compromise between reducing variance and the practicality of conducting the study. Fewer digs were completed on narrow stream channels to avoid excessive sampling of the stream. Streams that split into two or more channels within a zone were sampled either by allocating digs among channels based on spawner distribution observed during F/S 1 or, where spawner distribution was unknown, by an equal allocation.

The following data were collected for each tide zone transect during both embryo and fry sampling:

1. Sample date.

6/3

- 2. Sample tide zone.
- 3. Start and stop time for the tide zone transect.
- 4. Numbers of live and dead fry and embryos for each species in each dig.

Pink salmon embryos were separated from chum *O. keta* and coho *O. kisutch* salmon embryos by their smaller size. Chum salmon embryos were separated from coho salmon embryos by their greater development and different coloration. An embryo was considered dead if it was opaque or discolored with coagulated lipids. Fry were considered dead only if decomposition was evident, because sampling often killed fry.

Data Analysis

Numbers of live and dead embryos and fry were summarized by date, stream, level of hydrocarbon impact, and stream zone. Densities of live embryos for stream i, zone j in m^2

$$\hat{\mathbf{E}}_{ij} = \frac{\Sigma \mathbf{L} \mathbf{E}_{ijk}}{\mathbf{0.3} \mathbf{n}_{ij}} , \qquad (1)$$

 (E_{ii}) were estimated by:

.....

where LE_{ijk} is the number of live embryos found in the kth dig, in stream i, zone j, and n_{ij} is the number of digs from stream i, zone j. Densities of dead embryos were calculated using the same estimator with appropriate substitutions.

Pink salmon embryo mortality was estimated for each stream using the following relationship:

$$\hat{\mathbf{M}}_{ij} = \frac{\Sigma(\mathbf{DE}_{eijk} + \mathbf{DF}_{eijk})}{\Sigma(\mathbf{LE}_{eijk} + \mathbf{DE}_{eijk} + \mathbf{LF}_{eijk} + \mathbf{DF}_{eijk})} , \qquad (2)$$

where DE_{eijk} , DF_{eijk} , LE_{eijk} , and LF_{eijk} are the number of dead embryos, dead fry, live embryos, and live fry for the kth dig from stream i, zone j, collected during embryo dig e, respectively.

The Arcsin square root transformation was examined as well as the Logit transform of embryo mortality [ln (odds)], i.e.

$$\text{Logit}_{ij} = \ln \left[\frac{\Sigma(\text{DE}_{eijk} + \text{DF}_{eijk})}{\Sigma(\text{LE}_{eijk} + \text{LF}_{eijk})} \right]$$
(3)

Differences in embryo mortality were examined using a mixed effects two-factor experiment with repeated measures on one factor (Neter et al. 1990):

$$Y_{ijk} = \mu_{...} + O_i + Z_j + (OZ)_{ij} + S_{k(i)} + e_{(ijk)}.$$
(4)

The two treatments were level of oiling, (O_i, 2 levels; oiled and reference), and height in the intertidal zone (Z_i, 4 levels; 2.1, 2.7, and 3.4 m above mean low water, and upstream) both fixed effects. The data were blocked by stream (S_{k(i)}), a random effect nested within level of oiling. The interaction of level of oiling and height in the intertidal zone was also examined. Equality of variances was tested using the F_{max} -test (Sokal and Rohlf, 1969), while normality of error terms was visually assessed using normal quantile-quantile and box plots (Chambers et al. 1983). Arcsin square root, logit, log, and square root transforms were examined if the data indicated non-constant variances or non-normal error terms. Tests of homogeneity of-between treatment covariance matrices and the degree of sphericity of the pooled covariance matrix were effected. Four contrasts (oil vs. reference for the four stream zones) and corresponding Bonferroni family confidence intervals ($\alpha = 0.10$ overall) were estimated if a significant difference due to oiling was detected. The SAS (SAS Institute Inc. 1988) General Linear Models Procedure was used to analyze the data.

Stream oiling was assessed through visual observations of the stream and the adjacent area. The observations were supported by photographs, observation maps, and hydrocarbon analysis of mussels (*Mytilus* sp.) collected near stream mouths. These data were collected as part of another Natural Resource Dammage Assessment study (Sharr et al. 1994a).

Embryo Rearing

The environmental difference/genetic damage hypotheses were evaluated through an experiment in which embryos from oil-contaminated and reference streams were incubated in a common environment. Gametes from 30 male and 30 female pink salmon were collected from each of eight oil-contaminated and eight reference streams in southwestern PWS (Figure 4). Each oil-contaminated stream was paired with a reference stream based on similarity of geographic location and physical characteristics. Paired streams were sampled on the same day and gametes flown to the Armin F. Koernig (AFK) hatchery.

Gamete collection techniques were identical at each stream. Adults were captured at low tide in the stream mouth using a 30-m hand operated beach seine. Only gametes from ripe individuals (adults that readily extruded eggs or sperm when gently massaged) were taken. Eggs from individual females (approx. 1500 per female) were removed by excising the abdominal wall, allowing eggs to flow directly into 1-L zip-lock plastic bags, and packed on cotton towels over a 10-cm layer of wet ice in insulated ice chests. Sperm from individual males (2-3-ml) was placed into 15-ml plastic centrifuge tubes which were then capped and placed on ice in the same chests as the females for that stream. After collection was complete, gametes were flown back to AFK Hatchery (an average 10 minute flight time) while gametes from the next stream were collected.

