Exxon Valdez Oil Spill

Restoration Project Annual Report

Kenai River Sockeye Salmon Restoration

Restoration Project 95255
Annual Report

This annual report has been prepared for peer review as part of the Exxon Valdez Oil Spill Trustee Council restoration program for the purpose of assessing project progress. Peer review comments have not been addressed in this annual report.

Lisa W. Seeb ${ }^{1}$
Christopher Habicht ${ }^{1}$
William D. Templin ${ }^{1}$
Kenneth E. Tarbox ${ }^{2}$
Randall Z. Davis ${ }^{2}$
Linda K. Brannian ${ }^{1}$
James E. Seeb ${ }^{1}$

Alaska Department of Fish and Game
Division of Commercial Fisheries Management and Development

${ }^{1} 333$ Raspberry Road
Anchorage, Alaska 99518
${ }^{2} 3428$ Kalifornsky Beach Road, Suite B
Soldotna, Alaska 99669-8367

Exxon Valdez Oil Spill

Restoration Project Annual Report

Kenai River Sockeye Salmon Restoration

Restoration Project 95255
Annual Report

This annual report has been prepared for peer review as part of the Exxon Valdez Oil Spill Trustee Council restoration program for the purpose of assessing project progress. Peer review comments have not been addressed in this annual report.

Lisa W. Seeb ${ }^{1}$
Christopher Habicht ${ }^{1}$
William D. Templin ${ }^{1}$
Kenneth E. Tarbox ${ }^{2}$
Randall Z. Davis ${ }^{2}$
Linda K. Brannian ${ }^{1}$
James E. Seeb ${ }^{1}$

Alaska Department of Fish and Game
 Division of Commercial Fisheries Management and Development

${ }^{1} 333$ Raspberry Road
Anchorage, Alaska 99518
${ }^{2} 3428$ Kalifornsky Beach Road, Suite B
Soldotna, Alaska 99669-8367

Kenai River Sockeye Salmon Restoration

Restoration Project 95255
Annual Report

Study History: This study was initiated as Restoration Project Number 59 "Assessment of Genetic Stock Structure of Salmonids." The project effort continued under Restoration Project Number 93012 "Genetic Stock Identification of Kenai River Sockeye Salmon." In FY94 the project was combined with Restoration Project Number 93015 into the genetics portion (95255-2) of Restoration Project Number 94255 "Kenai River Sockeye Salmon Restoration." In FY95 and FY96 the project continued under the same title as Restoration Projects Number 95255 and 96255 , respectively. Final reports were submitted under the title Assessment of Genetic Stiock Structure of Salmonids for Restoration Project Number 59 and under the title Genetic Diversity of Sockeye Salmon (Oncorhynchus nerka) of Cook Inlet, Alaska and its Application to Restoration of Injured Populations of the Kenai River for Restoration Projects Number 93012 and 94255.

Abstract

Genetic data from sockeye salmon (Oncorhynchus nerka) were collected from the Kenai River, a major salmon-producing system impacted by the Exxon Valdez Oil Spill, as well as all other significant spawning populations contributing to mixed-stock harvests in Cook Inlet, Alaska. A total of 68 allozyme loci were resolved from 37 populations. Allozyme data reveal a substantial amount of genetic diversity among populations. Mixedstock analyses using maximum likelihood methods with 27 loci were evaluated to estimate the proportion of Kenai River populations in Cook Inlet driftnet fisheries. Simulations indicate that Kenai River populations can be identified in mixtures at a level of precision and accuracy useful for restoration and fishery management. Fishery samples were analyzed both inseason (within 48 h) and postseason. The contribution of Kenai River populations to the Cook Inlet fisheries varied from 16.3% to 90.9%. Samples from fish wheels from the Kenai, Kasilof, Yentna, and Susitna River systems were also analyzed. Microsatellite DNA data were also collected from four populations to assess the utility this technique to discriminate among populations. Results from this study are currently being used in the management and restoration of Kenai River sockeye salmon injured in the 1989 Exxon Valdez oil spill.

Key Words: Alaska, allozymes, Exxon Valdez oil spill, Cook Inlet, genetic diversity, Oncorhynchus nerka, sockeye salmon.

Project Data: Description of Data - The data collected during the course of this project were the relative frequencies of variation within three classes of genetic markers: 1) Allozyme variant proteins formed by allelic forms of the same locus, 2) Mitochondrial DNA - genetic material found within the mitochondria with strict maternal inheritance and haploid nature, 3) Microsatellites - highly polymorphic variable number of tandem repeat nuclear DNA sequences that are distributed throughout the genome at intervals of approximately 10 kilobase pairs. Format - These data are stored in ASCII text format. Custodian - Contact Lisa W. Seeb at the Alaska Department of Fish and Game, Division of Commercial Fisheries

Management and Development, Genetics Laboratory, 333 Raspberry Rd., Anchorage, Alaska 99518. Availability - A complete set of the data are reported either in this report (allozyme and microsatellite) or in the final report for restoration projects 93012 and 94255 (mitochondrial DNA). Electronic copies of these data are available upon request.

Citation:

Seeb, L.W., C. Habicht, W.D. Templin, K.E. Tarbox, R.Z. Davis, L.K. Brannian, and J.E. Seeb. 1996. Kenai river sockeye salmon restoration, Restoration Project Annual Report (Restoration Project 95255), Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Anchorage, Alaska.

LIST OF APPENDICES

Appendix I. Genetic Diversity of Sockeye Salmon (Oncorhynchus nerka) ofCook Inlet, Alaska, and its Application to Restoration ofPopulations Affected by the Exxon Valdez Oil Spill I-1 to I-70Appendix II. Microsatellite Variation in Cook Inlet Sockeye Salmon II-1 to II-14

Appendix I.

Seeb, L. W., Habicht C., Templin, W. D., Tarbox, K. E., Davis, R. Z., Brannian, L. K., and Seeb, J. E.. 199x. Genetic diversity of sockeye salmon (Oncorhynchus nerka) of Cook Inlet, Alaska, and its application to restoration of populations affected by the Exxon Valdez Oil Spill. Can. J. Fish. Aquat. Sci. xx:xxx-xxx.

Draft. This unpublished data is not to be cited without permission of the authors.

To be submitted to Canadian Journal of Fisheries and Aquatic Sciences.

Genetic Diversity of Sockeye Salmon (Oncorhynchus nerka) of Cook Inlet, Alaska, and its Application to Restoration of Populations Affected by the Exxon Valdez Oil Spill

Lisa W. Seeb ${ }^{1}$ Chris Habicht ${ }^{1}$
William D. Templin ${ }^{1}$
Kenneth E. Tarbox ${ }^{2}$
Randall Z. Davis ${ }^{2}$
Linda K. Brannian ${ }^{1}$
James E. Seeb ${ }^{1}$

Alaska Department of Fish and Game
Division of Commercial Fisheries Management and Development
${ }^{1} 333$ Raspberry Road
Anchorage, Alaska 99518
${ }^{2} 3428$ Kalifornsky Beach Road, Suite B
Soldotna, Alaska 99669-8367

Seeb, L. W., Habicht C., Templin, W. D., Tarbox, K. E., Davis, R. Z., Brannian, L. K., and Seeb, J. E.. 199x. Genetic diversity of sockeye salmon (Oncorhynchus nerka) of Cook Inlet, Alaska, and its application to restoration of populations affected by the Exxon Valdez Oil Spill. Can. J. Fish. Aquat. Sci. xx:xxx-xxx.

Abstract

Genetic data from sockeye salmon (Oncorhynchus nerka) were collected from the Kenai River, a major salmon-producing system impacted by the Exxon Valdez Oil Spill, as well as all other significant spawning populations contributing to mixed-stock harvests in Cook Inlet, Alaska. A total of 68 allozyme loci were resolved from 47 putative populations. Allozyme data revealed a substantial amount of genetic diversity among populations. Mixed-stock analyses using maximum likelihood methods with 27 loci were evaluated to estimate the proportion of Kenai River populations in Cook Inlet fisheries. Simulations indicate that Kenai River populations can be identified in mixtures at a level of precision and accuracy useful for restoration and fishery management. Fishery samples were analyzed both inseason (within 48 h) and postseason. The contribution of Kenai River populations to the Cook Inlet fisheries varied from 16.3% to 90.9%. Samples from fish wheels from the Kenai, Kasilof, Yentna, and Susitna River systems were also analyzed. Results from this study are currently being used in the management and restoration of Kenai River sockeye salmon injured in the 1989 Exxon Valdez oil spill.

Key Words: Oncorhynchus nerka, sockeye salmon, Cook Inlet, Alaska, genetic diversity, allozymes, Exxon Valdez Oil Spill

The T/V Exxon Valdez hit Bligh Reef in Prince William Sound on March 24, 1989 spilling 11.2 million gallons of oil. In the ensuing days oil spread in a southwesterly direction through the Gulf of Alaska. Oil reached the Cook Inlet region, an area that supports large populations of Pacific salmon and extensive commercial fisheries. Fisheries on sockeye salmon (Oncorhynchus nerka) in Cook Inlet have been prosecuted since the late 1800's, and harvest levels have ranged from 95,000 to 9.5 million (Rigby et al. 1991; Ruesch and Fox 1994). Over the last 10 years the total value of the fishery has ranged from 12.3 to 111.1 million dollars, and sockeye salmon represented 80.4 to 96.0% of the total of all salmon species harvested (Ruesch and Fox 1994). However, in July of 1989, fishing time in the Cook Inlet area was greatly reduced due to the presence of oil from the Exxon Valdez spill.

As a direct result of the reduced exploitation, sockeye salmon spawning in the Kenai River system exceeded optimal escapement goals by three times. Extremely high escapements can produce enough fry to deplete invertebrate prey populations, causing high fry mortality, and can alter the species composition and productivity of prey populations for several years (Schmidt et al. 1995).

In anticipation of a potential decline in the fishery, efforts began in 1992 to refine stock identification and management techniques and to increase knowledge of the diversity and abundance of sockeye salmon in Cook Inlet. This information is essential to maintain the productivity of mixtures of stocks in mixed-stock harvests (Walters 1975; Kope 1992), while assisting managers to meet seasonal goals for individual stocks or stock-groups (Fried 1996) and to allow managers to assess the impacts of harvest regulations during the season (Mundy

1985; Mundy et al. 1993). By directing the commercial harvest managers could closely regulate the number of sprawning adults in the Kenai River, one of the few ways to manage sockeye salmon fry production and restore the productivity of injured rearing areas.

Most of the sockeye salmon production in Upper Cook Inlet (UCI) comes from four major river systems. The largest sockeye salmon producer (2.8 million fish annually) is the Kenai River which drains $5,200 \mathrm{~km}^{2}$ of the Kenai Peninsula on the east side of UCI (Fig. 1). Next are the Kasilof ($1700 \mathrm{~km}^{2}$) and Susitna River ($49,000 \mathrm{~km}^{2}$) systems which each produce approximately 700,000 sockeye salmon annually. The Kasilof River is on the Kenai Peninsula south of the Kenai River and the Susitna River empties into the north end of the Inlet. The fourth largest producer is the Crescent River drainage (200,000 fish) which covers $300 \mathrm{~km}^{2}$ on the western side of the Inlet. The Kenai, Kasilof and Crescent River systems are characterized by large, central glacial lakes fed by numerous smaller tributaries. The Susitna River system has many smaller lakes each of which empties into the mainstem through smaller, separate streams. The Susitna River is also the only system in Cook Inlet where slough-spawning populations have been observed that have no obvious access to a nursery lake for early-life rearing. The remainder of the sockeye salmon production in UCI is composed of many minor stocks which contribute between 6% and $31 \% ~(15 \%$ on average) of the total inlet-wide escapement (Ruesch and Fox 1994).

Cook Inlet sockeye salmon have been the focus of a number of stock identification studies. Extensive efforts were made to delineate populations through scale pattern analyses (Marshall et al. 1987) and parasites (Waltemeyer et al. 1993). Neither technique proved adequate. Significant temporal and sexual variability within populations exists with scale
pattern analyses (Waltemeyer et al. In press), and it is difficult to obtain stock-specific scales on an inseason basis. Additional stock identification techniques are warranted.

Genetic data have proven extremely effective for stock management in recent years (e. g. Seeb et al. 1986, 1990, chum salmon (O. keta); Shaklee and Phelps 1990, chum salmon; White and Shaklee 1991, pink salmon (O. gorbuscha) White 1996, pink salmon; Wood et al. 1989, 1994, sockeye salmon; Beacham et al. in press, sockeye salmon), and many genetic markers have been found which delineate groups of populations. These markers can also be used to discriminate populations in mixed-stock aggregations, and a considerable statistical framework (Mixed-Stock Analysis, MSA) based on maximum likelihood estimates (MLE) has been developed to identify individual stocks within mixtures (Fournier et al. 1984; Millar 1987, 1990; Pella and Milner 1987; Wood et al. 1987; Pella et al. 1996).

One of the earliest genetic studies of sockeye salmon focused on Cook Inlet, where Grant et al. (1980) found considerable heterogeneity among populations inhabiting the region. In evaluations of their resulting mixed-stock model, Grant et al. (1980) demonstrated a high degree of success using three allozyme loci to classify populations from the Kasilof River and Susitna River drainages, but incomplete baseline data was thought to confound the Kenai River classifications. Additional data from the Russian River, one of the Kenai River drainages, was presented by Wilmot and Burger (1985). They found significant differences between early and late runs from the Russian River. However, no comprehensive genetic survey of Cook Inlet has been undertaken since the 1970's (Grant et al. 1980). In this study, we present genetic data to delineate populations and evaluate the genetic model as a tool for stock identification and restoration of Kenai River sockeye salmon.

Materials and Methods

Baseline samples for allozyme analysis were collected by personnel of Alaska Department of Fish and Game (ADF\&G) from spawning populations of sockeye salmon using gillnets and beach seines. Target sample size for baseline collections was set at 100 to achieve acceptable precision around the allele frequency estimates (Allendorf and Phelps 1981; Waples 1990). Tissue samples from spawning populations were collected from all major sockeye salmon-producing systems of UCI. Approximately 7,000 individual sockeye salmon from spawning populations were sampled from 1992 to 1995 (Table 1; Fig. 1). Most spawning populations were sampled in at least two separate years and some sites were sampled twice within a year to check for run timing differences.

Mixed-stock collections originating from Cook Inlet fisheries (Central District; Fig. 1) were collected in a similar manner to that of spawning samples. Sockeye salmon from the drift gillnet fishery were sampled at processing plants as fishing vessels were offloaded. Attempts were made to randomize sampling, and multiple vessels were sampled. Collections were made during July in 1992-1995 (Table 1). In 1995, two collections were also taken from set gillnet sites fishing the eastern shore of the Central District. In addition, inriver collections were made at four mainstem fish wheel sites (Yentna River, river mile 4; Susitna River, river mile 80; Kasilof River, river mile 7; and Kenai River, river mile 19; Table 1; Fig. 1). Two mixture collections each year were processed within 48 h . Target mixed-stock sample sizes were set at 200 for inriver and 400 for fisheries samples (Wood 1989), although these were not always achieved.

Samples of muscle, liver, retinal fluid, and heart were dissected from freshly killed individuals. Individual sample numbers were assigned to uniquely identify all genetic tissues. Tissues were placed into cryovials, and the cryovials were stored in liquid nitrogen until transferred to $-80^{\circ} \mathrm{C}$ storage where they remained until laboratory analysis.

A comprehensive examination for discriminating gene markers was conducted using allozyme electrophoresis. Allozyme techniques followed those of Aebersold et al. (1987); nomenclature rules followed the American Fisheries Society standard (Shaklee et al. 1990). A total of 68 allozyme loci were resolved (Table 2). A photographic record of each gel was made, and a collection of mobility standards for all scored alleles was constructed and used to verify alleles.

Of the 68 loci, 24 loci (ADA-1*; mAH-3*; CK-A1*; CK-C1*; CK-C2*; ESTD*; FBALD-4*; FH*; β GALA*; GAPDH-3*; GAPDH-4*; GAPDH-5*; G3PDH-3*; GR ${ }^{*}$; LDH-
 were found to be invariant and were surveyed for only a single year from each site. Statistical analyses for all populations were based on the remaining set of 44 loci. A reduced set of 27 loci ($m A A T-1^{*}$; mAAT-2*; mAH-1,2*; mAH-4*; $s A H^{*} ; A L A T^{*} ; G A P D H-2^{*}$; G3PDH-4*; GPI-B1,2*; GPI-A*; sIDHP-1*; LDH-B2*; sMDH-A1,2*; sMDH-B1,2*; mMEP$I^{*} ; P E P A^{*} ;$ PEPB-I ${ }^{*} ;$ PEPC ${ }^{*} ;$ PEPLT ${ }^{*} ;$ PGM-1 ${ }^{*} ;$ PGM-2*; TPI-1,2*) was used in the majority of the admixture analyses. However, we were unable to resolve some loci (mAAT-2; GPI-B1,2; G3PDH-4) from all mixtures; in those cases estimates were based on all remaining loci. Loci in this set were chosen for their information content and ability to be adequately resolved from lesser quality tissues, a common occurrence in fishery samples.

Where possible, multiple collections at the same site were pooled for the analysis following the recommendation of Waples (1990) and White (1996). Genotypes were scored from enzyme phenotypes and then summarized into allele frequency estimates (Appendix A). Only homozygote alternate phenotypes could be scored for null allele variation at PGM-1* (*100/null scored as ${ }^{*} 100 / * 100$). Hardy-Weinberg expected frequencies were calculated for this locus and are listed in Appendix A. Expected frequencies were used for heterogeneity, gene diversity, and tree analyses, but phenotypic frequencies were used for the mixture analysis. Frequencies at isoloci (sAAT-1,2*; mAH-1,2*; G3PDH-1,2*; sMDH-A1,2*; sMDH$B 1,2^{*}$; GPI-B1, $2^{*} ;$ TPI-1,2*) were calculated assuming the variation occurred with equal frequency at both loci. Tests for departure from Hardy-Weinberg equilibrium were made for each population at each single locus ($\alpha=0.05$; adjusted for the number of tests; Lessios 1992) to test for random mating within each population. Isoloci were excluded from these tests.

Populations were grouped a priori into seven regions: Kenai River, Kasilof River, Susitna River, Yentna River, Northeast Cook Inlet, Knik Arm and West Cook Inlet. The first four regions encompass the entire watersheds of three of the four major river systems in Upper Cook Inlet. The vast Susitna River watershed, of which the Yentna River is a tributary, was divided into two separate regions to allow finer-scale resolution. Populations within each river system share common freshwater migration pathways. The last three regions are composed of the remaining Upper Cook Inlet river systems arranged into geographically proximal units. With a few exceptions, the populations within each of these three regions do not share freshwater migration pathways. The fourth major river system,

Crescent River, is located in the West Cook Inlet region. One or more nursery or rearing lakes are located in each region.