The construction of stream specific embryo pools consisting of all single-pair crosses (30 x 30 = 900) was begun immediately upon arrival of the gametes at the hatchery. Crosses were made by first placing 5-ml of eggs (approximately 30 eggs) from each female into each of 30, 0.47-L cups (each cup contained a teaspoon of eggs from each female). Each cup was then fertilized by a single male using 100 μ l of sperm followed by 100-ml of freshwater (8 °C) to initiate fertilization. This procedure provided each male an equal opportunity to fertilize eggs from each female. The fertilized eggs were allowed to sit for approximately 3-min after which they were recombined into a 3-L plastic container (maintained at 8 °C) and gently rinsed and mixed with freshwater three times.

The matings from each day were placed into one of four stacks of Heath trays (FAL/Heath Tray, Tacoma, Washington, U.S.A.). Six trays within each of the four stacks were divided into 16 compartments (four rows by four columns) using plastic strips, providing 96 compartments for replicated incubation. Each strip was sealed to the tray to prevent mixing of embryos and larvae between compartments. Twenty four replicates of approximately 580 embryos (100-ml of embryos) each were randomly collected from the stream-specific embryo pools and loaded into separate compartments using a random loading scheme on sampling days.

Figure 4. Map of study area in southwestern Prince William Sound, Alaska. Index number next to stream locator indicates the order of gamete collection.

10

A technician was stationed at the hatchery during the three months of the experiment to perform normal fish culture duties and collect mortality data. The technician was made aware of the day of collection for record keeping but did not know which incubator compartments represented oil-contaminated or reference streams.

Dead embryos in each compartment were counted and removed 36 hours after fertilization, after which trays were undisturbed for four weeks. Water flow to each of the four incubator stacks was maintained at four gpm. Each incubator stack received a 20-ppt sodium chloride bath for 20 minutes duration twice per week to control fungus infestations on the embryos. Water temperatures during incubation ranged from 5 ° to 11 °C.

Mortality of embryos at the eyed stage (the point at which a distinct embryo eye could be seen through the chorion) was recorded at 350 temperature units (T.U.; 1T.U. = 1 °C above 0 °C for a 24-hr period). Embryos at this stage were siphoned out of their compartments using Tygon tubing (10 mm inside diameter) and allowed to drop 10-12 cm into a container of freshwater. The resulting physical shock caused coagulation of yolk material in undeveloped embryos, allowing easier identification and removal. Live and dead embryos were gently placed back into their original compartments after siphoning. The live embryos were counted, and the dead embryos were removed and counted.

Mortality was again recorded after the embryos had completely hatched (770 T.U.). In addition, the number of abnormal larvae (deformities of the head, body, or tail) in each compartment was recorded. All larvae were destroyed after hatching.

The statistical difference in survival (Y) due to oil contamination (O) was evaluated using a blocked (day; D) analysis of variance, i.e.

$$V_{ijk} = \mu_{..} + D_i + O_j + \varepsilon_{ijk} \qquad .$$
(5)

RESULTS

Recovery Monitoring of Injury to Pink Salmon Embryos in Prince William Sound

Thirty-one streams were sampled between September 27 and October 18, 1994 for embryos. Mean embryo densities for the 1994 egg deposition survey were 514.45 eggs per m² in the intertidal zones and 689.62 eggs per m² in the upstream (Appendix A). The 1994 embryo mortality data indicated no significant difference between the oil-contaminated and reference streams (P=0.675; Figure 5). A significant zone effect (P=0.001) was evident, although no oil-by-zone interaction was found (P=0.801).

Verification of Injury to Pink Salmon Gametes in Prince William Sound

Gamete collection began with four streams on August 22, 1994. Four streams were also sampled the next day, August 23, 1994. The remaining streams were sampled on August 28, 1994, and August 29, 1994. Mortality of embryos was scored during the period September 17-30, 1994 (Appendix B).

Embryos from oil-contaminated streams showed similar mortality at the eyed stage as those from reference streams when both groups were incubated in the controlled environment of the AFK Hatchery (Figure 6). Average mortality was not statistically different (P=0.343) between the reference and oil-contaminated streams.

Figure 5. Mean pink salmon embryo mortality and corresponding 90% confidence bounds by tide zone for oil-contaminated and reference streams in Prince William Sound, 1994. Solid circles represent data from ten oil-contaminated streams, and open circles represent data from 15 reference streams.

Figure 6. Mean pink salmon embryo mortality observed under hatchery conditions in 1994. Solid circles indicate oil-contaminated streams while open circles indicate reference streams. Numbers identify order of collection.

. hereit

DISCUSSION

Pink salmon embryos that incubated in oil-contaminated spawning areas in PWS appeared to have been adversely affected by the *Exxon Valdez* oil spill up until 1994. Sharr et al. (1994a, 1994b and 1994c) found increased pink salmon embryo mortalities from 1989 through 1993. However; embryo mortality was not significantly different between oil- contaminated and reference stream in 1994 (Figure 5). We believe that the elevated mortalities observed in 1989 and 1990 were due to direct exposure to oil; elevated mortalities observed in 1991, 1992 and 1993 may have been due to genetic damage sustained in the parental lines during embryonic development in 1989 and 1990 that was inherited in subsequent generations. Lack of a significant difference in 1994 between oiled and reference streams demonstrates a possible recovery of the populations that have been monitored since 1989.