Homogeneity of allelic frequencies among the various collections were tested using \log-likelihood ratios (modified from Weir 1990) with $\alpha=0.01$. This statistic is distributed approximately chi-squared with $(n-1)(m-1)$ degrees of freedom, where n is the number of alleles and m is number of populations in the test. The likelihood values can be summed over all loci to obtain a total value at each level of analysis. The total gene frequency dispersion at each locus was subdivided into within- and among-region components in a hierarchical fashion. Hierarchical levels were organized to test for homogeneity 1) among sites within nursery lakes, 2) among nursery lakes within regions, and 3) among river systems/regions. Rejection of the null hypothesis of homogeneity indicates presence of discrete spawning populations. This analysis is a conservative test because the degrees of freedom used reflect the entire pattern of diversity around Cook Inlet. In some situations we also performed pairwise and region-wide analyses which resulted in fewer degrees of freedom and a finer scale analysis.

To further describe the subdivision of genetic diversity, a hierarchical gene diversity analysis (Nei 1973) was conducted to test for the distribution of variability among sites within nursery lakes, among nursery lakes within regions, and among regions. Isoloci and PGM-1* (scored phenotypically) were excluded from the diversity analyses.

Genetic distance measures (Cavalli-Sforza and Edwards 1967), which summarize multi-locus data into a single number, were calculated between all pairs of spawning locations. These values were used to construct a neighbor-joining tree (N-J tree; Saitou and

Nei 1987) using PHYLIP (Version 3.5, Felsenstein 1993). This method allows for unequal rates of molecular change among branches. Allele frequency estimates, fit to expected genetic models, and genetic variability and distance measures were calculated using functions written in S-Plus (Mathsoft, Inc., Seattle, WA) .

Stock contributions to the mixture samples were estimated via maximum likelihood (MLE; Pella and Milner 1987) using a conjugate gradient searching algorithm with square root transformations (Pella et al. 1996). This algorithm provides good performance with large baselines and small stock differences (Pella et al. 1996). The precision (standard error) of the stock composition was estimated by an infinitesimal jackknife procedure (Millar 1987). Individuals missing data at two or more loci were deleted. Individual population estimates were first calculated, then summed into regional groupings (allocate-sum procedure, Wood et al. 1987). Simulated mixtures were used to evaluate the accuracy of the stock composition estimates reporting regions. These hypothetical mixtures $(N=400)$ were generated from the baseline allele frequencies assuming Hardy-Weinberg equilibrium. The precision (standard error) of the simulated mixtures was estimated by a parametric bootstrap (Efron and Tibshirani 1986), where the observed multilocus genotype frequencies were assumed to be distributed multinomial as were the allele frequencies in the baseline. One hundred bootstrap iterations were performed.

We conducted 100% simulations for the seven reporting regions (hypothetical mixtures composed entirely of stocks from the individual region). In order to maintain confidence in the estimates, fishery managers desired reporting regions that showed at least 90% allocation to the region of origin. Within regions the individual populations were constrained to
contribute equally to the sample so that no allowances were made for differential abundances. We also performed simulations varying the contribution of the Kenai River; contributions varied from 0% to 100% in 10% increments.

Results

Heterogeneity Within Regions
Kenai River
Rearing of sockeye salmon occurs in Upper and Lower Russian Lakes, Kenai Lake, Skilak Lake, Hidden Lake, Tern Lake, and Trail Lake (Fig. 1). Spawning occurs in tributaries of these lakes as well as the mainstem Kenai River.

Divergence was detected within the Russian River. Spawning populations above and below Russian River Falls exhibited a distinct discontinuity in allele frequencies (Appendix A). Loci exhibiting the divergence between populations spawning above and below the falls included: $s A H^{*} 100$ (above $0.26-0.29$; below 0.96), $A L A T^{*} 100$ (above $0.84-0.86$; below 0.65), $L D H-B 2^{*} 100$ (above $0.50-0.71$; below 0.92), and $P G M-1 * 100$ (above $0.00-0.01$; below 0.38). The population spawning below the falls more closely resembled populations inhabiting the mainstem Kenai River (Fig. 2). In addition, temporal differentiation was detected in pairwise comparisons between early- and late-run spawners above the falls ($\mathrm{G}=93.41, \mathrm{df}=12, P<0.001$) with significant heterogeneity at $L D H-B 2^{*}, m A A T-1^{*}, m A A T$ 2^{*}, and $m A H-1,2^{*}$.

Overall similarity among populations from the Kenai River drainage is apparent from the N-J tree (Fig. 2). Populations showing high levels of similarity and forming a single cluster included Skilak Lake Outlet, populations between Kenai and Skilak Lakes (sites 1-6),

Ptarmigan Creek, Quartz Creek, and Russian River below-the-falls. Moose Creek joined a larger grouping which included populations from Susitna River drainages and West Cook Inlet. Other Kenai River populations appeared highly divergent. While the Russian River above-the-falls (both early and late) populations were the most divergent, Hidden Creek also appears to be highly distinct not only from the Russian River above-the-falls populations but also from the other Kenai River populations. Compared to mainstem Kenai River populations, Hidden Creek is characterized by higher frequencies of $m A A T-2^{*}-73 ; A L A T * 100$; and PGM-2*100 (Appendix A). Moose Creek also is distinct within the drainage with high frequencies of $A L A T^{*} 91$.

Kasilof River

Populations returning to the Kasilof River drainage spawn in tributaries and along the shoreline of Tustumena Lake. Five tributaries (Bear, Moose, Glacier Flat, Nikolai, and Seepage Creeks; Fig. 1) were sampled. Lake spawners utilizing the beach were also sampled (Tustumena Lake sites 1 and 2). In comparisons among populations, Bear Creek, Moose Creek, and Seepage Creek, were statistically indistinguishable ($\mathrm{G}=29.51, \mathrm{df}=32, P=0.593$). Relative to other Cook Inlet sockeye salmon populations, the Kasilof River drainage populations were more similar and cluster together on the N-J tree (Fig. 2). Overall heterogeneity within the region when all Cook Inlet populations were considered was not significant (Table 3). As a group, Kasilof River drainage populations exhibited a high frequency of $A L A T * 95$ (frequencies range from 0.10 to 0.15) and consistent presence of rare alleles (G3PDH-4*108; GPI-B1,2*132).

Susitna River Drainages

The Susitna River is composed of the Yentna River and mainstem Susitna River drainages. Within each of these systems are many smaller lakes and tributaries that support sockeye salmon spawning and rearing. Chosen sampling sites were assumed to represent the largest spawning populations within the system although less is known about populations of the Susitna River than population from other drainages.

We found extensive divergence within the Susitna River system, both within and between the Yentna and Susitna Rivers (Table 3). Within the Yentna River drainage was a wide spectrum of loci at which one or more populations have exceptionally divergent allele frequencies (Table 3, Appendix A) . The most dramatic difference occurred at PGM-2* where Shell and Trinity/Movie Lakes have frequencies of the ${ }^{*} 100$ allele of 0.25 and 0.28 respectively, while Hewitt/Whiskey Lakes had a frequency of 0.63 and the remaining populations had frequencies greater than 0.80 . Other loci that displayed a large amount of heterogeneity were: $P E P C^{*} 105$ (generally <0.01; Hewitt/Whiskey Lakes $=0.13$; Shell Lake $=$ $0.32), P G M-1 * 100($ generally $<0.10 ;$ Judd Lake $=0.36), \operatorname{PEPB}-1 * 130($ generally $=0.00$; Trinity/Movie Lakes $=0.15), A L A T^{*} 100($ generally $<0.59 ;$ Trinity/Movie and Hewitt/Whiskey Lakes >0.70), and $m A A T-I^{*} 100$ (generally >0.84; Judd Lake $=0.62$).

Populations in the Susitna River mainstem also showed considerable heterogeneity at several loci (Table 3; Appendix A). At $P G M-1^{*}$, most of the populations had frequencies of the * 100 allele between 0.19 and 0.40 , but in Red Shirt Lake a frequency of 0.03 was estimated, and the ${ }^{*} 100$ allele was absent in the Stephan Lake collections. Other alleles that displayed a large amount of heterogeneity were: $P E P C^{*} 105$ (frequencies ranging from 0.003 to 0.17) and $s I D H P-1 * 94$ (generally $=0.00 ;$ Stephan Lake $=0.13)$, and $m A A T-1 *-83$
(generally $>0.18 ;$ Birch Creek $=0.06$; Red Shirt Lake $=0.00$). The degree of differentiation was most easily seen in the N-J tree (Fig. 2) where Susitna River populations can be found on many different branches clustering with populations from other regions.

Western Cook Inlet

Populations assigned to the Western Cook Inlet region spawn in the river/lake systems that drain the west side of Cook Inlet from the mouth of the Susitna River south to the Crescent River. These are generally cold, high-energy streams fed by the glaciers and snowpack in the mountains that line the coast. An exception is the Packers Lake population which returns to Kalgin Island, a large island located in the middle of the Inlet west of the mouth of the Kasilof River. Unlike the Kenai River, Kasilof River and Susitna River populations, populations within a region do not generally share a common fresh-water migration pathway (Fig. 1).

As might be expected from the geography of the region, the Western Cook Inlet populations exhibited considerable regional heterogeneity (Table 3). A large part of the heterogeneity within the region can be attributed to a few loci within a few populations. The $A L A T * 95$ allele occurred much more frequently in McArthur River (frequency $=0.17$) than in the remaining populations (frequency <0.07). In this region, the $s M D H-B 1,2^{*} 65$ allele occurred only in Coal Creek and Packers Lake, while the *116 was a private allele for Packers Lake. The frequencies of the null allele for $P G M-1^{*}$ ranged from 0.537 to 0.997 , and the $P G M-2 * 136$ allele frequencies ranged from 0.03 to 0.39 through all the populations in this region.

Northeastern Cook Inlet

Only two sites were sampled in the Northeastern Cook Inlet region: Daniels Lake and Bishop Creek. Both sites are in the Bishop Creek drainage located north of the mouth of the Kenai River on the Kenai Peninsula (Fig. 1). When sites were compared, heterogeneity was found at $A L A T^{*}, s A H^{*}, G P I-A^{*}$, and $m A A T-I^{*}$ between Bishop Creek and Daniels Lake collections (Table 3). Their similarity to each other, though, was greater than their similarity to other populations as shown in the N-J tree (Fig. 2). Northeastern Cook Inlet populations were marked by a high frequency of $P E P L T * 88$ alleles, a low frequency of $P G M-2 * 100$ alleles, and the lack of $L D H-B 2^{*}$ and $P E P C^{*}$ variant alleles which were seen in every other region.

Knik Arm
Like the populations in Western Cook Inlet, the Knik Arm populations do not share a common freshwater migration path (Fig. 1). For this reason, sampling sites were chosen based on size of drainage and observed sockeye salmon escapement. The three populations of the region (Nancy Lake, Cottonwood Creek and Fish Creek) were significantly different (Table 3). Cottonwood Creek and Fish Creek clustered together in the N-J tree, but Nancy Lake was on a separate branch with populations from other regions.

Heterogeneity Among Regions
Observed and expected heterozygosities were calculated for all populations (Appendix A). Observed heterozygosities varied from a low of 0.021 in Chilligan River to a high of 0.056 in Stephan Lake. There was no regional trend in heterozygosity level in the populations sampled. All populations conformed to Hardy-Weinberg expectations.

A hierarchical gene diversity analysis was stratified by site, nursery lake, and region.

The greatest amount of variation (87.74\%) occurred within sites (Table 4). Little variability was detected among sites within nursery lakes (0.38%). However, considerable heterogeneity (7.80\%) existed among nursery lakes within regions with the remaining 4.08% of the variability allocated to the among-regions component.

Mixed-stock Analyses

The performance of the MSA model for Cook Inlet sockeye salmon was investigated through simulations. The Kenai River region, the group of greatest concern, showed 91% allocation in the simulation studies, above the 90% goal (Table 5). Northeastern Cook Inlet, Kasilof River and Knik Arm also were above or close to the goal (99\%, 92% and 88% respectively). The Yentna River also was near the goal with an allocation of 88%, but the Susitna River misallocated to both the Yentna River and Western Cook Inlet resulting in a correct allocation of only 77%. When the Susitna and Yentna regions were combined, the allocation rose to 87%. Western Cook Inlet, a heterogenous grouping based on geographic proximity, performed at 86%, below the 90% objective.

A series of simulations was also conducted to test our ability to detect increasing Kenai River presence in the fishery. Simulations were designed so that the Kenai River contribution to the mixture sample varied from 0% to 100% in 10% increments. At low percentages the Kenai River contribution were slightly overestimated, while at higher percentages the contributions were underestimated (Fig. 3).

Maximum likelihood estimates were calculated for all samples collected from the Central District drift gillnet and Eastside set gillnet fisheries. These estimates were then summed by region for use in management (Table 6). In 1992, 1993 and 1994 few samples
were taken and estimated contributions shed little light on the interactions of regions within the fishery (Fig. 4). In 1995, five samples were taken from that portion of the season coinciding with the expected presence of Kenai River sockeye salmon (Fig. 5). These samples show an increase (from 16.4% on July 3 to 86.0% on July 31) of Kenai River sockeye salmon in the drift gillnet fishery over the period examined. During this same period, the harvest of sockeye salmon peaked at 462,625 on July 17 (Table 7). At the peak of the harvest, Kenai River populations were estimated to comprise 42.6% of the catch which represented approximately 50% of the total harvest of Kenai River sockeye salmon for the month of July. While the proportion of Kenai River populations in the harvest continued to increase during late July, the total harvest of sockeye salmon in the fishery decreased (Table 7; Fig. 6). Sockeye salmon of Kenai River origin represented approximately one third of the total Cook Inlet harvest during the sampling period.

Maximum likelihood estimates were also calculated from samples originating from catches of inriver fish wheels (Table 8). Samples were collected from the Kenai, Kasilof, Susitna River mainstem, and Yentna River drainages (Table 1; Fig. 1). These inriver estimates assumed all contributing populations from a particular drainage were included in the baseline and that there was no straying into the river drainage. Estimates for the Kenai River samples ranged from 63% to 93% across all collections. The lowest value was for the July 10, 1994 collection, the earliest sample taken. A similar pattern was observed for the Susitna River mainstem (75% and 92%), Yentna River (81% to 98%) and Kasilof River (55% to 91%) where the low values were always obtained from the early samples. This may indicate that some early-run populations with unique genetic profiles have not been included in the
baseline, or that early in the season fish may be entering non-natal systems prior to correctly homing to their natal stream ("nosing in").

Finer scale estimation was also possible for some populations within some river drainages. A 100% simulation was conducted on the Russian River above-the-falls populations alone. The simulation result was 99.4%, S. D. 0.5%, indicating that the Russian River could be identified in mixtures of Cook Inlet populations with a high degree of accuracy and precision. Maximum likelihood estimates for the inriver mixtures from Kenai River were made to estimate the combined early- and late-runs of Russian River sockeye salmon above-the-falls (Fig. 7). Four estimates were possible in 1994; three in 1995. The results suggested a pulse of early-run fish, a lull, and then a large pulse of late-run fish.

Discussion

The objective of this study was to improve stock assessment capabilities for sockeye salmon in an effort to protect and restore populations injured as a result of the oil spill. The allozyme data gave a detailed picture of the genetic diversity of Cook Inlet sockeye salmon, and the data representing 47 putative populations can be used not only to describe the diversity of the Inlet, but also to assess the contribution of injured populations to mixed-stock aggregations.

Genetic Diversity of Cook Inlet Sockeye Salmon
This study represents the first comprehensive analysis of sockeye salmon from Cook Inlet since that of Grant et al. (1980). Grant et al. (1980) identified six informative of 26 total loci from 13 populations from Cook Inlet. They documented heterogeneity among both
the Kenai and Susitna River drainages, while little heterogeneity was detected among Kasilof River populations. Wilmot and Burger (1985) surveyed Russian River populations and documented significant differences between the early- and late-run populations from the Russian River at $L D H-B 2^{*}$ and $s A H^{*}$. Our study confirms the previous observations of Grant et al. (1980) and Wilmot and Burger (1985) and greatly expands the database both in terms of loci and number of populations.

Sockeye salmon typically spawn in rivers or smaller creeks associated with nursery lakes, and it has been suggested that the nursery lake is the primary unit of genetic structuring (Utter et al. 1984; Wood et al. 1994). This may reflect the tendency of sockeye salmon to home with great fidelity to their natal streams, presumably to a greater extent than other Pacific salmon (Quinn 1985; Quinn et al. 1987). Juveniles will typically rear from one to two years in a nursery lake before undergoing smoltification and migrating to the sea.

The Kenai River drainage includes several nursery lakes. Early- and late-run Russian River populations are thought to rear in Upper and Lower Russian Lakes, "mainstem" spawning populations (Skilak Lake outlet, between Kenai and Skilak Lake, Russian River below-the-falls, Quartz Creek, and Ptarmigan Creek) are believed to rear in Kenai and Skilak Lakes, Moose Creek rear in Upper Trail Lake, Tern Lake rear in Tern Lake, and Hidden Creek juveniles rear in Hidden Lake. The genetic diversity among Kenai River populations is clearly far greater than previously documented. Two separate lineages corresponding to an early- and late-run occur above the falls in the Russian River. The falls serve as an effective isolating barrier with populations below the falls joining a large aggregation of mainstem populations that rear in Kenai and Skilak Lakes. A third highly divergent lineage is
represented by the Hidden Creek population, and additional outliers with distinct genetic profiles occur in Moose Creek and Tern Lake.

In the Kasilof River region, sockeye salmon from four spawning tributaries as well as two beach spawning sites were surveyed from Tustumena Lake. Little heterogeneity among populations rearing in the lake was apparent (Table 3; Fig. 2). Burger et al. (1995) detected a distinct late run of river-spawners that appear near the end of September at the outlet of Tustumena Lake. These outlet-spawners have a distinct genetic profile based on both mitochondrial DNA and allozyme data, but a complete data set was not available for this study.

The high level of divergence of Susitna River and Western Cook Inlet populations was not unexpected, as Grant et al. (1980) also noted significant differences between Susitna River populations. Unlike the Kenai and Kasilof River drainages, there are no large nursery lakes that support multiple tributary-spawning populations. Rather, there are a number of isolated smaller lake systems and this isolation has likely led to the considerable divergence evident in both regions.

The data from the Kenai, Kasilof, and Susitna River drainages support a model of differentiation of populations based on natal spawning areas. In the gene diversity analysis, 7.8% of the variability existed among-nursery lakes within regions, while only 3.6% of the variability could be attributed to the among-region component. Wood et al. (1994) report similar results from a study of variation in 83 distinct spawning sites representing all major sockeye-producing river systems in Canada. They showed extensive differentiation among nursery lakes and attributed it to founder effects and isolation through strict homing behavior.

They found 7% of the variation to be attributable to differences among lakes within drainage with lesser amounts attributed to their "among drainages within systems" and "among river system" components.

Divergence within a nursery lake was seen in this study between the early- and laterun Russian River populations. Temporal and geographic divergence within lakes has been noted for other sockeye salmon populations. Wilmot and Burger (1985) report differences between early- and late-run sockeye salmon returning to Karluk Lake. Varnavskaya et al. (1994) studied the population structure within nine lake systems in North America and Russia and found differentiation among subpopulations exhibiting different run timing (earlier vs. later) or utilizing different spawning habitat (tributary vs. beach). They attribute the differentiation to precise homing to the natal streams, not just to the lake systems. Mixed-stock Analyses

In addition to describing the genetic diversity present in Cook Inlet, a primary goal of this study was to evaluate and utilize the genetic data for MSA to aid in the management and restoration of injured Kenai River populations. A total of 27 of the 68 loci were used in the majority of the admixture analyses which represents a large increase over that available to Grant et al. (1980).

A basic requirement of using genetic data in mixed-stock analyses is that all major contributing populations are represented in the baseline. To a large extent, this assumption is met by the extensive genetic information collected by this study. However, unlike other species of Pacific salmon such as chinook salmon (O. tschawytscha, Utter et al. 1993), there is little relationship between genetic distance and geographic distance in sockeye salmon
populations. Sockeye salmon populations inhabiting the same drainage may be more divergent than populations geographically quite separate. As a result, exhaustive baseline sampling is needed.

Simulation studies are a useful method to evaluate and refine the MSA model. We primarily used pure or 100% simulations. Bias in the estimated composition is expected to be greatest at the most extreme compositions (0 or 100%) given the constrained maximum likelihood techniques used (no estimates <0.00 or >1.00; Pella and Milner 1987). This pattern was evident in the simulations of increasing Kenai River contributions to the fishery (Fig. 3), but the bias was greater at high levels of Kenai River contributions than at low levels. The estimated Kenai River component was within one standard deviation of the true contribution over the range from 0% to 80%. A series of 100% simulations, thus, provides a rigorous test of the model.

Based on earlier work with sockeye salmon (Wood et al. 1989, 1994), we took a conservative approach by identifying regional reporting units and using the allocate-sum procedure to estimate regional contributions. Previous simulation studies on sockeye salmon have shown that estimates for individual populations may not be reliable (Wood et al. 1989). The performance of the Kenai River was of particular concern, but it did quite well with a 100% simulation estimate of 91.3% (S.D. 4.9%). Additional indicators of the accuracy of the method are the misallocations to a particular region. Misallocations to the Kenai River in 100% simulations of other regions were small, ranging from 0.3% from Northeastern Cook Inlet to Kenai River and 2.5% from the Kasilof to the Kenai River region. The Kasilof River, Northeastern Cook Inlet, and Knik Arm regions also performed well, and pooling the Yentna
and Susitna River regions improved performance for the Susitna River populations. The poorest results were obtained for Western Cook Inlet, a very heterogeneous group of populations with genetic affinities to the Yentna and Susitna River populations.

The results for the maximum likelihood estimates of regional contribution to the commercial fishery over the four years varied not only through time, but also across years with the Kenai River estimate ranging from 16.4% to 90.9%. In 1995 the Kasilof River region was the largest contributor early in the season, but by mid-July the Kenai River became the dominant contributor. Yearly estimates will vary depending on the relative run strengths, location of sampling, and timing of sampling, but multi-year sampling, particularly with multiple samples within each year, may reveal consistent patterns.

The inriver mixed-stock estimates can be used to monitor individual populations within systems. For example, the Russian River and Hidden Creek populations of the Kenai River can be very accurately and precisely estimated and can potentially serve as indicator stocks for management purposes. The inriver samples can also provide an indication of the adequacy of the baseline. However, intrinsic in this application is the assumption that very little straying or "nosing in" occurs. Anecdotally, biologists have observed that some fish temporarily enter a non-natal stream prior to correctly homing. The model performs poorly early in the season and improves dramatically as the season progresses, which suggests that the baseline may be weighted towards populations with middle or late run timing. This is likely an acceptable bias as many of the early-timing populations may be very low in abundance. It also could indicate that entrance into a non-natal stream may be more prevalent early in the season.

The allozyme data reveal a substantial amount of genetic diversity among populations of Cook Inlet sockeye salmon. This diversity is distributed both within and among major drainages. In general, the data support a model of population structure based on the nursery lake, however we did detect significant divergence among both temporal and geographic components within nursery lakes. This diversity likely arises from isolation and genetic drift among nursery lakes combined with a tendency of sockeye salmon to home with great fidelity.

Application to Fishery Management
The commercial fishery management strategy in Upper Cook Inlet is to regulate the harvest of sockeye salmon by varying fishing time and area to meet a fixed range of escapement objectives. Season length is mid-June to mid-August with a peak fishery in midJuly. Typically, the fishery operates on Monday and Friday for 12 h . However, this time is adjusted by the $\mathrm{ADF} \& \mathrm{G}$ depending on run strength. Areas open to fishing can also be adjusted to affect exploitation rates. Evaluation of this strategy is done by estimating the number of adults reaching freshwater in the major river systems by sonar (Ruesch and Fox 1994)

Sockeye salmon move into the Central District from the south and tend to delay entering their natal streams. Residence times in the Central District for Kenai River sockeye salmon have a modal value of 11 days early in the season, rapidly declining to four days as the season progresses. The average residence time for Kasilof River populations is nine days at the beginning of the season and declines to five days at the end of the season. Susitna River populations, in contrast, hold for 19 days in the early portion of the season; the average
time declines to seven days late in the season (Mundy et. al. 1993).
Approximately 600 drift gillnet vessels fish the offshore waters of the Central District in Upper Cook Inlet. Exploitation rates of the drift gillnet fleet averaged 41\% (range 3545\%) for a single 12 h fishing period between 1979 and 1988. Rates have remained relatively stable to the present.

In contrast to the drift gillnet fishery, the set gillnet fishery in Upper Cook Inlet concentrates along the east side of Upper Cook Inlet. This fishery targets primarily Kasilof and Kenai River populations and consists of over 120035 -fathom nets. Exploitation rates in a single 12 h period can be 70% of the fish available to the gear.

Variable residence times which concentrate fish, stock abundance, and high commercial exploitation rates, can combine to increase the probability of over-harvest in an uninformed mixed-stock fishery. It is, therefore, essential that stock identification in the harvest available for long term management of these fisheries so that weaker stocks can be identified and protected.

The results of the maximum likelihood estimates indicated that Kenai River populations can be identified in mixtures of Cook Inlet sockeye salmon with a level of precision, accuracy, and timeliness useful for fisheries management. The original intent of this study was to determine the Kenai River/non-Kenai River component of the harvest. To evaluate the model, though, populations were initially allocated to seven regions which were later reduced to six to improve model performance.

The maximum likelihood estimates were first incorporated into inseason fishery management in 1995; results were reported for Kenai River/non-Kenai River components only
during the first year. In future years it is likely that four reporting groups, corresponding to current management regimes, will be used. These groups are: Kenai River, Kasilof River, Northern District (Susitna River, Yentna River, Northeastern Cook Inlet, Knik Arm, Coal Creek, Chilligan River, McArthur River), and a Western Cook Inlet component consisting of those populations spawning south of the Northern District boundary. Evaluation of these groups is being conducted.

Application of genetic data to stock identification in fishery management has several advantages over other methods including stability of allele frequencies over time, ability to process large amounts of samples rapidly, and reasonable costs (Shaklee and Phelps 1990). The accuracy and precision of the estimates can likely be further improved as additional genetic markers become available. The data collected in this study can be used throughout Cook Inlet and as well as within drainages to identify specific population components. These applications are currently underway in Cook Inlet to aid in the management and restoration of injured populations.

Acknowledgements

A study of this magnitude could not have been completed without the help and cooperation of a large number of people. An essential component of this study was the expert laboratory effort provided by the ADF\&G Genetics group particularly Lori Wagoner, Chris Schlichten, and Bruce Whelan. Steve Fried, Paul Ruesch, Dave Waltmeyer, and Ken Florey, ADF\&G Central Region, also assisted with key aspects of the study. Rich Gates refined many of the statistical approaches and software utilized in this study; Penny Crane reviewed several versions of this manuscript. We gratefully acknowledge their assistance. We would also like to thank Paul Aebersold and Charles Guthrie of the National Marine Fisheries Service, Seattle and Auke Bay, and Carl Burger of the National Biological Service, Anchorage, for sharing their sockeye expertise. Finally, we thank Wards Cove Packing and Salamatof Seafoods for their assistance. This study was funded by the Exxon Valdez Oil Spill Trustee Council.

References

Aebersold, P. B., Winans, G. A., Teel, D. J., Milner, G. B., and Utter, F. M. 1987. Manual for starch gel electrophoresis: A method for the detection of genetic variation. NOAA Technical Report NMFS 61, U. S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 19 p.

Allendorf, F. W., and Phelps, S. R. 1981. Use of allelic frequencies to describe population structure. Can. J. Fish. Aquat. Sci. 38: 1507-1514.

Beacham, T. D., Withler, R. E., and Wood, C. C. In Press. Stock identification of sockeye salmon (Oncorhynchus nerka) using minisatellite DNA variation. North American Journal of Fisheries Management.

Boyer, S. H., Fainer, D. C., and Naughton, M. A. 1963. Myoglobin: Inherited structural variation in man. Science 140: 1228-1231.

Burger, C. V., Finn, J. E., and Holland-Bartels, L. 1995. Pattern of shoreline spawning by sockeye salmon in a glacially turbid lake: Evidence for subpopulation differentiation. Trans. Am. Fish. Soc. 124: 1-15.

Cavalli-Sforza, L. L., and Edwards, A. W. F. 1967. Phylogenetic analysis: models and estimation procedures. Evolution 21: 550-570.

Clayton, J. W., and Tretiak, D. N. 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. J. Fish. Res. Board Can. 29: 1169-1172.

Efron, B, and Tibshirani, R. 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1986: 54-77.

Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Version 3.5c. Department of

Genetics, University of Washington, Seattle. Distributed by the author.
Fournier, D. A., Beacham, T. D., Riddell, B. E., and Busack C. A. 1984. Estimating stock composition in mixed stock fisheries using morphometric, meristic and electrophoretic characteristics. Can. J. Fish. Aquat. Sci. 41: 400-408.

Fried, S. M. 1996. Upper Cook Inlet Pacific salmon biological escapement goal review: Department findings and recommendations to the Alaska Board of Fisheries. Regional Information Report, No. 2A96-05, Alaska Department of Fish and Game, Anchorage, AK, 36pp

Grant, W. S., Milner, G. B., Krasnowski, P., and Utter, F. M. 1980. Use of biochemical genetic variants for identification of sockeye salmon (Oncorhynchus nerka) stocks in Cook Inlet, Alaska. Can. J. Fish. Aquat. Sci. 37: 1236-1247.

Holmes, R. S., and Masters. C. J. 1970. Epigenetic interconversions of the multiple forms of mouse liver catalase. FEBS Letters 11: 45-48.

Kope, R. G. 1992. Optimal harvest rates for mixed stocks of natural and hatchery fish. Can. J. Fish. Aquat Sci. 49: 931-938.

Lessios, H. A. 1992. Testing electrophoretic data for agreement with Hardy-Weinberg expectations. Mar. Biol. 112: 512-517.

Marshall, S., Bernard, D, Conrad, R, Cross, B., McBride, D, McGregor, A, McPherson, S., Oliver, G, Sharr, S, and Van Allen, B. 1987. Application of scale patterns analysis to the management of Alaska's sockeye salmon (Oncorhynchus nerka) fisheries. In Sockeye salmon (Oncorhynchus nerka) population biology and future management. Edited by Smith, H. D., Margolis, L., and Wood, C. C. Can. Spec. Publ. Fish. Aquat.

Sci. 96, pp. 207-326.
Millar, R. B. 1987. Maximum likelihood estimation of mixed stock fishery composition. Can.
J. Fish. Aquat. Sci. 44: 583-590.

Millar, R. B. 1990. Comparison of methods for estimating mixed stock fishery composition. Can. J. Fish. Aquat. Sci. 47: 2235-2241.

Mundy, P. R. 1985. Harvest control systems for commercial marine fisheries management; theory and practice. In Fisheries Dynamics, Harvest Management and Sampling, Washington Sea Grant Technical Report 85-1. Edited by Mundy, P. R., Quinn, T. J., and Deriso, R. B. University of Washington, Seattle, Washington.

Mundy, P. R., English, K. K, Gazey, W. J., and Tarbox, K. E. 1993. Evaluation of the harvest management strategies applied to sockeye salmon populations of Upper Cook Inlet, Alaska, using run reconstruction analysis. In Proceedings of the International Symposium on Management Strategies for Exploited Fish Populations. Edited by Kruse, G., Eggers, D. M, Marasco, F. J., Pautzke, C., and Quinn II, T. J. Alaska Sea Grant College Program, Fairbanks, AK. pp. 107-139.

Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70: 3321-3323.

Pella, J. J., Masuda, M., and Nelson, S. 1996. Search algorithms for computing stock composition of a mixture from traits of individuals by maximum likelihood. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-61.

Pella, J. J., and Milner, G. B. 1987. Use of genetic marks in stock composition analysis. In Population Genetics and Fishery Management. Edited by Ryman, N., and Utter, F.

Washington Sea Grant, Univ. of Washington Press, Seattle. pp. 247-276.
Quinn, T. P. 1985. Homing and the evolution of sockeye salmon (Oncorhynchus nerka). Contrib. Mar. Sci. 27: 356-366.

Quinn, T. P, Wood, C. C., Margolis, L., Riddell, B. E., and Hyatt, K. D. 1987. Homing in wild sockeye salmon (Oncorhynchus nerka) populations as inferred from differences in parasite prevalence and allozyme allele frequencies. Can. J. Fish. Aquat. Sci. 44: 19631971.

Ridgway, G. J., Sherburne, S. W., and Lewis, R. D. 1970. Polymorphisms in the esterases of Atlantic herring. Trans. Am. Fish. Soc. 99: 147-151.

Rigby, P., McConnaughey, J., and Savikko, H. 1991. Alaska commercial salmon catches, 1878-1991. Regional Information Report No. 5J91-16, Alaska Dept. of Fish and Game, Juneau, AK.

Ruesch, P. H., and Fox, J. 1994. Upper Cook Inlet commercial fisheries annual management report, 1993. Regional Information Report No. 2A94-22, Alaska Department of Fish and Game, 333 Raspberry Road, Anchorage, AK, 61 pp.

Saitou, N., and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.

Schmidt, D. C., Tarbox, K. E., Kyle, G. B., and Carlson, S. R. 1995. Sockeye salmon overescapement: 1993 annual report on Kenai River and Kodiak investigations. Exxon Valdez Oil Spill Restoration Project 93002. Alaska Department of Fish and Game Regional Information Report 5J95-15. Juneau, Alaska. 45p.

Seeb, J. E., Seeb, L. W., and Utter, F. M. 1986. Use of genetic marks to assess stock
dynamics and management programs for chum salmon. Trans Am. Fish. Soc. 115: 448-454.

Seeb, L. W., Seeb, J. E., and Gharrett, A. J. 1990. Genetic marking of fish populations. In Electrophoretic and isoelectric focusing techniques in fisheries management. Edited by Whitmore, D. H. CRC Press, Boca Raton, FL. pp. 223-239.

Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E., and Gentry, J. B. 1971. Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old field mouse (Peromyscus polionotus). Studies in Genetics VI. University of Texas Publication 7103: 49-90.

Shaklee, J. B., Allendorf, F. W., Morizot, D. C., and Whitt, G. S. 1990. Gene nomenclature for protein-coding loci in fish. Trans. Am. Fish. Soc. 119: 2-15.

Shaklee, J. B., and Phelps, S. R. 1990. Operation of a large-scale, multiagency program for genetic stock identification. Amer. Fish. Soc. 7: 817-830.

Utter, F. M., Aebersold, P., Helle, J., and Winans, G. 1984. Genetic characterization of populations in the southeastern range of sockeye salmon. In Proceedings of the Olympic Wild Fish Conference. Edited by Walton, J. M, and Houston, D. B. pp. 1731.

Utter, F. M, Seeb, J. E., and Seeb, L. W. 1993. Complementary uses of ecological and biochemical genetic data in identifying and conserving salmon populations. Fisheries Research 18: 59-76.

Varnavskaya, N. V., Wood, C. C., Everett, R. J., Wilmot, R. L., Varnavsky, V. S., Midanaya, V. V., and Quinn, T. P. 1994. Genetic differentiation of subpopulations of sockeye
salmon (Oncorhynchus nerka) within lakes of Alaska, British Columbia, and Kamchatka, Russia. Can J. Fish. Aquat. Sci. 51: 147-157.

Waltemeyer, D. L., Tarbox, K. E., and Brannian, L. K. 1993. Presence of the parasite Philonema oncorhynchic in sockeye salmon returning to Upper Cook Inlet, Alaska in 1991. Regional Information Report No. 2A93-24, Alaska Department of Fish and Game, Anchorage, AK, 23pp.

Waltemeyer, D. L., Bue, B. G., and Tarbox, K. E. In Press. Evaluation of scale pattern analysis for Upper Cook Inlet sockeye salmon stocks. Alaska Fishery Research Bulletin.

Walters, C. J. 1975. Optimal harvest strategies for salmon in relation to environmental variability and uncertain production parameters. Can. J. Fish. Aquat Sci. 32: 17771784.

Waples, R. S. 1990. Temporal changes of allele frequency in Pacific salmon - Implications for mixed-stock fishery analysis. Can. J. Fish. Aquat. Sci. 47: 968-976.

Weir, B. S. 1990. Genetic data analysis. Sinauer Associates, Inc. Sunderland, MA.
White, B. A. 1996. Genetic stock identification of Fraser River pink salmon: methodology and management application. Pacific Salmon Comm. Tech. Rep. No. 7: 44 p.

White, B. A., and Shaklee, J. B. 1991. Need for replicated electrophoretic analyses in multiagency genetic stock identification (GSI) programs: examples from a pink salmon (Oncorhynchus gorbuscha) GSI fisheries study. Can. J. Fish. Aquat. Sci. 48: 13961407.

Wilmot, R. L., and Burger, C. V. 1985. Genetic differences among populations of Alaskan
sockeye salmon. Trans. Am. Fish. Soc. 114: 236-243.
Wood, C. C., McKinnell, S., Mulligan, T. J., and Fournier, D. A. 1987. Stock identification with the maximum-likelihood mixture model: sensitivity analysis and application to complex problems. Can. J. Fish. Aquat. Sci. 44: 866-881.

Wood, C. C., Riddell, B. E., Rutherford, D. T., and Withler, R. E. 1994. Biochemical genetic survey of sockeye salmon (Oncorhynchus nerka) in Canada. Can. J. Fish. Aquat. Sci.