The pink salmon that spawned during the fall of 1991 incubated in oil-contaminated streams during winter of 1989-1990, the first winter after the spill. Likewise, pink salmon that spawned during the fall of 1992 incubated in oiled stream gravel during the fall of 1990 and spring of 1991. Sharr et al. (1994a) found significantly elevated embryo mortalities in oil-contaminated streams during the fall of 1989 and 1990, and the surviving embryos may have sustained sublethal genetic damages which could have been manifested in the form of functional sterility in 1991, 1992 and 1993. Chromosome damage was observed in other taxa exposed to petrochemicals (Longwell 1977, McBee and Bickham 1988, Hose et al. 1995,1996), although documentation of germline damage is yet to be reported. In 1994 the returning adults were two generations away from the 1990 brood and showed no statistical mortality difference in the field or the controlled incubation experiment. Mortality differences in oiled and reference streams seem to be returning to normal levels, lending credit to a post-spill genetic damage hypothesis with later recovery.

An alternative to the genetic damage hypothesis is that observed differences in embryo mortality were due to systematic differences in environmental conditions between oilcontaminated and reference streams. This embryo mortality study is based on observational data, and as such, we were unable to randomize stream oiling to account for environmental differences between streams. We attempted to address this concern in our original experimental design by selecting reference streams in close proximity to oil-contaminated streams; however, there is a definite oiling pattern in southwest PWS where streams on points which faced northeastward were heavily oiled. Likewise, streams which faced west and southwest were most likely not oiled.

Environmental differences between oil-contaminated and reference streams does not seem to be a confounding factor because results from the controlled incubation experiment in 1994 again mirror the results of the field study (Figures 5 and 6). In 1993, significant differences between oil-contaminated and reference streams in the field data were also evident in the controlled incubation experiment. The gametes used in these studies were never in direct

contact with a stream; although, the adults which produced them had incubated in the natal streams.

These data do not prove that the observed differences in embryo mortality between oilcontaminated and reference streams were caused by exposure to hydrocarbons. Some have suggested that the streams which were oiled also historically had lower embryo survival. We believe this to be unlikely because mortality between oil-contaminated and reference streams was not significantly different in 1994. The controlled oiling experiment conducted by the National Marine Fisheries Service (Project 95320C) will provide laboratory evidence to further clarify interpretation of these field data.

Finally, another alternative suggested to explain the differential mortality observed in the field was that elevated straying following the oil spill resulted in outbreeding depression that affected embryo survival in the oil-contaminated streams. The controlled incubation study does not address this hypothesis. However, preliminary results suggest that the tag recovery data, upon which this hypothesis is partially founded, may greatly over estimate straying. This hypothesis will be further address by Project 95320D.

CONCLUSIONS

Embryo mortalities were elevated in oil contaminated streams from 1989-1993, but no statistical difference between oil-contaminated and reference streams was observed in 1994.

Mortalities in an incubation experiment were elevated for embryos from oiled streams in 1993, but no statistical difference between embryos from oil-contaminated and reference streams was detected in 1994.

ACKNOWLEDGEMENTS

We would like to thank the staff of the Alaska Department of Fish and Game who endured difficult field conditions to obtain the samples needed for this study. This project would not have been possible without the assistance, and expertise of the captain and crew of the R/V Montague.

LITERATURE CITED

- Bue, B.G., S. Sharr, S.D. Moffitt and A.K. Craig. in press. Effects of the Exxon Valdez oil spill on pink salmon embryos and preemergent fry. American Fisheries Society Symposium 18:000-000.
- Chambers, J.M., W.S. Cleveland, B. Kleiner and P.A. Tukey. 1983. Graphical methods for data analysis. Duxbury Press, Boston, MA.
- Craig, A.K., S. Sharr, S.D. Moffitt. 1995. A compilation of historical preemergent fry and egg deposition survey data from Prince William Sound, 1961-1995. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Regional Information Report No. 2A95-49. Juneau, Ak.
- Geiger, H.J., B.G. Bue, S. Sharr, A.C. Wertheimer, and T.M. Willette. *in press*. A life history approach to estimating damage to Prince William Sound Pink Salmon from the *Exxon Valdez* oil spill. American Fisheries Society Symposium 18:000-000.
- Helle, J.H., R.S. Williamson, and J.E. Bailey. 1964. Intertidal ecology and life history of pink salmon at Olsen Creek, Prince William Sound, Alaska. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 483. Washington, D.C..
- Hose, J.E., M.D. McGurk, G.D. Marty, D.E. Hinton, E.D. Biggs, and T.T. Baker. in press. Sublethal effects of the Exxon Valdez oil spill on herring embryos and larvae: morphologic, cytogenetic, and histopathological assessments, 1989-1991. Canadian Journal Special Symposium.

Longwell, A.C. 1977. A genetic look at fish eggs and oil. Oceanus 20(4):46-58.

- McBee, K., and J.W. Bickham. 1988. Petrochemical-related DNA damage in wild rodents detected by flow cytometry. Bull Environ Contam Toxicol 40:343-349
- Moles, A., M.M. Babcock, and S.D. Rice. 1987. Effects of oil exposure on pink salmon, *O. gorbuscha*, alevins in a simulated Intertidal Environment. Marine Environmental Research 21:49-58.
- Neter, J., W. Wasserman, and M.H. Kutner. 1990. Applied Linear Statistical Models -Third Edition. Irwin. Homewood, Illinois.

- Rice, S.D., D.A. Moles, and J.W. Short. 1975. The effect of Prudhoe Bay crude oil on survival and growth of eggs, alevins, and fry of pink salmon, *Oncorhynchus gorbuscha*. Pages 503-507 *in* Proceedings of the 1975 Conference on Prevention and Control of Oil Pollution, San Francisco, Ca. American Petroleum Institute. Washington, D.C.
- SAS Institute Inc. 1988. SAS/STAT[™] User's Guide, Release 6.03 Edition. SAS Institute Inc. Cary, N.C.
- Sharr, S., B.G. Bue, S.D. Moffitt, and A.K. Craig. 1994a. Injury to salmon eggs and preemergent fry in Prince William Sound - Fish/Shellfish study 2. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Regional Information Report No. 2A94-52, Anchorage.
- Sharr, S., J.E. Seeb, B.G. Bue, S.D. Moffitt, A.K. Craig, and G.D. Miller. 1994b. Injury to salmon eggs and preemergent fry in Prince William Sound - Restoration study Number R60C. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Regional Information Report No. 2A94-50, Anchorage.
- Sharr, S., J.E. Seeb, B.G. Bue, S.D. Moffitt, A.K. Craig, and G.D. Miller. 1994c. Injury to salmon eggs and preemergent fry in Prince William Sound - Restoration study Number 93003. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Regional Information Report No. 2A94-51, Anchorage.
- Sokal, R.R., and F.J. Rohlf. 1969. Biometry. W.H. Freeman and Company. San Francisco, Ca.
- Wolfe, D.A., M.J. Hameedi, J.A. Galt, G. Watabayashi, J. Short, C. O'Clair, S. Rice, J. Michel, J.R. Payne, J. Braddock, S. Hanna, and D. Sale. *in press*. Fate of the oil spilled from the *T/V Exxon Valdez* in Prince William Sound, Alaska. American Fisheries Society Symposium 18:000-000.

the s

Appendix A. Summary of pink and chum salmon egg dig data from Prince William Sound, 1994.

3-5

							Pink	Salmon					Chu	n Salmon			
					Emt	oryos	Live 1	Embryos/1	m² Fr	У	Embry	05	Live Emb	ryos/m²	Fr	ł	~
Strea #	m Stream Name	Date	Height in Tidal Zone(m)	Loc	: Dead	Live	Mean	SE	Dead	Live	Dead	Live	Mean	SE	Dead	Live	No. Samples
35	Koppen Creek	9 27 94	2.74 2.74 3.35 3.35 Upstream	30 31 40 41 60	7530 2993 6833 2046 9926	1475 1136 1704 224 1859	466.36 436.14 654.21 86.00 713.72	168.13 166.17 142.16 37.21 193.50	0 0 0 0	0 0 0 0	2 36 448 9 34	11 6 509 2 11	3.48 2.30 195.42 .77 4.22	1.66 1.66 97.87 .52 2.65	0 0 0 0	0 0 0 0	14 14 14 14 14
		Tot Tot	al Intertidal al Upstream		19402 9926	4539 1859	413.51 713.72	74.54 193.50	0 0	0 0	495 34	528 11	48.10 4.22	25.03 2.65	0 0	0 0	56 14
480	Mink Creek	10 1 94	2.13 2.74 3.35 Upstream	20 30 40 60	2308 6911 4748 2017	412 1088 1781 3078	158.18 417.71 683.78 1181.73	69.68 182.00 209.38 376.68	0 0 0 1	0 0 1 12	21 213 99 2	0 0 12 0	.00 .00 4.61 .00	.00 .00 2.31 .00	0 0 0		14 14 14 14
		Tot Tot	al Intertidal al Upstream		13967 2017	3281 3078	419.89 1181.73	98.84 376.68	0 1	1 12	333	12	1.54	. 83	0	0	42
485	W. Finger Creek	9 30 94	2.13 2.74 3.35 Upstream	20 30 40 60	1249 2119 1320 5554	1823 3431 5531 9698	699.90 1317.26 2123.51 3723.34	268.97 306.26 380.01 645.01	0 0 57 27	0 0 139 158	445 229 428 899	142 142 1048 832	54.52 54.52 402.36 319.43	36.14 30.50 167.96 162.82	0 0 0 0	0 0 65 1	14 14 14 14
		Tot Tot	al Intertidal al Upstream		4688 5554	10785 9698	1380.22 3723.34	202.76 645.01	57 27	139 158	1102 899	1332 832	170.46 319.43	62.24 162.82	0 0	65 1	42 14

ą.

Appendix A. Summary of pink and chum salmon egg dig data from Prince William Sound, 1994.