51: 114-131.
Wood, C. C., Rutherford, D. T., and Mckinnell, S. 1989. Identification of sockeye salmon (Oncorhynchus nerka) stocks in mixed-stock fisheries in British Columbia and Southeast Alaska using biological markers. Can J. Fish. Aquat. Sci. 46: 2108-2120.

Table 1. Sockeye salmon populations sampled for genetic studies. All populations originate from Upper Cook Inlet, 1992-1995.

Table 1. Continued.

	Map \# and Location	Sample Date	N
8	Moose Creek	$7 / 27 / 93$	100
		$7 / 13 / 94$	100
	Susitna River (Yentna Drainages)		
9	Chelatna Lake	$8 / 20 / 92$	100
		$8 / 02 / 93$	100
10	Yentna River West Fork (Unnamed slough)	$9 / 08 / 92$	100
		$9 / 08 / 93$	100
11	Hewitt/Whiskey Lakes	$8 / 24 / 92$	50
		$9 / 03 / 93$	
12	Shell Lake (Skwentna R.)	$8 / 26 / 92$	100
		$9 / 01 / 93$	100
13	Trinity/Movie Lakes	$8 / 25 / 92$	100
		$9 / 03 / 93$	100
14	Judd Lake (Talachulitna R.)	$8 / 24 / 92$	100
		$8 / 24 / 93$	100
	Susitna River (Mainstem Drainages)		
15	Byers Lake	$8 / 23 / 93$	100
16	Stephan Lake (Talkeetna R.)	$9 / 08 / 93$	100
		$8 / 19 / 94$	25
17	Larson Lake (Talkeetna R.)	$8 / 20 / 92$	100
		$8 / 31 / 93$	100
18	Birch Creek	$8 / 19 / 93$	67
19	Red Shirt Lake	$9 / 15 / 93$	34
20	Slough \# 11 (Susitna R.)	$9 / 06 / 95$	50
		$9 / 01 / 92$	100
	Western Cook Inlet Drainages	$9 / 25 / 93$	100
21	Coal Creek West Fork (Beluga R.)	$9 / 989$	100
		50	

Table 1. Continued.

	Map \# and Location	Sample Date	N
23	McArthur River (Chakachatna R.)	8/18/93	100
24	Wolverine Creek (Big R.)	7/03/93	100
25	Crescent Lake		
	Site 1 (South Shore)	8/14/94	50
		8/23/95	50
	Site 2 (near outlet)	8/14/94	50
		8/23/95	50
	Site 3	8/23/95	50
26	Packers Lake (Kalgin Island)	7/16/92	100
		7/26/93	100
	Kasilof River Drainage		
27	Bear Creek	8/12/92	100
		8/03/93	100
28	Moose Creek	8/10/92	100
		8/03/93	100
29	Glacier Flat Creek	8/11/92	100
		8/02/93	100
		8/04/94	100
30	Nikolai Creek	7/29/92	100
		7/27/93	100
31	Tustumena Lake (lake spawners)		
	Site 1 (between Glacier Flat and Crystal Ck)	8/31/94	50
	Site 2 (mouth of Crystal Creek)	9/01/94	50
32	Seepage Creek	8/25/94	100
	Northeastern Cook Inlet Drainages		
33	Bishop Creek (Stream 602)	8/23/93	100
34	Daniels Lake (Bishop Ck. Drainage)	9/02/92	100
		8/20/93	100
35	Nancy Lake (Little Susitna R.)	8/26/93	100
36	Cottonwood Lake (Knik Arm)	8/18/93	100

Table 1. Continued.

Map \# and Location	Sample Date	N
37 Fish Creek	$8 / 01 / 92$	100
	$8 / 16 / 93$	100
	$8 / 15 / 94$	100
Inriver Composite Samples		
Kenai River (fish wheel site, river mile 19)		
1992-1	$7 / 13 / 92$	200
$1994-1$	$7 / 08-7 / 14 / 94$	88
$1994-2$	$7 / 17-7 / 18 / 94$	200
$1994-3$	$7 / 31-8 / 01 / 94$	200
$1994-4$	$8 / 09-8 / 11 / 94$	200
$1995-1$	$7 / 19-7 / 21 / 95$	300
$1995-2$	$7 / 26 / 95$	300
$1995-3$	$8 / 02-8 / 05 / 95$	300
Kasilof River (fish wheel site, river mile 7)		
$1992-1$	$7 / 02-7 / 03 / 92$	200
$1992-2$	$7 / 22-7 / 23 / 92$	200
$1994-1$	$7 / 08-7 / 10 / 94$	200
$1994-2$	$7 / 17 / 94$	200
$1994-3$	$8 / 01-8 / 03 / 94$	98
Susitna River Mainstem (fish wheel, river mile 80$)$	$7 / 26 / 92$	200
	$8 / 04 / 92$	114
Yentna River (fish wheel site, river mile 4)		
$1992-1$	$7 / 16 / 92$	200
$1992-2$	$7 / 24 / 92$	200
1994	$7 / 25-26 / 94$	200
Commercial Fishery Sampling	$7 / 12 / 93$	400
Drift gillnet fishery 1992	$7 / 9 / 93$	283
Drift gillnet fishery 1993	$7 / 08 / 94$	350
Drift gillnet fishery 1994	$7 / 92$	200
		200

Table 1. Continued.

Map \# and Location	Sample Date	N
Drift gillnet fishery 1995	$7 / 04 / 95$	300
	$7 / 10 / 95$	399
	$7 / 17 / 95$	400
	$7 / 24 / 95$	400
Eastside set gillnet fishery 1995	$7 / 31 / 95$	300
	$7 / 07 / 95$	400
	$7 / 20 / 95$	400

Table 2. Enzymes or proteins screened in Cook Inlet sockeye salmon. Enzyme nomenclature follows Shaklee et al. (1990), and locus abbreviations are given.

Enzyme or Protein	Enzyme	Locus	Tissue	Buffer
	Number			
Aspartate aminotransferase				

Table 2. Continued.

Enzyme or Protein	Enzyme Number	Locus	Tissue	Buffer ${ }^{1}$
Glycerol-3-phosphate dehydrogenase	1.1.1.8	GAPDH-5*	Eye	ACE 7.0
		G3PDH-1,2*	Muscle	ACN 7.0
		G3PDH-3*	Heart	ACN 7.0
Glucose-6-phosphate isomerase	5.3.1.9	G3PDH-4*	Heart	ACN 7.0
		GPI-B1,2*	Muscle	TBCLE
		GPI-A*	Muscle	TBCLE
Glutathione reductase	1.6.4.2	$G R^{*}$	Eye	TBCL
Isocitrate dehydrogenase (NADP+)	1.1.1.42	mIDHP-1*	Heart	ACN 7.0
		mIDHP-2*	Heart	ACN 7.0
		sIDHP-1*	Liver	ACE 7.0
		sIDHP-2*	Liver	ACE 7.0
L-Lactate dehydrogenase	1.1.1.27	LDH-Al*	Muscle	ACN 7.0
		LDH-A2*	Muscle	ACN 7.0
		LDH-B1*	Muscle	TBCLE
		LDH-B2*	Liver	TBE
		LDH-C*	Eye	KG
α Mannosidase	3.2.1.24	$\alpha M A N^{*}$	Liver	TC4
Malate dehydrogenase	1.1.1.37	sMDH-A $1,2^{*}$	Heart	ACN 7.0
		sMDH-B1,2*	Heart	ACN 7.0
		mMDH-1*	Heart	ACN 7.0
		mMDH-2*	Muscle	ACN 7.0
		mMDH-3*	Muscle	ACN 7.0
Malic enzyme (NADP+)	1.1.1.40	sMEP-1*	Liver	TC4
		mMEP-1*	Muscle	ACN 7.0
Mannose-6-phosphate isomerase	5.3.1.8	MPI*	Liver	TBE
Dipeptidase	3.4.--	PEPA*	Muscle	TBCLE

Table 2. Continued.

Enzyme or Protein	Enzyme Number	Locus	Tissue	Buffer ${ }^{1}$
Tripeptide aminopeptidase	3.4.-.-	PEPB-1*	Heart	TBE
Peptidase-C	3.4.-.-	PEPC*	Eye	KG
Proline dipeptidase	3.4.13.9	PEPD-1*	Heart	TBE
Peptidase-LT	3.4.-.-	PEPLT*	Muscle	TBCLE
Phosphogluconate dehydrogenase	1.1.1.44	PGDH*	Liver	ACE 7.0
Phosphoglucomutase	5.4.2.2	PGM-1*	Heart	ACE 7.2
		PGM-2*	Muscle	TBCLE
Superoxide dismutase	1.15.1.1	sSOD-1*	Liver	TBE
Triose-phosphate isomerase	5.3.1.1	TPI-1,2*	Eye	KG
		TPI-3*	Eye	KG
		TPI-4*	Eye	KG

${ }^{1}$ Buffer system abbreviations and descriptions are : 1) ACE 7.0 or ACE 7.2; N-(3-aminopropyl)-morpholine, citrate (pH 7.0 or 7.2) with EDTA (Clayton and Tretiak 1972); 2) ACN 7.0; N -(3-aminopropyl)-morpholine, citrate (pH 7.0) with NAD (Clayton and Tretiak 1972); 3) KG; Tris, glycine HCl (pH 8.5 ; tray concentration modified to 0.075 M Tris; Holmes and Masters 1970); 4) TBCL; Tris, borate, citrate, LiOH (pH 8.2; Ridgway et al. 1970); 5) TBCLE; Tris, borate, citrate, LiOH with EDTA (pH 8.2; Selander et al. 1971); 6) TBE; Tris, borate, EDTA (pH 8.7; Boyer et al. 1963); and 7) TC4; Tris citrate, NaOH (pH 5.9; Selander et al. 1971).
${ }^{2} H A G H$ (E.C. 3.1.2.6) and $F D H$ (Formalin dehydrogenase, E.C. 1.2.1.1) appear to be the same locus.

Table 3. Hierarchical log-likelihood heterogeneity analysis of Upper Cook Inlet sockeye salmon populations

Table 3. Continued

Populations	DF	CK-A2	DF	CK-B	DF	FDH	DF	GAPDH-2	DF	G3PDH-1,2	DF	G3PDH-4	DF	GPI-BI, 2	DF	GPI-A
Among regions	6	11.21	6	9.14	6	3.84	12	70.65 **	18	22.11	6	78.98 **	12	372.77 **	12	$50.23{ }^{\text {** }}$
Within regions	77	41.09	77	17.28	77	10.68	154	133.46	231	50.73	77	17.80	154	89.94	154	66.59
Kenai River	30	36.35	30	6.75	30	10.68	60	87.74 *	90	44.42	30	0.00	60	33.80	60	48.86
Among nursery lakes	4	4.75	4	4.56	4	1.30	8	50.81 **	12	13.44	4	0.00	8	7.64	8	24.23 **
Within nursery lakes	26	31.60	26	2.19	26	9.38	52	36.93	78	30.98	26	0.00	52	26.16	52	24.63
Upper Russian Lake	2	0.00	2	2.19	2	0.00	4	2.21	6	0.00	2	0.00	4	0.00	4	0.00
Kenai / Skilak Lakes	21	31.60	21	0.00	21	9.38	42	33.37	63	30.17	21	0.00	42	24.42	42	24.43
Tern Lake	1	0.00	1	0.00	1	0.00	2	0.00	3	0.81	1	0.00	2	0.00	2	0.00
Hidden Lake	1	0.00	1	0.00	1	0.00	2	1.35	3	0.00	1	0.00	2	0.34	2	0.20
Trail Lake (Moose Ck.)	1	0.00	1	0.00	1	0.00	2	0.00	3	0.00	1	0.00	2	1.40	2	0.00
Yentna River	11	0.00	11	0.00	11	0.00	22	0.00	33	0.00	11	0.00	22	0.00	22	0.00
Among nursery lakes	5	0.00	5	0.00	5	0.00	10	0.00	15	0.00	5	0.00	10	0.00	10	0.00
Within nursery lakes	6	0.00	6	0.00	6	0.00	12	0.00	18	0.00	6	0.00	12	0.00	12	0.00
Chelatna Lake	1	0.00	1	0.00	1	0.00	2	0.00	3	0.00	1	0.00	2	0.00	2	0.00
Yentna River, west fork	1	0.00	1	0.00	1	0.00	2	0.00	3	0.00	1	0.00	2	0.00	2	0.00
Hewitt / Whiskey Lakes	1	0.00	1	0.00	1	0.00	2	0.00	3	0.00	1	0.00	2	0.00	2	0.00
Shell Lake	1	0.00	1	0.00	1	0.00	2	0.00	3	0.00	1	0.00	2	0.00	2	0.00
Trinity / Movie Lakes	1	0.00	1	0.00	1	0.00	2	0.00	3	0.00	1	0.00	2	0.00	2	0.00
Judd Lake	1	0.00	1	0.00	1	0.00	2	0.00	3	0.00	1	0.00	2	0.00	2	0.00
Susitna River	7	0.00	7	0.00	7	0.00	14	37.41 **	21	0.00	7	0.00	14	7.01	14	0.00
Among nursery lakes	5	0.00	5	0.00	5	0.00	10	37.24 **	15	0.00	5	0.00	10	5.62	10	0.00
Within nursery lakes	2	0.00	2	0.00	2	0.00	4	0.17	6	0.00	2	0.00	4	1.39	4	0.00
Stephan Lake	1	0.00	1	0.00	1	0.00	2	0.17	3	0.00	1	0.00	2	0.00	2	0.00
Larson Lake	1	0.00	1	0.00	1	0.00	2	0.00	3	0.00	1	0.00	2	1.39	2	0.00
Western Cook Inlet	12	0.00	12	0.00	12	0.00	24	3.53	36	6.31	12	0.00	24	4.96	24	0.00
Among nursery lakes	5	0.00	5	0.00	5	0.00	10	1.93	15	1.93	5	0.00	10	4.96	10	0.00
Within nursery lakes	7	0.00	7	0.00	7	0.00	14	1.60	21	4.38	7	0.00	14	0.00	14	0.00
Crescent Lake	5	0.00	5	0.00	5	0.00	10	1.60	15	4.38	5	0.00	10	0.00	10	0.00
Coal Creek	1	0.00	1	0.00	1	0.00	2	0.00	3	0.00	1	0.00	2	0.00	2	0.00
Chilligan River	1	0.00	1	0.00	1	0.00	2	0.00	3	0.00	1	0.00	2	0.00	2	0.00
Kasilof River	11	4.74	11	10.53	11	0.00	22	4.78	33	0.00	11	11.40	22	40.97 **	22	0.00
Northeast Cook Inlet	2	0.00	2	0.00	2	0.00	4	0.00	6	0.00	2	0.00	4	0.00	4	17.73 **
Among nursery lakes	1	0.00	1	0.00	1	0.00	2	0.00	3	0.00	1	0.00	2	0.00	2	6.48 *
Within nursery lakes	1	0.00	1	0.00	1	0.00	2	0.00	3	0.00	1	0.00	2	0.00	2	11.25**
Daniels Lake	1	0.00	1	0.00	1	0.00	2	0.00	3	0.00	1	0.00	2	0.00	2	11.25 **
Knik Arm	4	0.00	4	0.00	4	0.00	8	0.00	12	0.00	4	6.40	8	3.20	8	0.00
Among nursery lakes	2	0.00	2	0.00	2	0.00	4	0.00	6	0.00	2	2.06	4	1.01	4	0.00
Within nursery lakes	2	0.00	2	0.00	2	0.00	4	0.00	6	0.00	2	4.34	4	2.19	4	0.00
Fish Creek	2	0.00	2	0.00	2	0.00	4	0.00	6	0.00	2	4.34	4	2.19	4	0.00

Table 3. Continued

Populations		mIDHP-I	DF	SIDHP-1	DF	SIDHP-2	DF	LDH-A2	DF	LDH-B2	DF	MDH-Al, 2	DF	MDH-B1, 2	DF	mMEP-1
Among regions	12	$63.27^{* *}$	24	231.52 **	6	26.83 **	6	10.37	12	341.70**	12	121.93 **	18	167.62 **	12	68.91 *
Within regions	154	42.37	308	220.76	77	71.82	77	37.03	154	710.17 **	154	141.90	231	216.73	154	74.54
Kenai River	60	5.36	120	80.32	30	71.82 **	30	6.84	60	373.01 **	60	107.13 **	90	32.23	60	5.31
Among nursery lakes	8	0.68	16	18.93	4	63.72 **	4	0.68	8	309.90 **	8	56.04 **	12	5.53	8	0.69
Within nursery lakes	52	4.68	104	61.39	26	8.10	26	6.16	52	63.11	52	51.09	78	26.70	52	4.62
Upper Russian Lake	4	0.00	8	0.00	2	0.00	2	0.00	4	$26.14{ }^{\text {** }}$	4	0.00	6	1.62	4	0.00
Kenai / Skilak Lakes	42	4.68	84	58.62	21	6.07	21	6.16	42	35.70	42	51.09	63	25.08	42	4.62
Tern Lake	2	0.00	4	0.00	1	0.00	1	0.00	2	0.30	2	0.00	3	0.00	2	0.00
Hidden Lake	2	0.00	4	0.00	1	0.00	1	0.00	2	0.85	2	0.00	3	0.00	2	0.00
Trail Lake (Moose Ck.)	2	0.00	4	2.77	1	2.03	1	0.00	2	0.12	2	0.00	3	0.00	2	0.00
Yentna River	22	0.00	44	0.00	11	0.00	11	0.00	22	99.25 **	22	0.00	33	0.00	22	0.00
Among nursery lakes	10	0.00	20	0.00	5	0.00	5	0.00	10	88.95 **	10	0.00	15	0.00	10	0.00
Within nursery lakes	12	0.00	24	0.00	6	0.00	6	0.00	12	10.30	12	0.00	18	0.00	12	0.00
Chelatna Lake	2	0.00	4	0.00	1	0.00	1	0.00	2	0.38	2	0.00	3	0.00	2	0.00
Yentna River, west fork	2	0.00	4	0.00	1	0.00	1	0.00	2	0.68	2	0.00	3	0.00	2	0.00
Hewitt / Whiskey Lakes	2	0.00	4	0.00	1	0.00	1	0.00	2	2.83	2	0.00	3	0.00	2	0.00
Shell Lake	2	0.00	4	0.00	1	0.00	1	0.00	2	0.00	2	0.00	3	0.00	2	0.00
Trinity / Movie Lakes	2	0.00	4	0.00	1	0.00	1	0.00	2	4.93	2	0.00	3	0.00	2	0.00
Judd Lake	2	0.00	4	0.00	1	0.00	1	0.00	2	1.48	2	0.00	3	0.00	2	0.00
Susitna River	14	0.00	28	97.06 **	7	0.00	7	0.00	14	25.68 *	14	0.00	21	0.00	14	0.00
Among nursery lakes	10	0.00	20	97.04 **	5	0.00	5	0.00	10	21.12 *	10	0.00	15	0.00	10	0.00
Within nursery lakes	4	0.00	8	0.02	2	0.00	2	0.00	4	4.56	4	0.00	6	0.00	4	0.00
Stephan Lake	2	0.00	4	0.02	1	0.00	1	0.00	2	4.37	2	0.00	3	0.00	2	0.00
Larson Lake	2	0.00	4	0.00	1	0.00	1	0.00	2	0.19	2	0.00	3	0.00	2	0.00
Western Cook Inlet	24	11.04	48	21.16	12	0.00	12	25.41*	24	114.49**	24	0.00	36	177.69 **	24	$64.45 *$
Among nursery lakes	10	8.28	20	16.77	5	0.00		16.52 **	10	94.76 **	10	0.00	15	176.70 **	10	55.63 **
Within nursery lakes	14	2.76	28	4.39	7	0.00	7	8.89	14	19.73	14	0.00	21	0.99	14	8.82
Crescent Lake	10	0.00	20	4.39	5	0.00	5	0.00	10	14.27	10	0.00	15	0.00	10	8.82
Coal Creek	2	2.76	4	0.00	1	0.00	1	0.00	2	3.00	2	0.00	3	0.99	2	0.00
Chilligan River	2	0.00	4	0.00	1	0.00	1	8.89 **	2	2.46	2	0.00	3	0.00	2	0.00
Kasilof River	22	25.97	44	9.17	11	0.00	11	4.78	22	11.91	22	12.15	33	6.81	22	4.78
Northeast Cook Inlet	4	0.00	8	0.00	2	0.00	2	0.00	4	0.00	4	0.00	6	0.00	4	0.00
Among nursery lakes	2	0.00	4	0.00	1	0.00	1	0.00	2	0.00	2	0.00	3	0.00	2	0.00
Within nursery lakes	2	0.00	4	0.00	1	0.00	1	0.00	2	0.00	2	0.00	3	0.00	2	0.00
Daniels Lake	2	0.00	4	0.00	1	0.00	1	0.00	2	0.00	2	0.00	3	0.00	2	0.00
Knik Arm	8	0.00	16	13.05	4	0.00	4	0.00	8	85.83 **	8	22.62 **	12	0.00	8	0.00
Among nursery lakes		0.00	8	12.47	2	0.00	2	0.00	4	74.76 **	4	7.16	6	0.00	4	0.00
Within nursery lakes	4	0.00	8	0.58	2	0.00	2	0.00	4	11.07 *	4	15.46 **	6	0.00	4	0.00
Fish Creek	4	0.00	8	0.58	2	0.00	2	0.00	4	11.07 *	4	15.46**	6	0.00	4	0.00

Table 3. Continued

Populations	DF	MPI	DF	PEPA	DF	PEPB-I	DF	PEPC	DF	PEPD-1	DF	PEPLT	DF	PGDH	DF	PGM-1
Among regions	6	28.92 **	12	$95.31{ }^{\text {** }}$	12	184.06 **	6	437.78 **	12	$62.95{ }^{\text {** }}$	12	1061.90 **	6	7.49	12	$515.14{ }^{* *}$
Within regions	77	36.90	154	116.55	154	315.91 **	77	707.09 **	154	93.79	154	402.88 **	77	7.49	154	1522.25**
Kenai River	30	36.90	60	100.65 **	60	99.73 **	30	53.90 **	60	63.37	60	$252.75{ }^{* *}$	30	0.00	60	663.67 **
Among nursery lakes	4	10.30 *	8	36.56 **	8	56.10 **	4	9.65 *	8	25.96 **	8	159.60 **	4	0.00	8	584.80 **
Within nursery lakes	26	26.60	52	64.09	52	43.63	26	44.25*	52	37.41	52	93.15 **	26	0.00	52	78.87 **
Upper Russian Lake	2	0.00	4	0.00	4	0.00	2	0.00	4	0.00	4	0.00	2	0.00	4	1.62
Kenai / Skilak Lakes	21	26.60	42	63.28 *	42	41.39	21	37.82*	42	37.41	42	85.30 **	21	0.00	42	72.33 **
Tern Lake	1	0.00	2	0.81	2	0.92	1	2.19	2	0.00	2	5.80	1	0.00	2	1.92
Hidden Lake	1	0.00	2	0.00	2	0.00	1	0.00	2	0.00	2	0.71	1	0.00	2	0.94
Trail Lake (Moose Ck.)	1	0.00	2	0.00	2	1.32	1	4.24 *	2	0.00	2	1.34	1	0.00	2	2.06
Yentna River	11	0.00	22	0.00	22	216.18 **	11	398.64**	22	9.60	22	35.85 *	11	0.00	22	233.80 **
Among nursery lakes	5	0.00	10	0.00	10	215.70 **	5	385.50 **	10	6.82	10	33.38 **	5	0.00	10	228.90 **
Within nursery lakes	6	0.00	12	0.00	12	0.48	6	13.14 *	12	2.78	12	2.47	6	0.00	12	4.90
Chelatna Lake	1	0.00	2	0.00	2	0.00	1	0.00	2	0.00	2	0.00	1	0.00	2	0.66
Yentna River, west fork	1	0.00	2	0.00	2	0.00	1	2.76	2	2.78	2	2.47	1	0.00	2	0.01
Hewitt / Whiskey Lakes	1	0.00	2	0.00	2	0.00	1	0.48	2	0.00	2	0.00	1	0.00	2	0.90
Shell Lake	,	0.00	2	0.00	2	0.00	1	0.00	2	0.00	2	0.00	1	0.00	2	2.85
Trinity / Movie Lakes	1	0.00	2	0.00	2	0.48	1	9.90 **	2	0.00	2	0.00	1	0.00	2	0.06
Judd Lake	1	0.00	2	0.00	2	0.00	1	0.00	2	0.00	2	0.00	1	0.00	2	0.42
Susitna River	7	0.00	14	0.00	14	0.00	7	101.83**	14	4.89	14	17.37	7	0.00	14	219.11 **
Among nursery lakes	5	0.00	10	0.00	10	0.00	5	100.40 **	10	4.89	10	17.37	5	0.00	10	213.50 **
Within nursery lakes	2	0.00	4	0.00	4	0.00	2	1.43	4	0.00	4	0.00	2	0.00	4	5.61
Stephan Lake	1	0.00	2	0.00	2	0.00	1	0.05	2	0.00	2	0.00	1	0.00	2	0.00
Larson Lake	1	0.00	2	0.00	2	0.00	1	1.38	2	0.00	2	0.00	1	0.00	2	5.61
Western Cook Inlet	12	0.00	24	4.94	24	0.00	12	91.84 **	24	4.93	24	4.90	12	7.49	24	350.53 **
Among nursery lakes	5	0.00	10	4.94	10	0.00	5	79.19 **	10	3.56	10	3.52	5	7.49	10	341.90 *
Within nursery lakes	7	0.00	14	0.00	14	0.00	7	12.65	14	1.37	14	1.38	7	0.00	14	8.63
Crescent Lake	5	0.00	10	0.00	10	0.00	5	6.04	10	0.00	10	0.00	5	0.00	10	1.45
Coal Creek	1	0.00	2	0.00	2	0.00	1	0.00	2	1.37	2	1.38	1	0.00	2	3.49
Chilligan River	1	0.00	2	0.00	2	0.00	1	6.61 *	2	0.00	2	0.00	1	0.00	2	3.69
Kasilof River	11	0.00	22	10.96	22	0.00	11	41.75**	22	7.80	22	0.00	11	0.00	22	11.60
Northeast Cook Inlet	2	0.00	4		4	0.00	2	0.00	4	0.00	4	2.34	2	0.00	4	0.99
Among nursery lakes	1	0.00	2	0.00	2	0.00	1	0.00	2	0.00	2	2.29	1	0.00	2	0.13
Within nursery lakes	1	0.00	2	0.00	2	0.00	1	0.00	2	0.00	2	0.05	1	0.00	2	0.86
Daniels Lake	1	0.00	2	0.00	2	0.00	1	0.00	2	0.00	2	0.05	1	0.00	2	0.86
Knik Arm	4	0.00	8	0.00	8	0.00	4	19.13 **	8	3.20	8	89.67 **	4	0.00	8	42.55 **
Among nursery lakes	2	0.00	4	0.00	4	0.00	2	13.02 **	4	1.02	4	89.21 **	2	0.00	4	40.58 **
Within nursery lakes	2	0.00	4	0.00	4	0.00	2	6.11 *	4	2.18	4	0.46	2	0.00	4	1.97
Fish Creek	2	0.00	4	0.00	4	0.00	2	6.11 *	4	2.18	4	0.46	2	0.00	4	1.97

Table 3. Continued

Populations	DF	PGM-2	DF	SSOD-1	DF	TPI-1,2	DF	TPI-3	DF	TPI-4	DF	Overall
Among regions	12	904.25**	6	3.74	12	30.02 **	6	63.45**	12	11.42		8186.30 **
Within regions	154	1270.81 **	77	4.93	154	31.03	77	82.87	154	28.21	4928	12067.73 **
Kenai River	60	279.10 **	30	0.00	60	0.00	30	13.69	60	23.14	1920	6477.84 **
Among nursery lakes	8	223.70 **	4	0.00	8	0.00	4	2.05	8	17.16*	256	5120.00 **
Within nursery lakes	52	55.40	26	0.00	52	0.00	26	11.64	52	5.98	1664	1357.84
Upper Russian Lake	4	5.05	2	0.00	4	0.00	2	0.00	4	0.00	128	104.94
Kenai / Skilak Lakes	42	43.39	21	0.00	42	0.00	21	11.64	42	1.60	1344	1186.74
Tern Lake	2	0.91	1	0.00	2	0.00	1	0.00	2	1.60	64	26.47
Hidden Lake	2	4.18	1	0.00	2	0.00	1	0.00	2	0.00	64	13.10
Trail Lake (Moose Ck.)	2	1.87	1	0.00	2	0.00	1	0.00	2	2.78	64	26.59
Yentna River	22	714.02**	11	0.00	22	0.00	11	0.00	22	0.00	704	2129.20 **
Among nursery lakes	10	705.70 **	5	0.00	10	0.00	5	0.00	10	0.00	320	2053.00 **
Within nursery lakes	12	8.32	6	0.00	12	0.00	6	0.00	12	0.00	384	76.20
Chelatna Lake	2	2.22	1	0.00	2	0.00	1	0.00	2	0.00	64	9.13
Yentna River, west fork	2	0.05	1	0.00	2	0.00	1	0.00	2	0.00	64	9.27
Hewitt / Whiskey Lakes	2	0.02	1	0.00	2	0.00	1	0.00	2	0.00	64	13.56
Shell Lake	2	0.85	1	0.00	2	0.00	1	0.00	2	0.00	64	10.48
Trinity / Movie Lakes	2	0.11	1	0.00	2	0.00	1	0.00	2	0.00	64	16.95
Judd Lake	2	5.07	1	0.00	2	0.00	1	0.00	2	0.00	64	16.81
Susitna River	14	26.99 *	7	0.00	14	0.00	7	0.00	14	0.00	448	812.00 **
Among nursery lakes	10	26.77 **	5	0.00	10	0.00	5	0.00	10	0.00	320	779.10 **
Within nursery lakes	4	0.22	2	0.00	4	0.00	2	0.00	4	0.00	128	32.90
Stephan Lake	2	0.18	1	0.00	2	0.00	1	0.00	2	0.00	64	16.36
Larson Lake	2	0.04	1	0.00	2	0.00	1	0.00	2	0.00	64	16.54
Western Cook Inlet	24	191.20 **	12	4.93	24	26.26	12	60.92 **	24	5.07	768	1786.55 **
Among nursery lakes	10	181.20 **	5	4.93	10	24.92 **	5	42.79 **	10	3.61	320	1605.00 **
Within nursery lakes	14	10.00	7	0.00	14	1.34	7	18.13*	14	1.46	448	181.55
Crescent Lake	10	7.12	5	0.00	10	0.00	5	18.13**	10	0.00	320	127.05
Coal Creek	2	2.48	1	0.00	2	1.34	1	0.00	2	1.46	64	30.68
Chilligan River	2	0.40	1	0.00	2	0.00	1	0.00	2	0.00	64	23.82
Kasilof River	22	10.60	11	0.00	22	4.77	11	8.26	22	0.00	704	310.36
Northeast Cook Inlet	4	4.65	2	0.00	4	0.00	2	0.00	4	0.00	128	128.54
Among nursery lakes	2	1.78	1	0.00	2	0.00	1	0.00	2	0.00	64	100.90 **
Within nursery lakes	2	2.87	1	0.00	2	0.00	1	0.00	2	0.00	64	27.64
Daniels Lake	2	2.87	1	0.00	2	0.00	1	0.00	2	0.00	64	27.64
Knik Arm	8	44.25 **	4	0.00	8	0.00	4	0.00	8	0.00	256	$423.24 * *$
Among nursery lakes	4	34.19 **	2	0.00	4	0.00	2	0.00	4	0.00	128	345.10 **
Within nursery lakes	4	10.06*	2	0.00	4	0.00	2	0.00	4	0.00	128	78.14
Fish Creek	4	10.06 *	2	0.00	4	0.00	2	0.00	4	0.00	128	78.14

* Test is significant at $\alpha=0.05$.
** Tost is significant at $\alpha=0.01$.

Table 4. Gene diversity analysis of Cook Inlet sockeye salmon.

Locus			Percent relative diversity			
	Absolute gene diversity			$\begin{gathered} \text { Among } \\ \text { sites } \\ \text { within } \\ \text { nurseries } \end{gathered}$	Among nuseries within regions	
	Total	Within sites	Within sites			Among regions
sAAT-3*	0.0007	0.0007	99.57	0.01	0.35	0.07
mAAT-1*	0.1706	0.1580	92.82	0.45	4.07	2.66
mAAT-2*	0.0281	0.0238	84.75	0.75	11.66	2.83
mAH-4*	0.0009	0.0008	99.23	0.00	0.70	0.07
$s A H^{*}$	0.0720	0.0299	41.55	0.14	51.09	7.22
ALAT*	0.5315	0.4869	91.60	0.35	5.22	2.83
CK-A2*	0.0008	0.0008	98.78	1.11	0.05	0.06
CK-B*	0.0004	0.0004	99.40	0.51	0.03	0.06
$F D H^{*}$	0.0002	0.0002	99.79	0.18	0.01	0.02
GAPDH-	0.0049	0.0048	97.55	0.19	1.94	0.32
G3PDH-	0.0023	0.0023	98.95	0.46	0.01	0.57
GPI-A*	0.0021	0.0021	98.48	0.42	0.69	0.41
mIDHP-	0.0018	0.0018	99.13	0.48	0.09	0.30
sIDHP-1*	0.0112	0.0105	93.72	0.21	5.25	0.82
sIDHP-2*	0.0015	0.0014	97.04	0.02	2.79	0.16
LDH-A2*	0.0007	0.0007	98.97	0.05	0.89	0.10
LDH-B2*	0.1755	0.1588	90.46	1.00	5.93	2.61
mMEP-1*	0.0030	0.0029	96.38	0.39	2.58	0.66
MPI*	0.0019	0.0019	99.18	0.47	0.15	0.20
PEPA*	0.0061	0.0060	98.73	0.60	0.29	0.38
PEPB-1*	0.0099	0.0089	89.49	0.16	9.00	1.35
PEPC*	0.0588	0.0523	88.86	0.11	8.17	2.86
PEPD-1*	0.0072	0.0070	98.49	0.54	0.47	0.49
PEPLT*	0.0465	0.0398	85.62	0.09	2.48	11.81
PGDH*	0.0002	0.0002	99.46	0.00	0.48	0.06
PGM-2*	0.4033	0.3494	86.63	0.21	6.86	6.30
SSOD-1*	0.0002	0.0002	99.51	0.00	0.44	0.05
TPI-3*	0.0042	0.0041	97.07	1.19	1.20	0.54
TPI-4*	0.0006	0.0006	99.49	0.00	0.47	0.04
Overall	1.5469	1.3573	87.74	0.38	7.80	4.08

Table 5. Results of simulated mixtures of Cook Inlet sockeye salmon from the adjusted 1995 baseline with 100 bootstrap resamplings and a simulated sample size of 400 . Standard deviations are given in parentheses; row totals equal 1.000 . Allocations to correct regions are in bold.

Region	Regional Allocation							
	Kenai	Kasilof	Yentna	Susitna	West Cook Inlet	NE Cook Inlet	Knik Arm	Unknown ${ }^{1}$
Kenai	$\begin{aligned} & 0.913 \\ & (0.049) \end{aligned}$	$\begin{aligned} & 0.011 \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.016 \\ & (0.021) \end{aligned}$	$\begin{aligned} & 0.021 \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.026 \\ & (0.029) \end{aligned}$	$\begin{aligned} & 0.001 \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.011 \\ & (0.022) \end{aligned}$	0.001
Kasilof	$\begin{aligned} & 0.025 \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.917 \\ & (0.042) \end{aligned}$	$\begin{aligned} & 0.011 \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.014 \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.028 \\ & (0.032) \end{aligned}$	$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.004 \\ & (0.008) \end{aligned}$	0.000
Yentna	$\begin{aligned} & 0.007 \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.002 \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.883 \\ & (0.065) \end{aligned}$	$\begin{aligned} & 0.060 \\ & (0.047) \end{aligned}$	$\begin{aligned} & 0.027 \\ & (0.034) \end{aligned}$	$\begin{aligned} & 0.002 \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.019 \\ & (0.027) \end{aligned}$	0.001
Susitna	$\begin{aligned} & 0.005 \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.012 \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.091 \\ & (0.063) \end{aligned}$	$\begin{aligned} & 0.773 \\ & (0.104) \end{aligned}$	$\begin{aligned} & 0.078 \\ & (0.069) \end{aligned}$	$\begin{aligned} & 0.003 \\ & (0.005) \end{aligned}$	$\begin{aligned} & 0.038 \\ & (0.048) \end{aligned}$	0.001
Yentna/Susitna	$\begin{aligned} & 0.008 \\ & (0.012) \end{aligned}$	$\begin{aligned} & 0.007 \\ & (0.015) \end{aligned}$		$\begin{gathered} 0.874 \\ (0.072) \end{gathered}$	$\begin{aligned} & 0.072 \\ & (0.066) \end{aligned}$	$\begin{aligned} & 0.001 \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.037 \\ & (0.049) \end{aligned}$	0.000
West Cook Inlet	$\begin{aligned} & 0.021 \\ & (0.022) \end{aligned}$	$\begin{aligned} & 0.013 \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.027 \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.053 \\ & (0.048) \end{aligned}$	$\begin{aligned} & 0.857 \\ & (0.066) \end{aligned}$	$\begin{aligned} & 0.000 \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.029 \\ & (0.042) \end{aligned}$	0.000
Northeastern Cook Inlet	$\begin{aligned} & 0.003 \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.002 \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.006 \\ & (0.002) \end{aligned}$	$\begin{aligned} & 0.004 \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.002 \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.988 \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.001 \\ & (0.003) \end{aligned}$	0.000
Knik Arm	$\begin{aligned} & 0.009 \\ & (0.016) \end{aligned}$	$\begin{aligned} & 0.003 \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.021 \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.046 \\ & (0.038) \end{aligned}$	$\begin{aligned} & 0.037 \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.003 \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.881 \\ & (0.059) \end{aligned}$	0.000

[^0]Table 6. Results of Cook Inlet Central District drift and set-net fishery mixed-stock analysis, 1992-1995.