· Protection

\$. Q

Appendix A. (page 2 of 9)

								Pink	Salmon					Chum	Salmon			
						Emł	oryos	Live	Embryos/m	n² Fr	У	Embry	05	Live Embr	yos/m²	Fr	Y	-
Stream #	Stream Name		Date	Height in Tidal Zone(m)	Loc	Dead	Live	Mean	SE	Dead	Live	Dead	Live	Mean	SE	Dead	Live	No. Samples
498	McClure Creek	9	30 94	2.13 2.74 3.35 Upstream	20 30 40 60	4308 5574 9267 5342	286 2215 4531 4503	109.80 850.40 1739.58 1728.83	26.52 266.58 225.67 360.24	0 0 4	7 1 65 192	0 30 3 0	0 1 0 0	.00 .38 .00 .00	.00 .38 .00 .00	0 0 0	0 0 0	14 14 14 14
			Tota Tota	l Intertidal l Upstream		19149 5342	7032 4503	899.93 1728.83	154.26 360.24	0 4	73 192	33 0	1 0	.13 .00	.13	0 0	0 0	42 14
506	Loomis Creek	10	4 94	2.13 2.74 3.35 Upstream	20 30 40 60	1347 2330 1915 3106	239 616 529 921	91.76 236.50 203.10 353.60	30.53 94.96 74.10 177.81	0 0 0 0	0 0 0	9 1 0 0	0 0 0	.00 .00 .00	.00 .00 .00	0 0 0	0 0 0	14 14 14 14
			Tota Tota	l Intertidal l Upstream		5592 3106	1384 921	177.12 353.60	41.54 177.81	0 0	0 0	10 0	0 0	.00 .00	.00 .00	0 0	0 0	42 14
604	Erb Creek	10	394	2.13 2.74 3.35 Upstream	20 30 40 60	986 2455 735 478	1260 650 1318 829	483.75 249.55 506.02 318.28	164.35 106.80 247.88 130.98	0 0 0 0	0 0 11 0	0 0 0	0 0 0	.00 .00 .00	.00 .00 .00 .00	0 0 0	0 238 0 0	14 14 14 14
			Tota Tota	l Intertidal l Upstream		4176 478	3228 829	413.11 318.28	104.32 130.98	0 0	11 0	0 0	0 0	.00	.00 .00	0 0	238 0	42 14
618	Junction Creek	10	394	2.13 2.74 3.35 Upstream	20 30 40 60	1 25 106 8	0 10 294 8	.00 4.48 131.69 3.58	.00 2.46 92.76 3.13	0 0 0	0 0 0 0	0 0 0	0 0 0 0	.00 .00 .00 .00	.00 .00 .00 .00	0 0 0	0 0 0	12 12 12 12
			Tota Tota	l Intertidal l Upstream		132 8	304 8	45.39 3.58	31.76 3.13	0 0	0 0	0 0	0 0	.00	.00 .00	0 0	0 0	36 12

Appendix A. (page 3 of 9)

na Brann ∰r an Brann

								Pink	Salmon					Chun	Salmon			
						Eml	bryos	Live	Embryos/1	n² Fr	у	Embry	os	Live Emb	ryos∕m²	Frj	1	-
Stream #	n Stream Name		Date	Height in Tidal Zone(m)	Loc	Dead	d Live	e Mean	SE	Dead	Live	Dead	Live	Mean	SE	Dead	Live	No. Samples
621	Totemoff Creek	10	294	2.13 2.74 3.35 Upstream	20 30 40 60	3771 977 3277 7281	814 201 2254 3337	312.52 77.17 865.38 1281.17	105.83 28.99 228.55 329.09	0 0 0	0 0 8 28	0 0 0	0 0 0	.00 .00 .00	.00 .00 .00	0 0 0	0 0 0	14 14 14 14
			Tota Tota	l Intertidal l Upstream		8025 7281	3269 3337	418.35 1281.17	97.24 329.09	0 0	8 28	0 0	0 0	.00 .00	.00	0 0	0 0	42 14
623	Brizgaloff Creek	10	294	2.13 2.74 3.35 Upstream	20 30 40 60	1394 615 962 2511	714 918 923 1288	274.13 352.45 354.37 494.50	152.74 272.35 195.87 245.49	0 0 0	0 0 0 0	675 675 181 0	0 54 1 0	.00 20.73 .38 .00	.00 14.07 .38 .00	0 0 0	0 0 0	14 14 14 24
			Tota Tota	l Intertidal l Upstream		2971 2511	2555 1288	326.98 494.50	119.98 245.49	0 0	0 0	1531 0	55 0	7.04	4.82 .00	0 0	0 0	42 14
628	Chenega Creek	10	494	2.13 2.74 3.35 Upstream	20 30 40 60	107 1656 1034 360	21 718 1224 994	8.06 275.66 469.93 381.63	4.43 117.45 154.80 136.47	0 0 0	0 0 0 1	0 0 0	0 0 0	.00 .00 .00	.00 .00 .00 .00	0 0 0 0	0 0 0	14 14 14 14
			Tota. Tota	l Intertidal l Upstream		2797 360	1963 994	251.22 381.63	69.76 136.47	0 0	0 1	0 0	0 0	.00	.00	0 0	0 0	42 14
630	Bainbridge Creek	10	13 94	2.13 2.74 3.35 Upstream	20 30 40 60	1233 6818 6209 2629	4 1792 9190 4814	1.54 688.00 3528.30 1848.23	1.19 388.12 611.59 417.35	0 0 0	0 0 55 338	0 0 0 0	0 0 0	.00 .00 .00 .00	.00 .00 .00 .00	0 0 0	0 0 0	14 14 14 14
			Tota Tota	l Intertidal l Upstream		14260 2629	10986 4814	1405.95 1848.23	335.11 417.35	0 0	55 338	0 0	0 0	.00	.00	0 0	0 0	42 14

Appendix A. (page 4 of 9)

 $e^{-i\omega t} = E_{\rm eff}^{\rm e} + i\omega t$ (6)