Date	N	Kenai		Kasilof		Susitna/Yentna		W. Cook Inlet		NE. Cook Inlet		Knik Arm		Unknown ${ }^{\text { }}$	Total
		Estimate	SD												
$1992{ }^{2}$															
July 13, 1992	150	0.8819	0.0772	0.0000	0.0000	0.0964	0.0654	0.0217	0.0460	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
July 20, 1992	200	0.5643	0.0922	0.1038	0.0618	0.2093	0.0804	0.0691	0.0434	0.0115	0.0183	0.0419	0.0637	0.0000	1.0000
$1993{ }^{2}$															
July 12, 1993	337	0.5185	0.0706	0.0344	0.0378	0.1461	0.0623	0.1438	0.0515	0.0000	0.0000	0.1394	0.0399	0.0178	0.9999
July 16, 1993	278	0.8164	0.0835	0.0214	0.0551	0.0904	0.0600	0.0216	0.0189	0.0000	0.0000	0.0394	0.0354	0.0108	1.0000
1994															
July 15, 1994	344	0.5304	0.0644	0.0480	0.0588	0.2112	0.0679	0.0794	0.0820	0.0093	0.0145	0.1216	0.0375	0.0000	0.9999
$1995{ }^{3}$															
Drift gillnet Fishery															
July 3, 1995	298	0.1635	0.0523	0.4345	0.0755	0.1907	0.0791	0.0449	0.0422	0.0161	0.0139	0.1503	0.0417	0.0000	1.0000
July 10, 1995	390	0.3216	0.0484	0.2113	0.0617	0.2927	0.0691	0.0688	0.0669	0.0000	0.0000	0.1055	0.0307	0.0000	1.0000
July 17, 1995	394	0.4261	0.0537	0.2192	0.0611	0.0745	0.0488	0.1791	0.0629	0.0000	0.0000	0.1011	0.0270	0.0000	0.9999
July 24, 1995	390	0.5521	0.0675	0.0454	0.0389	0.2987	0.0594	0.0390	0.0465	0.0000	0.0000	0.0623	0.0212	0.0026	1.0000
July 31, 1995	298	0.8604	0.0612	0.0000	0.0000	0.0361	0.0397	0.0704	0.0636	0.0204	0.0117	0.0127	0.0241	0.0000	1.0001
Set gillnet Fishery															
July 7, 1995	389	0.1629	0.0557	0.7766	0.0606	0.0459	0.0479	0.0032	0.0179	0.0115	0.0111	0.0000	0.0000	0.0000	1.0000
July 20, 1995	297	0.9093	0.645	0.0164	0.0604	0.0341	0.0527	0.0330	0.0446	0.0000	0.0000	0.0072	0.0115	0.0000	1.0000

${ }^{1}$ Genotypes in this category have a probability of less than 1.0×10^{-10} of belonging to any population in the baseline.
${ }^{2}$ mAAT-2 and G3PDH-4 were not used in mixed-stock analysis.
${ }^{3}$ GPI-B1,2 was not used in mixed-stock analysis.

Table 7. Catch analysis for drift gillnet fisheries from Cook Inlet Central District that were sampled for sockeye salmon. Harvest, maximum likelihood estimates, catch estimates, and percent of Kenai River harvest are given.

Date	Drift gillnet harvest	Relative Contribution		Catch		Percent of Kenai R. harvest
		Estimate	SD	Estimate	SD	
3-Jul-95	48,490	0.1635	0.0523	7,928	2,536	2.1
10-Jul-95	225,621	0.3216	0.0484	72,560	10,920	18.1
17-Jul-95	462,625	0.4261	0.0537	197,125	24,843	49.3
24-Jul-95	133,462	0.5521	0.0675	73,684	9,009	18.4
31-Jul-95	56,522	0.8604	0.0612	48,632	3,459	12.2
Total	926,720			399,928		

Table 8. Results of inriver mixed-stock analyses for Cook Inlet 1992-1995.

Population	N	Kenai		Kasilof		Susitna/Yentna		W. Cook Inlet		NE Cook Inlet		Knik Arm		Unknown	Total
		Estimate	SD												
Kenai River															
July 13, 1992	199	0.8292	0.0602	0.0000	0.0000	0.0217	0.0357	0.1354	0.0518	0.0000	0.0000	0.0087	0.0121	0.0050	1.0000
July 10, 1994	87	0.6325	0.2099	0.0489	0.1391	0.1661	0.1723	0.1525	0.1452	0.0000	0.0000	0.0000	0.0001	0.0000	1.0000
July 22, 1994	197	0.8406	0.0874	0.0896	0.0696	0.0646	0.0615	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0051	0.9999
July 31, 1994	155	0.8339	0.0769	0.0000	0.0000	0.1567	0.0748	0.0000	0.0000	0.0077	0.0127	0.0016	0.0297	0.0000	0.9999
August 9, 1994	192	0.9308	0.0672	0.0339	0.0543	0.0234	0.0516	0.0084	0.0107	0.0000	0.0000	0.0034	0.0145	0.0000	0.9999
July 20, 1995	295	0.8885	0.0668	0.0000	0.0000	0.0493	0.0396	0.0622	0.0541	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
July 26, 1995	298	0.9109	0.0494	0.0345	0.0222	0.0184	0.0402	0.0141	0.0170	0.0000	0.0000	0.0154	0.0168	0.0067	1.0000
August 4, 1995	194	0.8632	0.0616	0.0000	0.0000	0.1357	0.0638	0.0000	0.0000	0.0000	0.0000	0.0010	0.0156	0.0000	0.9999
Susitna River															
Sunshine Sonar Site															
July 26, 1992	199	0.1282	0.0730	0.0000	0.0000	0.7500	0.1166	0.1168	0.1041	0.0000	0.0000	0.0000	0.0000	0.0050	1.0000
August 4, 1992	113	0.0355	0.0602	0.0000	0.0000	0.9226	0.0673	0.0101	0.0195	0.0000	0.0000	0.0052	0.0307	0.0265	0.9999
Yentna River															
July 15, 1992	196	0.0759	0.0490	0.0000	0.0000	0.8104	0.0675	0.0000	0.0000	0.0235	0.0250	0.0749	0.0400	0.0153	1.0000
July 24, 1992	200	0.0000	0.0000	0.0000	0.0000	0.9591	0.0499	0.0216	0.0538	0.0027	0.0177	0.0116	0.0312	0.0050	1.0000
July 25-26, 1994	199	0.0000	0.0000	0.0000	0.0000	0.9819	0.0288	0.0005	0.0006	0.0000	0.0000	0.0176	0.0288	0.0000	1.0000
Kasilof River															
July 2, 1992	196	0.0059	0.0091	0.9081	0.0717	0.0379	0.0427	0.0482	0.0631	0.0000	0.0000	0.0000	0.0000	0.0000	1.0001
July 22, 1992	199	0.0000	0.0000	0.8485	0.065	0.0191	0.0220	0.1320	0.0629	0.0000	0.0000	0.0004	0.0057	0.0000	1.0000
July 8-10, 1994	197	0.0913	0.0609	0.5484	0.1359	0.1013	0.0680	0.2589	0.1546	0.0000	0.0000	0.0000	0.0000	0.0000	0.9999
July 17, 1994	180	0.0323	030556	0.8199	0.0822	0.1387	0.0937	0.0091	0.0277	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
August 1-3, 1994	96	0.0471	0.0496	0.7999	0.1122	0.0823	0.0878	0.0000	0.0002	0.0000	0.0000	0.0707	0.0529	0.0000	1.0000

[^1]
List of Figures

Figure 1. Sampling locations for sockeye salmon originating from Upper Cook Inlet, 1992-1995 I-54
Figure 2. Neighboring-joining tree for Upper Cook Inlet sockeye salmon using Cavalli-Sforza and Edwards (1967) chord measure of genetic distance I-55
Figure 3. Estimated contributions to a simulated mixed-stock fishery in Cook Inlet with increasing contributions of Kenai River populations I-56
Figure 4. Relative contribution of Kenai River populations in the Cook Inlet Central District drift gillnet fisheries, 1992-1995, and the Eastside set gillnet fishery, 1995 I-57
Figure 5. Relative contributions of sockeye salmon to the Cook Inlet Central District drift gillnet fisheries in 1995 I-58
Figure 6. Estimated harvest and relative contribution of Kenai River sockeye salmon in the Cook Inlet Central District drift gillnet fisheries in 1995 I-59
Figure 7. Relative contributions of Russian River populations to admixtures taken at the Kenai River fish wheel, 1992, 1994, and 1995 I-60

Figure l. Sampling locations for sockeye salmon orıgınaring from Upper Cook Inlet, 1992-1995.

Russian River above/early

0.1

Figure 2. Neighboring-joining tree for Upper Cook Inlet sockeye salmon using Cavalli-Sforza and Edwards (1967) chord measure of genetic distance.

Estimated Contribution

Figure 3. Estimated contributions to a simulated mixed-stock fishery in Cook Inlet with increasing contributions of Kenai River populations. The solid line represents the true contributions, and boxes are the estimated contributions with standard error lines included.

Figure 4. Relative contribution of Kenai River populations in the Cook Inlet Central District drift gillnet fisheries, 1992-1995, and the Eastside set gillnet fisheiy, 1995.

Harvest of Kenai River fish

Figure 5. Relative contributions of sockeye salmon to the Cook Inlet Central District drift gillnet fisheries in 1995.

Relative contribution

Figure 6. Estimated harvest and relative contribution of Kenai River
sockeye salmon in the cook Inlet Central District drift
gillnet fisheries in 1995 .

Figure 7. Relative contributions of Russian River populations to admixtures taken at the Kenai River fish wheel, 1992, 1994, and 1995.

Appendix A.

Estimated allele frequencies for Upper Cook Inlet sockeye salmon populations.

Population	N	SAAT-1.2			N	sAAT-3		N	MAAT-1		N	mAAT-2		N	mAH-1,2		N	mA $\mathrm{H}-4$	
		100	77	122		100	117		-100	-83		. 100	-73		100	75		100	114
Kenai River																			
Russian River above/early	100	1.000	0.000	0.000	100	1.000	0.000	100	0.805	0.195	98	0.918	0.082	100	0.958	0.043	100	1.000	0.000
Russian River above/late	200	1.000	0.000	0.000	200	1.000	0.000	199	0.917	0.083	198	0.831	0.169	199	1.000	0.000	176	1.000	0.000
Russian River below	99	1.000	0.000	0.000	100	1.000	0.000	99	0.924	0.076	9	0.995	0.005	98	0.962	0.038	92	1.000	0.000
Prarmigan Creek	198	1.000	0.000	0.000	192	1.000	0.000	198	0.960	0.040	182	1.000	0.000	198	0.932	0.068	197	1.000	0.000
Tern Lake	150	1.000	0.000	0.000	150	1.000	0.000	150	0.970	0.030	150	0.987	0.013	150	0.978	0.022	150	0.990	0.010
Quarzz Creek	199	1.000	0.000	0.000	199	1.000	0.000	199	0.947	0.053	196	0.995	0.005	198	0.967	0.033	199	1.000	0.000
Btwn Ken/Ski Lks site 1	100	1.000	0.000	0.000	99	1.000	0.000	100	0.880	0.120	99	0.995	0.005	95	0.953	0.047	100	1.000	0.000
Btwn Ken/Ski Lks site 2	100	1.000	0.000	0.000	99	1.000	0.000	100	0.880	0.120	100	0.985	0.015	100	0.968	0.033	100	1.000	0.000
Btwn Ken/Ski Lks site 3	150	1.000	0.000	0.000	147	1.000	0.000	150	0.957	0.043	150	0.970	0.030	150	0.963	0.037	147	1.000	0.000
Btwn Ken/Ski Lks site 4	50	1.000	0.000	0.000	so	1.000	0.000	50	0.960	0.040	49	0.969	0.031	50	0.970	0.030	50	1.000	0.000
Btwn Ken/Ski Lks site 5	100	1.000	0.000	0.000	99	1.000	0.000	100	0.930	0.070	100	0.990	0.010	100	0.980	0.020	100	1.000	0.000
Btwn Ken/Ski Lks site 6	290	1.000	0.000	0.000	290	1.000	0.000	297	0.928	0.072	298	1.000	0.000	288	0.959	0.041	294	1.000	0.000
Hidden Creek	150	1.000	0.000	0.000	197	1.000	0.000	200	0.975	0.025	199	0.731	0.269	200	0.949	0.051	200	1.000	0.000
Skilak Lake outlet	796	1.000	0.000	0.000	788	1.000	0.000	795	0.906	0.094	795	0.996	0.004	796	0.968	0.032	798	1.000	0.000
Moose Creek, Kenai	199	1.000	0.000	0.000	197	1.000	0.000	199	0.970	0.030	198	0.987	0.013	180	0.935	0.065	198	1.000	0.000
Yentna River																			
Chelatna Lake	200	1.000	0.000	0.000	200	1.000	0.000	200	0.838	0.163	197	1.000	0.000	199	0.965	0.035	199	0.993	0.008
West Fork Yentna River	200	1.000	0.000	0.000	199	1.000	0.000	196	0.860	0.140	200	1.000	0.000	200	0.976	0.024	200	1.000	0.000
Hewiu/Whiskey Lakes	100	1.000	0.000	0.000	99	0.995	0.005	100	0.900	0.100	100	1.000	0.000	100	0.980	0.020	100	1.000	0.000
Shell Lake	198	1.000	0.000	0.000	199	1.000	0.000	198	0.904	0.096	200	1.000	0.000	193	0.970	0.030	199	1.000	0.000
Trinity/Movie Lakes	198	1.000	0.000	0.000	200	1.000	0.000	198	0.897	0.104	199	1.000	0.000	198	0.995	0.005	199	1.000	0.000
Judd Lake	200	1.000	0.000	0.000	198	1.000	0.000	199	0.618	0.382	200	1.000	0.000	199	0.971	0.029	199	0.998	0.003
Susitna River																			
Byers Lake	100	1.000	0.000	0.000	99	1.000	0.000	97	0.742	0.258	96	1.000	0.000	97	0.946	0.054	98	1.000	0.000
Stephan Lake	125	0.990	0.010	0.000	123	1.000	0.000	125	0.812	0.188	125	1.000	0.000	125	0.990	0.010	125	1.000	0.000
Larson Lake	198	1.000	0.000	0.000	194	1.000	0.000	200	0.690	0.310	199	1.000	0.000	200	0.991	0.009	200	1.000	0.000
Birch Creek	50	1.000	0.000	0.000	66	1.000	0.000	67	0.940	0.060	67	1.000	0.000	67	0.985	0.015	67	1.000	0.000
Red Shirt Lake	34	0.993	0.000	0.007	34	1.000	0.000	34	1.000	0.000	34	1.000	0.000	34	0.956	0.044	34	1.000	0.000
Susitna River slough 11	50	1.000	0.000	0.000	50	1.000	0.000	50	0.790	0.210	50	1.000	0.000	47	0.968	0.032	50	1.000	0.000
Western Cook Inlet																			
Coal Creek	200	1.000	0.000	0.000	200	0.995	0.005	199	0.932	0.068	191	1.000	0.000	200	0.895	0.105	200	1.000	0.000
Chilligan River	150	1.000	0.000	0.000	146	1.000	0.000	150	0.973	0.027	150	1.000	0.000	149	0.997	0.003	150	1.000	0.000
MacArthur River	100	1.000	0.000	0.000	100	0.995	0.005	100	0.970	0.030	99	0.990	0.010	100	0.928	0.073	100	1.000	0.000
Wolverine Creek	97	1.000	0.000	0.000	100	1.000	0.000	92	0.886	0.114	99	0.995	0.005	64	0.867	0.133	91	1.000	0.000
Crescent Lake site 1	99	1.000	0.000	0.000	99	1.000	0.000	99	0.975	0.025	99	1.000	0.000	82	0.973	0.027	99	1.000	0.000
Crescent Lake site 2	100	1.000	0.000	0.000	100	1.000	0.000	100	0.945	0.055	100	1.000	0.000	92	0.984	0.016	98	1.000	0.000
Crescent Lake site 3	50	1.000	0.000	0.000	50	1.000	0.000	48	0.938	0.063	50	1.000	0.000	44	1.000	0.000	47	1.000	0.000
Packers Lake	182	1.000	0.000	0.000	180	1.000	0.000	182	0.984	0.017	180	1.000	0.000	98	0.967	0.033	181	1.000	0.000
Kasilof River																			
Bear Creek	119	1.000	0.000	0.000	166	1.000	0.000	200	0.903	0.098	199	1.000	0.000	199	0.962	0.038	199	1.000	0.000
Moose Creek, Tusturnena	200	1.000	0.000	0.000	194	1.000	0.000	200	0.925	0.075	199	1.000	0.000	196	0.961	0.040	200	1.000	0.000
Glacier Flat Creek	220	1.000	0.000	0.000	294	0.998	0.002	299	0.896	0.104	298	0.998	0.002	299	0.966	0.034	300	1.000	0.000
Nikolai Creek	200	1.000	0.000	0.000	200	1.000	0.000	200	0.863	0.138	200	1.000	0.000	186	0.948	0.052	200	1.000	0.000
Tustumena Lake site 1	50	1.000	0.000	0.000	46	1.000	0.000	50	0.920	0.080	50	1.000	0.000	50	0.960	0.040	50	1.000	0.000
Tustumena Lake site 2	50	1.000	0.000	0.000	45	1.000	0.000	50	0.900	0.100	50	1.000	0.000	50	0.990	0.010	50	1.000	0.000
Seepage Creek	100	1.000	0.000	0.000	100	1.000	0.000	100	0.895	0.105	100	1.000	0.000	100	0.965	0.035	100	1.000	0.000
Northeastern Cook Inlet																			
Bishop Creek	100	1.000	0.000	0.000	100	1.000	0.000	97	0.840	0.160	98	1.000	0.000	100	1.000	0.000	100	1.000	0.000
Daniels Lake	199	1.000	0.000	0.000	200	1.000	0.000	199	0.985	0.015	200	0.998	0.003	200	0.998	0.003	200	1.000	0.000
Knlk Arm																			
Nancy Lake	100	1.000	0.000	0.000	99	1.000	0.000	100	0.970	0.030	99	1.000	0.000	99	0.965	0.035	100	1.000	0.000
Cottonwood Creek	95	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	98	1.000	0.000	100	1.000	0.000	100	1.000	0.000
Fish Creek	295	1.000	0.000	0.000	295	1.000	0.000	293	0.986	0.014	295	1.000	0.000	293	0.996	0.004	294	1.000	0.000