							Pink	Salmon					Chum	Salmon			
					Eml	oryos	Live 1	Embryos/n	n² Fr	у	Embry	os	Live Embr	yos/m²	Fry	/	_
Stream #	Stream Name	Date	Height in Tidal Zone(m)	Loc	Dead	Live	Mean	SE	Dead	Live	Dead	Live	Mean	SE	Dead	Live	No. Samples
632	Claw Creek	10 12 94	2.13 2.74 3.35 Upstream	20 30 40 60	1644 766 2873 130	5469 4122 8510 379	2099.71 1582.55 3267.23 203.71	561.41 406.57 395.43 149.60	0 14 0 0	206 318 61 0	0 36 59 0	0 0 0 0	.00 .00 .00	.00 .00 .00	0 0 0	0 0 0	14 14 14 10
		Tota Tota	l Intertidal l Upstream		5283 130	18101 379	2316.50 203.71	281.81 149.60	14 0	585 0	95 0	0 0	.00	.00 .00	0 0	0 0	42 10
637	Pt. Countess	10 5 94	2.13 2.74 3.35 3.35 Upstream Upstream	20 30 41 42 61 62	1442 1748 719 576 224 306	655 605 552 115 22 601	251.47 232.28 423.86 88.30 16.89 461.48	185.14 94.32 214.55 66.51 12.38 273.65	0 0 0 0 0		163 10 0 0 0	19 0 0 0 0	7.29 .00 .00 .00 .00	6.89 .00 .00 .00 .00		0 0 0 0 0	14 14 7 7 7 7
		Tota Tota	l Intertidal l Upstream		4485 530	1927 623	246.61 239.19	77.62 145.32	0 0	0 0	173 0	19 0	2.43 .00	2.30	0 0	0 0	42 14
653	Hogg Creek	10 14 94	2.13 2.74 2.74 3.35 Upstream	20 31 32 40 60	760 29 27 193 187	3751 403 368 2785 970	1440.12 309.45 282.57 1069.24 372.41	358.02 202.90 161.04 435.97 144.85	0 0 0 0	434 0 355 41	0 0 0 0	0 0 0 0	.00 .00 .00 .00	.00 .00 .00 .00	0 0 0 0	0 0 0 0	14 7 7 14 14
		Tota Tota	l Intertidal l Upstream		1009 187	7307 970	935.12 372.41	202.03 144.85	0 0	789 41	0 0	0 0	.00 .00	.00	0 0	0 0	42 14

Appendix A. (page 5 of 9)

e de la construcción de la constru

							Pink	Salmon					Chum	Salmon			
					Emb	oryos	Live	Embryos/1	n² Fr	У	Embry	os	Live Embr	yos∕m²	Fr	1	_
Stream #	Stream Name	Date	Height in Tidal Zone(m)	Loc	Dead	Live	Mean	SE	Dead	Live	Dead	Live	Mean	SE	Dead	Live	No. Samples
656	Halverson Creek	10 13 94	2.13 2.74 3.35 Upstream	20 30 40 60	1609 665 1822 1622	417 407 1196 1653	160.10 156.26 459.18 634.63	93.54 107.39 141.97 259.88	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	.00 .00 .00	.00 .00 .00	0 0 0 0	0 0 0 0	14 14 14 14
		Total Total	Intertidal Upstream		4096 1622	2020 1653	258.51 634.63	69.03 259.88	0 0	0 0	0 0	0 0	.00 .00	.00	0 0	0 0	42 14
663	Shelter Bay	10 12 94	2.13 2.74 3.35 Upstream	20 30 40 60	351 477 432 1518	13 330 1137 1219	5.82 147.81 509.28 546.01	2.34 105.10 209.57 285.72	0 0 0	1 0 0 0	0 0 0 0	0 0 0 0	.00 .00 .00 .00	.00 .00 .00 .00	0 0 0	0 0 0 0	12 12 12 12
		Total Total	Intertidal Upstream		1260 1518	1480 1219	220.97 546.01	83.92 285.72	0 0	1 0	0 0	0 0	.00	.00 .00	0	0 0	36 12
665	Bjorne Creek	10 14 94	2.13 2.74 3.35 Upstream	20 30 40 60	176 738 509 49	24 631 2588 831	9.21 242.26 993.61 319.04	6.11 115.82 496.87 201.59	0 0 0	0 0 0	0 0 0	0 0 0 0	.00 .00 .00	.00 .00 .00	0 0 0	0 0 0 0	14 14 14 14
		Total Total	Intertidal Upstream		1423 49	3243 831	415.03 319.04	178.38 201.59	0 0	0 0	0 0	0 0	.00 .00	.00 .00	0 0	0 0	42 14
666	O'Brien Creek	10 15 94	2.13 2.74 3.35 Upstream	20 30 40 60	0 168 66 215	0 53 481 1066	.00 20.35 184.67 409.27	.00 10.21 161.63 213.93	0 0 0	0 0 0	0 0 0 0	0 0 0	.00 .00 .00 .00	.00 .00 .00 .00	0 0 0	0 0 0	14 14 14 14
		Total Total	Intertidal Upstream		234 215	534 1066	68.34 409.27	54.21 213.93	0 0	0 0	0 0	0 0	.00	.00	0	0 0	42 14

e.

-Continued-

Appendix A. (page 6 of 9)

							Pink	Salmon					Chum	Salmon			
					Emb	ryos	Live	Embryos/1	n² Fr	У	Embry	s	Live Embr	yos/m²	۶ŋ	,	_
Stream #	Stream Name	Date	Height in Tidal Zone(m)	Loc	Dead	Live	Mean	SE	Dead	Live	Dead	Live	Mean	SE	Dead	Live	No. Samples
673	Falls Creek	10 16 94	2.13 2.74 3.35 Upstream	20 30 40 60	53 31 418 157	586 149 1182 1127	224.98 57.21 453.80 432.69	103.86 47.42 222.03 153.23	0 0 0	0 1 32 0	0 0 0	0 0 0	.00 .00 .00	.00 .00 .00 .00	0 0 0	0 0 0	14 14 14 14
		Tota] Tota]	Intertidal Upstream		502 157	1917 1127	245.33 432.69	85.04 153.23	0 0	33 0	0 0	0 0	.00	.00 .00	0 0	0 0	42 14
677	Hayden Creek	10 16 94 Total	2.13 2.74 2.74 3.35 3.35 Upstream Upstream	21 22 31 32 41 42 61 62	32 59 9 189 86 269 138 8 644	20 852 10 1507 125 768 260 2 3282	15.36 654.21 7.68 1157.16 95.98 589.71 199.64 1.54 420.02	5.91 580.22 3.86 491.44 36.59 313.55 169.31 .99 144.45		0 0 23 0 117 0 0		000000000000000000000000000000000000000	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00			7 7 7 7 7 7 7 7 7
678	Sleepy Bay	Total 10 17 94 Total Total	Upstream 2.13 2.74 3.35 Upstream Intertidal Upstream	20 30 40 60	146 217 455 136 99 808 99	262 52 945 542 592 1539 592	100.59 23.29 423.28 242.77 265.17 229.78 265.17	85.85 15.46 153.91 100.27 112.65 65.76 112.65					.00 .00 .00 .00 .00	.00 .00 .00 .00 .00			14 12 12 12 12 12 12 36 12

ş

Appendix A. (page 7 of 9)

ş

							Pink	Salmon					Chum	Salmon			
					Emł	oryos	Live	Embryos/r	n² Fr	у	Embry	os	Live Embr	yos∕m²	Fry	/	
Stream #	Name	Date	Height in Tidal Zone(m)	Loc	Dead	Live	e Mean	SE	Dead	Live	Dead	Live	Mean	SE	Dead	Live	No. Samples
681	Hogan Bay	10 10 94	2.13 2.74 3.35 Upstream	20 30 40 60	1423 1292 4715 650	1133 2337 4065 1103	434.99 897.24 1560.67 423.47	136.91 405.76 364.08 141.50	0 0 0	2 16 54 1	0 0 0	0 0 0	.00 .00 .00	.00 .00 .00	0 0 0 0	0 0 0	14 14 14 14
		Tota Tota	l Intertidal l Upstream		7430 650	7535 1103	964.30 423.47	196.46 141.50	0 0	72 1	0 0	0 0	.00	.00 .00	0 0	0 0	42 14
682	Snug Harbor	10 10 94	2.13 2.74 3.35 Upstream	20 30 40 60	4367 5913 4090 3814	2131 2260 3331 3579	818.15 867.68 1278.87 1374.08	235.33 194.87 319.44 384.69	0 0 2 0	20 71 662 393	0 0 0 0	0 0 0 0	.00 .00 .00 .00	.00 .00 .00	0 0 0	0 0 0	14 14 14 14
		Tota Tota	l Intertidal l Upstream		14370 3814	7722 3579	988.23 1374.08	147.28 384.69	2 0	753 393	D 0	0 0	.00	.00	0	0 0	42 14
692	Herring Bay	10 1 94	2.13 2.74 3.35 Upstream	20 30 40 60	293 1469 2332 815	597 185 1699 1434	229.21 71.03 652.29 550.55	204.20 28.34 219.68 155.46	0 0 0	0 0 0 37	0 0 0 1	0 0 0	.00 .00 .00	.00 .00 .00 .00	0 0 0	0 0 0	14 14 14 14
		Total Total	l Intertidal l Upstream		4094 815	2481 1434	317.51 550.55	105.17 155.46	0	0 37	0 1	0 0	.00	.00 .00	0 0	0 0	42 14
695	Port Audrey	10 5 94	2.13 2.13 2.74 3.35 Upstream	21 22 30 40 60	626 311 1112 1132 878	119 310 2045 899 677	91.38 238.04 785.13 345.15 259.92	63.02 223.78 292.64 246.98 111.81	0 0 0 0	0 0 6 0 3	0 0 0 0	0 0 0 0	.00 .00 .00 .00	.00 .00 .00 .00	0 0 0 0	0 0 0 0	7 7 14 14 14
		Total Total	l Intertidal l Upstream		3181 878	3373 677	431.66 259.92	136.07 111.81	0 0	6 3	0 0	0 0	.00	.00 .00	0 0	0 0	42 14

Appendix A. (page 8 of 9)