	s AH					ALAT					CK-A2			CK-B			FDH		
Population	N	100	117	83	75	N	100	91	108	95	N	100	125	N	100	102	N	100	128
Kenai River																			
Russian River above/early	100	0.260	0.740	0.000	0.000	100	0.855	0.140	0.000	0.005	100	1.000	0.000	100	1.000	0.000	79	1.000	0.000
Russian River above/late	199	0.294	0.706	0.000	0.000	200	0.835	0.155	0.000	0.010	197	1.000	0.000	200	0.998	0.003	176	1.000	0.000
Russian River below	99	0.955	0.046	0.000	0.000	100	0.650	0.260	0.000	0.090	99	1.000	0.000	100	1.000	0.000	96	1.000	0.000
Prarmigan Creek	198	0.990	0.010	0.000	0.000	197	0.622	0.338	0.000	0.041	197	1.000	0.000	198	1.000	0.000	196	0.997	0.003
Tem Lake	150	0.997	0.003	0.000	0.000	148	0.686	0.291	0.000	0.024	148	1.000	0.000	150	1.000	0.000	148	1.000	0.000
Quartz Creek	200	0.995	0.005	0.000	0.000	199	0.485	0.475	0.000	0.040	199	0.985	0.015	200	1.000	0.000	198	1.000	0.000
Btwn Ken/Ski Lks site 1	100	0.960	0.030	0.010	0.000	98	0.694	0.270	0.000	0.036	100	1.000	0.000	100	1.000	0.000	100	1.000	0.000
Btwn Ken/Ski Lks site 2	100	0.975	0.025	0.000	0.000	98	0.653	0.311	0.000	0.036	100	1.000	0.000	100	1.000	0.000	100	1.000	0.000
Btwn Ken/Ski Lks site 3	150	0.980	0.017	0.000	0.003	148	0.639	0.304	0.000	0.057	148	1.000	0.000	150	1.000	0.000	148	1.000	0.000
Btwn Ken/Ski Lks site 4	50	1.000	0.000	0.000	0.000	50	0.630	0.290	0.010	0.070	50	1.000	0.000	48	1.000	0.000	50	1.000	0.000
Btwn Ken/Ski Lks site 5	100	0.980	0.020	0.000	0.000	100	0.690	0.275	0.000	0.035	100	1.000	0.000	100	1.000	0.000	100	1.000	0.000
Btwn Ken/Ski Lks site 6	297	0.973	0.025	0.002	0.000	296	0.647	0.284	0.005	0.064	297	0.998	0.002	295	1.000	0.000	296	0.998	0.002
Hidden Creek	200	1.000	0.000	0.000	0.000	200	0.810	0.073	0.000	0.118	200	1.000	0.000	200	1.000	0.000	199	1.000	0.000
Skilak Lake outlet	793	0.981	0.018	0.001	0.000	786	0.694	0.246	0.001	0.059	795	1.000	0.000	800	1.000	0.000	797	1.000	0.000
Moose Creek, Kenai	199	0.980	0.020	0.000	0.000	197	0.383	0.614	0.000	0.003	198	1.000	0.000	200	1.000	0.000	199	1.000	0.000
Yentun River																			
Chelatna Lake	200	1.000	0.000	0.000	0.000	198	0.462	0.535	0.000	0.003	200	1.000	0.000	200	1.000	0.000	200	1.000	0.000
West Fork Yentna River	200	0.995	0.005	0.000	0.000	199	0.543	0.450	0.000	0.008	197	1.000	0.000	199	1.000	0.000	200	1.000	0.000
Hewitt/Whiskey Lakes	100	1.000	0.000	0.000	0.000	99	0.727	0.273	0.000	0.000	99	1.000	0.000	99	1.000	0.000	100	1.000	0.000
Shell Lake	200	1.000	0.000	0.000	0.000	200	0.435	0.540	0.000	0.025	200	1.000	0.000	199	1.000	0.000	193	1.000	0.000
Trinity/Movie Lakes	200	1.000	0.000	0.000	0.000	199	0.771	0.226	0.000	0.003	180	1.000	0.000	200	1.000	0.000	200	1.000	0.000
Judd Lake	200	1.000	0.000	0.000	0.000	198	0.586	0.346	0.000	0.068	180	1.000	0.000	199	1.000	0.000	200	1.000	0.000
Susitna River																			
Byers Lake	100	1.000	0.000	0.000	0.000	100	0.680	0.225	0.000	0.095	98	1.000	0.000	99	1.000	0.000	100	1.000	0.000
Stephan Lake	125	0.984	0.016	0.000	0.000	125	0.552	0.316	0.000	0.132	124	1.000	0.000	125	1.000	0.000	125	1.000	0.000
Larson Lake	200	1.000	0.000	0.000	0.000	199	0.726	0.256	0.003	0.015	179	1.000	0.000	200	1.000	0.000	198	1.000	0.000
Birch Creek	67	1.000	0.000	0.000	0.000	63	0.571	0.429	0.000	0.000	67	1.000	0.000	65	1.000	0.000	66	1.000	0.000
Red Shirt Lake	34	1.000	0.000	0.000	0.000	34	0.441	0.544	0.000	0.015	34	1.000	0.000	34	1.000	0.000	34	1.000	0.000
Susitna River slough 11	S0	1.000	0.000	0.000	0.000	50	0.440	0.490	0.000	0.070	s0	1.000	0.000	50	1.000	0.000	50	1.000	0.000
Western Cook Inlet																			
Coal Creek	198	1.000	0.000	0.000	0.000	200	0.375	0.603	0.000	0.023	200	1.000	0.000	200	1.000	0.000	196	1.000	0.000
Chilligan River	150	1.000	0.000	0.000	0.000	150	0.570	0.430	0.000	0.000	149	1.000	0.000	150	1.000	0.000	150	1.000	0.000
MscArthur River	100	1.000	0.000	0.000	0.000	98	0.607	0.225	0.000	0.168	100	1.000	0.000	100	1.000	0.000	100	1.000	0.000
Wolverine Creek	98	0.990	0.010	0.000	0.000	97	0.113	0.887	0.000	0.000	99	1.000	0.000	100	1.000	0.000	97	1.000	0.000
Crescent Lake site 1	100	1.000	0.000	0.000	0.000	100	0.540	0.390	0.000	0.070	100	1.000	0.000	98	1.000	0.000	100	1.000	0.000
Crescent Lake site 2	100	1.000	0.000	0.000	0.000	100	0.530	0.445	0.000	0.025	100	1.000	0.000	100	1.000	0.000	100	1.000	0.000
Crescent Lake site 3	so	1.000	0.000	0.000	0.000	50	0.520	0.460	0.000	0.020	50	1.000	0.000	50	1.000	0.000	50	1.000	0.000
Packers Lake	181	0.997	0.003	0.000	0.000	182	0.338	0.659	0.000	0.003	183	1.000	0.000	182	1.000	0.000	176	1.000	0.000
Kasilor River																			
Bear Creek	199	1.000	0.000	0.000	0.000	199	0.548	0.342	0.000	0.111	199	1.000	0.000	199	1.000	0.000	200	1.000	0.000
Moose Creck, Tustumena	200	1.000	0.000	0.000	0.000	200	0.578	0.323	0.000	0.100	196	1.000	0.000	199	1.000	0.000	192	1.000	0.000
Glacier Flat Creek	298	0.998	0.002	0.000	0.000	298	0.549	0.309	0.000	0.143	294	0.998	0.002	300	1.000	0.000	300	1.000	0.000
Nikolai Creek	200	1.000	0.000	0.000	0.000	199	0.558	0.307	0.000	0.136	180	1.000	0.000	200	0.993	0.008	199	1.000	0.000
Tustumena Lake site 1	50	0.990	0.010	0.000	0.000	so	0.510	0.340	0.000	0.150	50	1.000	0.000	44	1.000	0.000	50	1.000	0.000
Tustumena Lake site 2	so	1.000	0.000	0.000	0.000	50	0.540	0.310	0.000	0.150	s0	1.000	0.000	S0	1.000	0.000	50	1.000	0.000
Seepage Creek	100	1.000	0.000	0.000	0.000	100	0.515	0.350	0.000	0.135	100	1.000	0.000	97	1.000	0.000	98	1.000	0.000
Northeastern Cook Inlet																			
Bishop Creek	100	1.000	0.000	0.000	0.000	100	0.330	0.620	0.000	0.050	98	1.000	0.000	100	1.000	0.000	100	1.000	0.000
Daniels Lake	200	0.970	0.030	0.000	0.000	200	0.470	0.385	0.000	0.145	200	1.000	0.000	200	1.000	0.000	200	1.000	0.000
Knik Arm																			
Nancy Lake	100	1.000	0.000	0.000	0.000	100	0.460	0.540	0.000	0.000	100	1.000	0.000	100	1.000	0.000	100	1.000	0.000
Cotunwood Creek	99	1.000	0.000	0.000	0.000	100	0.570	0.430	0.000	0.000	99	1.000	0.000	100	1.000	0.000	96	1.000	0.000
Fish Cre	294	1.000	0.000	0.000	0.000	300	0.647	0.340	0.000	0.013	298	1.000	0.000	300	0		236	0	0.000

	GAPDH-2				N	G3PDH-1.2				N	G3PDH-4		N	GPI-B1, 2		
Population	N	100	SO	208		-100	-150	. 175	0		100	108		100	132	143
Kenai River																
Russian River above/carly	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000
Russian River above/late	198	0.998	0.003	0.000	196	1.000	0.000	0.000	0.000	200	1.000	0.000	200	1.000	0.000	0.000
Russian River below	99	1.000	0.000	0.000	99	1.000	0.000	0.000	0.000	99	1.000	0.000	100	1.000	0.000	0.000
Ptarnigan Creek	197	1.000	0.000	0.000	198	1.000	0.000	0.000	0.000	198	1.000	0.000	197	1.000	0.000	0.000
Tem Lake	150	1.000	0.000	0.000	150	0.998	0.000	0.002	0.000	148	1.000	0.000	148	1.000	0.000	0.000
Quartz Creek	195	1.000	0.000	0.000	198	1.000	0.000	0.000	0.000	199	1.000	0.000	199	0.994	0.006	0.000
Btwn Ken/Ski Lks site 1	100	0.990	0.010	0.000	100	1.000	0.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000
Btwn Ken/Ski Lks site 2	100	1.000	0.000	0.000	100	0.998	0.003	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000
Btwn Ken/Ski Lks site 3	150	0.993	0.007	0.000	150	0.998	0.002	0.000	0.000	150	1.000	0.000	150	1.000	0.000	0.000
Btwn Ken/Ski Lks site 4	50	0.990	0.010	0.000	50	1.000	0.000	0.000	0.000	50	1.000	0.000	50	1.000	0.000	0.000
Btwn Ken/Ski Lks site 5	100	1.000	0.000	0.000	100	0.998	0.003	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000
Btwn Ken/Ski Lks site 6	294	0.990	0.010	0.000	296	0.996	0.003	0.000	0.002	274	1.000	0.000	296	1.000	0.000	0.000
Hidden Creek	200	0.983	0.000	0.018	200	1.000	0.000	0.000	0.000	200	1.000	0.000	200	0.996	0.004	0.000
Skilak Lake outlet	796	0.991	0.009	0.000	796	0.999	0.001	0.000	0.000	779	1.000	0.000	798	1.000	0.000	0.000
Moose Creck, Kenai	198	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000	199	1.000	0.000	198	0.999	0.001	0.000
Yentna River																
Chelatna Lake	196	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000	200	1.000	0.000	199	1.000	0.000	0.000
West Fork Yentna River	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000	200	1.000	0.000	196	1.000	0.000	0.000
Hewit/Whiskey Lakes	100	1.000	0.000	0.000	99	1.000	0.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000
Shell Lake	199	1.000	0.000	0.000	199	1.000	0.000	0.000	0.000	199	1.000	0.000	200	1.000	0.000	0.000
Trinity/Movie Lakes	198	1.000	0.000	0.000	120	1.000	0.000	0.000	0.000	198	1.000	0.000	200	1.000	0.000	0.000
Judd Lake	200	1.000	0.000	0.000	120	1.000	0.000	0.000	0.000	200	1.000	0.000	200	1.000	0.000	0.000
Susitna River																
Byers Lake	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000	100	1.000	0.000	100	0.998	0.000	0.003
Stephan Lake	124	0.952	0.048	0.000	125	1.000	0.000	0.000	0.000	124	1.000	0.000	125	1.000	0.000	0.000
Larson Lake	200	1.000	0.000	0.000	96	1.000	0.000	0.000	0.000	200	1.000	0.000	199	0.999	0.001	0.000
Birch Creek	67	1.000	0.000	0.000	67	1.000	0.000	0.000	0.000	67	1.000	0.000	67	1.000	0.000	0.000
Red Shirt Lake	33	1.000	0:000	0.000	34	1.000	0.000	0.000	0.000	34	1.000	0.000	34	1.000	0.000	0.000
Susitna River slough 11	50	1.000	0.000	0.000	50	1.000	0.000	0.000	0.000	50	1.000	0.000	50	1.000	0.000	0.000
Western Cook Inlet																
Coal Creek	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000	200	1.000	0.000	200	1.000	0.000	0.000
Chilligan River	150	1.000	0.000	0.000	150	1.000	0.000	0.000	0.000	150	1.000	0.000	150	1.000	0.000	0.000
MacArthur River	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000
Wolverine Creek	95	1.000	0.000	0.000	99	1.000	0.000	0.000	0.000	100	1.000	0.000	99	0.998	0.003	0.000
Crescent Lake site 1	99	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000
Crescent Lake site 2	96	1.000	0.000	0.000	100	0.998	0.000	0.000	0.003	100	1.000	0.000	100	1.000	0.000	0.000
Crescent Lake site 3	50	1.000	0.000	0.000	S0	1.000	0.000	0.000	0.000	50	1.000	0.000	50	1.000	0.000	0.000
Packers Lake	183	1.000	0.000	0.000	183	1.000	0.000	0.000	0.000	179	1.000	0.000	183	1.000	0.000	0.000
Kasilo River																
Bear Creek	198	1.000	0.000	0.000	199	1.000	0.000	0.000	0.000	200	0.993	0.008	200	0.971	0.029	0.000
Moose Creek, Tustumena	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000	200	0.995	0.005	200	0.963	0.038	0.000
Glacier Flat Creek	295	0.998	0.002	0.000	299	1.000	0.000	0.000	0.000	299	0.982	0.018	299	0.986	0.014	0.000
Nikolai Creek	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000	200	0.990	0.010	200	0.969	0.031	0.000
Tustumena Lake site 1	50	1.000	0.000	0.000	50	1.000	0.000	0.000	0.000	50	0.990	0.010	50	1.000	0.000	0.000
Tustumens Lake site 2	50	1.000	0.000	0.000	50	1.000	0.000	0.000	0.000	49	1.000	0.000	50	0.985	0.015	0.000
Seepage Creek	100	1.000	0.000	0.000	98	1.000	0.000	0.000	0.000	100	1.000	0.000	100	0.965	0.035	0.000
Northeastern Cook Inlet																
Bishop Creek	99	1.000	0.000	0.000	99	1.000	0.000	0.000	0.000	99	1.000	0.000	100	1.000	0.000	0.000
Daniels Lake	199	1.000	0.000	0.000	198	1.000	0.000	0.000	0.000	199	1.000	0.000	200	1.000	0.000	0.000
Knik Arm																
Nancy Lake	99	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000	100	1.000	0.000	98	1.000	0.000	0.000
Cottonwood Creek	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000	99	1.000	0.000	100	1.000	0.000	0.000
Fish Creek	294	1.000	0.000	0.000	296	1.000	0.000	0.000	0.000	295	0.997	0.003	300	0.999	0.001	0.000