8

								Pink	Salmon					Chum	Salmon			
						Emb	oryos	Live	Embryos/m	h ² Fr	У	Embry	os	Live Embr	yos∕m³	Frj	Y	
Stream #	Stream Name		Date	Height in Tidal Zone(m)	Loc	Dead	Live	Mean	SE	Dead	Live	Dead	Live	Mean	SE	Dead	Live	No. Samples
699	Cathead Bay	10	494	2.13 2.74 3.35 Upstream	20 30 40 60	477 368 43 352	16 356 1 1341	6.14 136.68 .38 514.85	4.29 103.03 .38 232.90	0 0 0	0 0 101	0 0 0	0000	.00 .00 .00	.00 .00 .00	0 0 0 0	0 0 0 0	14 14 14 14
			Tota Tota	l Intertidal L Upstream		888 352	373 1341	47.74 514.85	34.94 232.90	0 0	0 101	0 0	0 0	.00 .00	.00 .00	0 0	0 0	42 14
740	Kelez Creek	10	994	2.13 2.74 3.35 Upstream	20 30 40 60	11 21 139 1676	13 201 678 1940	4.99 77.17 260.30 744.82	3.45 58.96 255.35 232.75	0 0 0 0	0 0 0 1	0 0 0 0	0 0 0 0	.00 .00 .00	.00 .00 .00 .00	0 0 0	0 0 0	14 14 14 14
			Tota] Tota]	l Intertidal Upstream		171 1676	892 1940	114.15 744.82	86.84 232.75	0 0	0 1	0 0	0 0	.00	.00	0 0	0 0	42 14
744	Wilby Creek	10	18 94	2.13 2.74 3.35 Upstream	20 31 40 60	40 133 32 23	78 872 479 38	29.95 334.79 183.90 14.59	28.30 155.66 123.07 14.59	D 0 0	0 0 0	0 0 0	0 0 0	.00 .00 .00 .00	.00 .00 .00	0 0 0	0 0 0	14 14 14 14
			Total Total	l Intertidal Upstream		205 23	1429 38	182.88 14.59	68.00 14.59	0 0	0 0	0 0	0 0	.00 .00	.00	0 0	0 0	42 14
747	Cabin Creek	10	18 94	2.13 2.74 3.35 Upstream	20 30 40 60	630 620 575 1410	158 948 1703 2196	60.66 363.96 653.83 843.11	23.16 164.98 151.80 363.81	0 0 0 1	1 0 3 47	0 0 0 0	0 0 0	.00 .00 .00	.00 .00 .00 .00	0 0 0	0 0 0 0	14 14 14 14
			Tota] Tota]	l Intertidal Upstream		1825 1410	2809 2196	359.49 843.11	82.46 363.81	0 1	4 47	0 0	0 0	.00	.00	0 0	0	42 14

2

-Continued-

Appendix A. (page 9 of 9)

							Pink	Salmon					Chum	Salmon			
					Emb	ryos	Live 1	Embryos/1	n² Fr	У	Embry	os	Live Embr	∵yos/m²	Fr	7	
Stream #	Stream Name	Date	Height in Tidal Zone(m)	Loc	Dead	Live	Mean	SE	Dead	Live	Dead	Live	Mean	SE	Dead	Live	No. Samples
828	Cook Creek	9 28 94	2.13 2.74 3.35 Upstream	20 30 40 60	778 3769 792 211	1269 1700 1637 1202	487.21 652.68 628.49 461.48	196.67 151.60 202.68 215.17	0 0 0	0 0 0 0	0 15 0 0	0 4 0 0	.00 1.54 .00 .00	.00 1.19 .00 .00	0 0 0	0 0 0	14 14 14 14
		Tota Tota	l Intertidal l Upstream		5339 211	4606 1202	589.46 461.48	104.83 215.17	0 0	0 0	15 0	4 0	.51 .00	.40	0 0	0 0	42 14
861	Bernard Creek	9 26 94	2.13 2.74 3.35 Upstream	20 30 40 60	733 2258 831 716	1368 733 525 839	525.21 281.42 201.56 322.12	212.64 114.19 81.83 145.88	0 0 0	0 0 0	0 0 0 0	0 0 0	.00 .00 .00 .00	.00 .00 .00	0 0 0	0 0 0	14 14 14 14
		Tota Tota	l Intertidal l Upstream		3822 716	2626 839	336.07 322.12	85.60 145.88	0 0	0 0	0 0	0 0	.00	.00	0 0	0 0	42 14
Prince	e William Sound Su	mmary															
		Tota Tota	al Intertidal al Upstream	15) 5-	6228 13 4410 - !	24522 54400	514.45 689.62	27.66 56.97	73 33	2670 1353	3787 936	1951 843	8.06 10.69	56.97 66.11	0 0	303 1	1298 424

	<u></u>			Mortality		
Order of Collection	Day of Collection	Treatment*	Stream Number	Mean	Std. Error	n
1	1	2	692	0.510	0.0041	24
2	1	1	699	0.288	0.0047	24
3	1	2	628	0.393	0.0047	24
4	1	1	621	0.198	0.0032	24
5	2	2	637	0.332	0.0037	24
6	2	1	656	0.284	0.0048	24
7	2	2	682	0.075	0.0026	24
8	2	1	695	0.232	0.0038	24
9	3	1	673	0.042	0.0023	24
10	3	2	678	0.079	0.0026	24
11	3	1	632	0.039	0.0019	24
12	3	2	663	0.044	0.0022	24
13	4	2	618	0.052	0.0023	24
14	4	1	604	0.070	0.0034	24
15	4	2	665	0.102	0.0044	24
16	4	1	666	0.056	0.0032	24

Appendix B. Estimated mean mortality and corresponding standard errors for pink salmon embryos incubated at the Armin F. Koernig Hatchery in 1994.

^a Treatment; 1 = reference, 2 = oil contaminated

22