Population	N	GPI-A			N	mIDHP-1			N	SIDHP-I					N	SIDHP-2	
		100	94	107		100	33	77		100	72	84	61	94		100	92
Kenai River																	
Russian River above/early	100	1.000	0.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000	0.000	100	1.000	0.000
Russian River abovelate	200	1.000	0.000	0.000	199	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000	0.000	200	1.000	0.000
Russian River below	99	0.985	0.015	0.000	99	1.000	0.000	0.000	98	0.985	0.005	0.005	0.005	0.000	99	1.000	0.000
Ptarmigan Creek	197	1.000	0.000	0.000	198	1.000	0.000	0.000	198	0.985	0.005	0.010	0.000	0.000	198	1.000	0.000
Tem Lake	148	1.000	0.000	0.000	150	1.000	0.000	0.000	150	1.000	0.000	0.000	0.000	0.000	150	1.000	0.000
Quartz Creek	198	1.000	0.000	0.000	199	1.000	0.000	0.000	200	0.995	0.003	0.000	0.003	0.000	200	0.998	0.003
Btwn Ken/Ski Lks site 1	100	1.000	0.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000	0.000	100	1.000	0.000
Btwn Ken/Ski Lks site 2	100	1.000	0.000	0.000	100	1.000	0.000	0.000	100	0.980	0.000	0.020	0.000	0.000	99	1.000	0.000
Btwn Ken/Ski Lks site 3	150	1.000	0.000	0.000	149	1.000	0.000	0.000	150	0.993	0.000	0.007	0.000	0.000	149	1.000	0.000
Btwn Ken/Ski Lks site 4	50	1.000	0.000	0.000	50	1.000	0.000	0.000	50	1.000	0.000	0.000	0.000	0.000	50	1.000	0.000
Brwn Ken/Ski Lks site 5	100	1.000	0.000	0.000	100	1.000	0.000	0.000	99	1.000	0.000	0.000	0.000	0.000	98	1.000	0.000
Btwn Ken/Ski Lks site 6	296	0.998	0.000	0.002	294	1.000	0.000	0.000	297	0.995	0.002	0.003	0.000	0.000	297	1.000	0.000
Hidden Creek	200	0.988	0.000	0.013	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000	0.000	200	1.000	0.000
Skilak Lake outlet	798	1.000	0.000	0.000	798	0.999	0.001	0.000	796	0.992	0.003	0.003	0.002	0.001	796	1.000	0.000
Moose Creek, Kenai	198	1.000	0.000	0.000	198	1.000	0.000	0.000	200	0.995	0.003	0.003	0.000	0.000	200	0.968	0.033
Yentna River																	
Chelatna Lake	200	1.000	0.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000	0.000	200	1.000	0.000
West Fork Yentna River	196	1.000	0.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000	0.000	200	1.000	0.000
Hewrit/Whiskey Lakes	100	1.000	0.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000	0.000	100	1.000	0.000
Shell Lake	200	1.000	0.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000	0.000	200	1.000	0.000
Trinity/Movie Lakes	200	1.000	0.000	0.000	196	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000	0.000	200	1.000	0.000
Judd Lake	200	1.000	0.000	0.000	200	1.000	0.000	0.000	199	1.000	0.000	0.000	0.000	0.000	200	1.000	0.000
Susitna River																	
Byers Lake	98	1.000	0.000	0.000	100	1.000	0.000	0.000	99	1.000	0.000	0.000	0.000	0.000	99	1.000	0.000
Stephan Lake	125	1.000	0.000	0.000	124	1.000	0.000	0.000	119	0.874	0.000	0.000	0.000	0.126	124	1.000	0.000
Larson Lake	199	1.000	0.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000	0.000	200	1.000	0.000
Birch Creek	67	1.000	0.000	0.000	67	1.000	0.000	0.000	67	1.000	0.000	0.000	0.000	0.000	67	1.000	0.000
Red Shirt Lake	34	1.000	0.000	0.000	34	1.000	0.000	0.000	34	1.000	0.000	0.000	0.000	0.000	34	1.000	0.000
Susitna River slough 11	50	1.000	0.000	0.000	50	1.000	0.000	0.000	50	1.000	0.000	0.000	0.000	0.000	50	1.000	0.000
Western Cook Inlet																	
Coal Creek	200	1.000	0.000	0.000	199	0.995	0.005	0.000	197	1.000	0.000	0.000	0.000	0.000	197	1.000	0.000
Chilligan River	150	1.000	0.000	0.000	150	1.000	0.000	0.000	150	1.000	0.000	0.000	0.000	0.000	150	1.000	0.000
MacArthur River	100	1.000	0.000	0.000	100	1.000	0.000	0.000	100	0.985	0.000	0.000	0.000	0.015	100	1.000	0.000
Wolverine Creek	99	1.000	0.000	0.000	97	0.995	0.005	0.000	100	1.000	0.000	0.000	0.000	0.000	100	1.000	0.000
Crescent Lake site 1	100	1.000	0.000	0.000	99	1.000	0.000	0.000	99	0.995	0.000	0.000	0.005	0.000	99	1.000	0.000
Crescent Lake site 2	99	1.000	0.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000	0.000	100	1.000	0.000
Crescent Lake site 3	50	1.000	0.000	0.000	50	1.000	0.000	0.000	50	1.000	0.000	0.000	0.000	0.000	50	1.000	0.000
Packers Lake	183	1.000	0.000	0.000	182	1.000	0.000	0.000	182	1.000	0.000	0.000	0.000	0.000	180	1.000	0.000
Kasilo ${ }^{\text {Pr River }}$																	
Bear Creek	200	1.000	0.000	0.000	198	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000	0.000	200	1.000	0.000
Moose Creek, Tustumena	200	1.000	0.000	0.000	200	0.995	0.000	0.005	200	1.000	0.000	0.000	0.000	0.000	200	1.000	0.000
Glacier Flat Creek	299	1.000	0.000	0.000	300	0.985	0.000	0.015	297	1.000	0.000	0.000	0.000	0.000	267	1.000	0.000
Nikolai Creek	200	1.000	0.000	0.000	199	0.998	0.000	0.003	200	0.998	0.003	0.000	0.000	0.000	200	1.000	0.000
Tustumena Lake site 1	50	1.000	0.000	0.000	50	1.000	0.000	0.000	50	0.990	0.010	0.000	0.000	0.000	50	1.000	0.000
Tustumena Lake site 2	50	1.000	0.000	0.000	46	1.000	0.000	0.000	50	1.000	0.000	0.000	0.000	0.000	50	1.000	0.000
Seepage Creck	100	1.000	0.000	0.000	100	0.990	0.000	0.010	100	0.995	0.005	0.000	0.000	0.000	100	1.000	0.000
Northeastern Cook Inlet																	
Bishop Creek	99	1.000	0.000	0.000	99	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000	0.000	100	1.000	0.000
Daniels Lake	200	0.980	0.000	0.020	199	1.000	0.000	0.000	198	1.000	0.000	0.000	0.000	0.000	199	1.000	0.000
Knik Arm																	
Nancy Lake	98	1.000	0.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000	0.000	100	1.000	0.000
Cottonwood Creek	100	1.000	0.000	0.000	97	1.000	0.000	0.000	99	1.000	0.000	0.000	0.000	0.000	99	1.000	0.000
Fish Creek	300	1.000	0.000	0.000	294	1.000	0.000	0.000	295	0.980	0.020	0.000	0.000	0.000	299	1.000	0.000

	LDH-A2			LDH-B2				SMDH-AI, 2				N	SMDH-B1, 2			
Population	N	100	150	N	100	110	85	N	100	64	147		100	65	120	116
Kenal River																
Russian River above/early	100	1.000	0.000	99	0.495	0.505	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000
Russian River above/ate	196	1.000	0.000	197	0.706	0.294	0.000	200	1.000	0.000	0.000	200	0.998	0.003	0.000	0.000
Russian River below	99	1.000	0.000	99	0.924	0.076	0.000	100	0.990	0.003	0.008	99	1.000	0.000	0.000	0.000
Ptarmigan Creek	198	1.000	0.000	198	0.889	0.111	0.000	198	0.992	0.000	0.008	198	1.000	0.000	0.000	0.000
Tern Lake	148	1.000	0.000	150	0.833	0.167	0.000	150	1.000	0.000	0.000	150	1.000	0.000	0.000	0.000
Quartz Creek	199	1.000	0.000	200	0.888	0.113	0.000	200	0.980	0.000	0.020	199	1.000	0.000	0.000	0.000
Btwn Ken/Ski lks site 1	100	1.000	0.000	100	0.840	0.160	0.000	100	0.998	0.000	0.003	100	1.000	0.000	0.000	0.000
Btwn Ken/Ski Lks site 2	100	1.000	0.000	100	0.880	0.120	0.000	100	0.993	0.003	0.005	100	1.000	0.000	0.000	0.000
Btwn Ken/Ski Lks site 3	150	1.000	0.000	150	0.900	0.100	0.000	150	0.985	0.000	0.015	150	1.000	0.000	0.000	0.000
Btwn Ken/Ski Lks site 4	50	1.000	0.000	50	0.870	0.130	0.000	50	0.980	0.000	0.020	50	1.000	0.000	0.000	0.000
Btwn Ken/Ski Lks site 5	100	1.000	0.000	100	0.945	0.055	0.000	100	0.995	0.000	0.005	100	1.000	0.000	0.000	0.000
Btwn Ken/Ski Lks site 6	292	0.998	0.002	294	0.884	0.116	0.000	299	0.990	0.001	0.009	297	1.000	0.000	0.000	0.000
Hidden Creek	200	1.000	0.000	200	0.973	0.028	0.000	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000
Skilak Lake outlet	791	1.000	0.000	799	0.921	0.080	0.000	800	0.992	0.000	0.008	793	0.998	0.002	0.001	0.000
Moose Creck, Kenai	199	1.000	0.000	200	0.910	0.090	0.000	200	1.000	0.000	0.000	199	1.000	0.000	0.000	0.000
Yentna River																
Chelatna Lake	200	1.000	0.000	200	0.938	0.063	0.000	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000
West Fork Yentra River	197	1.000	0.000	200	0.898	0.103	0.000	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000
Hewit/Whiskey Lakes	99	1.000	0.000	99	0.990	0.010	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000
Shell Lake	200	1.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000
Trinity/Movie Lakes	199	1.000	0.000	200	0.933	0.068	0.000	200	1.000	0.000	0.000	197	1.000	0.000	0.000	0.000
Judd Lake	197	1.000	0.000	200	0.893	0.105	0.003	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000
Susitna River																
Byers Lake	95	1.000	0.000	100	0.960	0.040	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000
Stephan Lake	124	1.000	0.000	125	0.916	0.084	0.000	125	1.000	0.000	0.000	121	1.000	0.000	0.000	0.000
Larson Lake	196	1.000	0.000	199	0.950	0.050	0.000	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000
Birch Creek	63	1.000	0.000	67	0.993	0.008	0.000	67	1.000	0.000	0.000	67	1.000	0.000	0.000	0.000
Red Shirt Lake	33	1.000	0.000	34	1.000	0.000	0.000	34	1.000	0.000	0.000	34	1.000	0.000	0.000	0.000
Susitna River slough 11	50	1.000	0.000	50	0.930	0.070	0.000	50	1.000	0.000	0.000	50	1.000	0.000	0.000	0.000
Western Cook Inlet																
Coal Creek	200	1.000	0.000	200	0.978	0.023	0.000	200	1.000	0.000	0.000	200	0.953	0.048	0.000	0.000
Chilligan River	150	0.987	0.013	150	0.970	0.030	0.000	150	1.000	0.000	0.000	150	1.000	0.000	0.000	0.000
MacArthur River	97	1.000	0.000	100	0.860	0.140	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000
Wolverine Creek	99	1.000	0.000	100	0.980	0.020	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000
Crescent Lake site 1	100	1.000	0.000	100	0.890	0.110	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000
Crescent Lake site 2	100	1.000	0.000	100	0.955	0.045	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000
Crescent Lake site 3	49	1.000	0.000	50	0.880	0.120	0.000	50	1.000	0.000	0.000	50	1.000	0.000	0.000	0.000
Packers Lake	181	1.000	0.000	182	1.000	0.000	0.000	183	1.000	0.000	0.000	183	0.980	0.003	0.000	0.018
Kasilof River																
Bear Creek	200	1.000	0.000	200	0.870	0.130	0.000	200	0.999	0.000	0.001	199	1.000	0.000	0.000	0.000
Moose Creek, Tustumena	197	1.000	0.000	200	0.870	0.130	0.000	200	0.998	0.000	0.003	200	1.000	0.000	0.000	0.000
Glacier Flat Creek	299	1.000	0.000	300	0.873	0.127	0.000	300	0.998	0.000	0.002	300	0.998	0.002	0.000	0.000
Nikolai Creek	200	0.998	0.003	200	0.883	0.118	0.000	200	0.994	0.000	0.006	200	1.000	0.000	0.000	0.000
Tustumena Lake site 1	50	1.000	0.000	50	0.850	0.150	0.000	50	1.000	0.000	0.000	50	1.000	0.000	0.000	0.000
Tustumena Lake site 2	50	1.000	0.000	50	0.960	0.040	0.000	50	1.000	0.000	0.000	50	1.000	0.000	0.000	0.000
Seepage Creek	100	1.000	0.000	100	0.875	0.125	0.000	100	0.998	0.000	0.003	100	1.000	0.000	0.000	0.000
Northeastern Cook Inlet																
Bishop Creek	100	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000
Daniels Lake	197	1.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	0.000	0.000
Knik Arm																
Nancy Lake	100	1.000	0.000	100	0.950	0.050	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	0.000
Cottonwood Creek	99	1.000	0.000	100	0.650	0.350	0.000	100	1.000	0.000	0.000	98	1.000	0.000	0.000	0.000
Fish Creek	297	1.000	0.000	300	0.883	0.117	0.000	300	0.994	0.000	0.006	299	1.000	0.000	0.000	0.000

Population	N	mMEP-1			N	MPI		N	PEPA			N	PEPB-1			N	PEPC	
		100	80	58		100	105		100	106	92		100	130	163		100	105
Kenai River																		
Russian River above/early	92	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000
Russian River above/ate	198	1.000	0.000	0.000	200	1.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000
Russian River below	99	1.000	0.000	0.000	100	0.995	0.005	100	1.000	0.000	0.000	100	0.995	0.005	0.000	100	1.000	0.000
Prarmigan Creek	198	1.000	0.000	0.000	198	0.998	0.003	198	0.995	0.005	0.000	198	0.985	0.015	0.000	198	0.998	0.003
Tern Lake	150	1.000	0.000	0.000	150	1.000	0.000	150	0.997	0.003	0.000	149	0.956	0.044	0.000	149	0.997	0.003
Quarz Creek	198	1.000	0.000	0.000	199	0.995	0.005	200	0.983	0.005	0.013	195	0.985	0.015	0.000	200	0.998	0.003
Btwn Ken/Ski Lks site 1	100	1.000	0.000	0.000	100	0.990	0.010	100	0.990	0.000	0.010	100	1.000	0.000	0.000	100	0.990	0.010
Btwn Ken/Ski Lks site 2	100	1.000	0.000	0.000	100	0.985	0.015	100	0.995	0.005	0.000	99	1.000	0.000	0.000	100	0.995	0.005
Btwn Ken/Ski Lks site 3	150	1.000	0.000	0.000	150	0.997	0.003	150	0.967	0.010	0.023	150	1.000	0.000	0.000	150	0.990	0.010
Btwn Ken/Ski Lks site 4	50	1.000	0.000	0.000	50	1.000	0.000	50	0.980	0.000	0.020	49	1.000	0.000	0.000	50	1.000	0.000
Btwn Ken/Ski Lks site 5	100	1.000	0.000	0.000	100	1.000	0.000	100	0.995	0.000	0.005	100	1.000	0.000	0.000	100	1.000	0.000
Btwn Ken/Ski Lks site 6	283	1.000	0.000	0.000	296	1.000	0.000	297	0.987	0.002	0.012	295	1.000	0.000	0.000	295	0.998	0.002
Hidden Creek	200	1.000	0.000	0.000	200	1.000	0.000	200	1.000	0.000	0.000	199	1.000	0.000	0.000	200	1.000	0.000
Skilak Lake ountet	741	0.999	0.000	0.001	787	0.997	0.003	800	0.986	0.002	0.012	796	1.000	0.000	0.000	794	0.993	0.007
Moose Creck, Kenai	199	1.000	0.000	0.000	200	1.000	0.000	200	1.000	0.000	0.000	194	0.997	0.000	0.003	198	0.992	0.008
Yentra River																		
Chelatna Lake	200	1.000	0.000	0.000	200	1.000	0.000	197	1.000	0.000	0.000	200	1.000	0.000	0.000	199	1.000	0.000
West Fork Yentna River	200	1.000	0.000	0.000	200	1.000	0.000	200	1.000	0.000	0.000	197	1.000	0.000	0.000	199	0.995	0.005
Hewitt/Whiskey Lakes	99	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	99	0.874	0.126
Shell Lake	200	1.000	0.000	0.000	200	1.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	0.000	186	0.686	0.315
Trinity/Movie Lakes	198	1.000	0.000	0.000	200	1.000	0.000	199	1.000	0.000	0.000	200	0.848	0.153	0.000	197	0.982	0.018
Judd Lake	199	1.000	0.000	0.000	200	1.000	0.000	200	1.00\%	0.000	0.000	200	1.000	0.000	0.000	199	1.000	0.000
Susitna River																		
Byers Lake	94	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	99	1.000	0.000	0.000	98	0.995	0.005
Stephan Lake	123	1.000	0.000	0.000	124	1.000	0.000	125	1.000	0.000	0.000	123	1.000	0.000	0.000	124	0.831	0.169
Larson Lake	200	1.000	0.000	0.000	200	1.000	0.000	200	1.000	0.000	0.000	196	1.000	0.000	0.000	200	0.998	0.003
Birch Creek	67	1.000	0.000	0.000	67	1.000	0.000	67	1.000	0.000	0.000	67	1.000	0.000	0.000	67	0.970	0.030
Red Shirt Lake	33	1.000	0.000	0.000	34	1.000	0.000	34	1.000	0.000	0.000	34	1.000	0.000	0.000	34	0.897	0.103
Susitna River slough 11	50	1.000	0.000	0.000	50	1.000	0.000	so	1.000	0.000	0.000	49	1.000	0.000	0.000	50	0.980	0.020
Western Cook Iniet																		
Coal Creck	200	1.000	0.000	0.000	200	1.000	0.000	200	1.000	0.000	0.000	199	1.000	0.000	0.000	200	1.000	0.000
Chilligan River	148	1.000	0.000	0.000	150	1.000	0.000	150	1.000	0.000	0.000	149	1.000	0.000	0.000	149	0.990	0.010
MacArthur River	97	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	98	0.954	0.046
Wolverine Creek	99	1.000	0.000	0.000	100	1.000	0.000	100	0.995	0.005	0.000	99	1.000	0.000	0.000	99	1.000	0.000
Crescent Lake site 1	100	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	99	0.944	0.056
Crescent Lake site 2	100	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	97	1.000	0.000	0.000	100	0.920	0.080
Crescent Lake site 3	50	0.980	0.020	0.000	50	1.000	0.000	50	1.000	0.000	0.000	50	1.000	0.000	0.000	so	0.940	0.060
	179	0.953	0.048	0.000	182	1.000	0.000	182	1.000	0.000	0.000	182	1.000	0.000	0.000	181	1.000	0.000
Kasilof River																		
Bear Creek	200	0.998	0.003	0.000	200	1.000	0.000	200	1.000	0.000	0.000	199	1.000	0.000	0.000	200	0.995	0.005
Moose Creek, Tustumena	199	1.000	0.000	0.000	199	1.000	0.000	197	1.000	0.000	0.000	194	1.000	0.000	0.000	198	1.000	0.000
Glacier Flat Creek	300	1.000	0.000	0.000	298	1.000	0.000	298	1.000	0.000	0.000	299	1.000	0.000	0.000	300	0.970	0.030
Nikolai Creek	198	1.000	0.000	0.000	200	1.000	0.000	200	0.998	0.000	0.003	200	1.000	0.000	0.000	200	0.968	0.033
Tustumena Lake site 1	50	1.000	0.000	0.000	50	1.000	0.000	50	1.000	0.000	0.000	50	1.000	0.000	0.000	50	1.000	0.000
Tusturnena Lake site 2	50	1.000	0.000	0.000	50	1.000	0.000	50	0.990	0.010	0.000	50	1.000	0.000	0.000	49	0.990	0.010
	100	1.000	0.000	0.000	99	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	91	0.989	0.011
Northeastern Cook Inlet																		
Bishop Creek	100	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000
Daniels Lake	200	1.000	0.000	0.000	200	1.000	0.000	200	1.000	0.000	0.000	196	1.000	0.000	0.000	199	1.000	0.000
Knik Arm																		
Nancy Lake	99	1.000	0.000	0.000	98	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	0.000	99	0.970	0.030
Cottonwood Creek	100	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	99	1.000	0.000	0.000	97	0.887	0.113
Fish Creek	292	1.000	0.000	0.000	300	1.000	0.000	300	1.000	0.000	0.000	297	1.000	0.000	0.000	299	0.901	0.099

	PEPD-1				PEPLT				PGDH			PGM-1				PGM-2			
Population	N	100	113	94	N	100	88	114	N	100	90	N	100	null	-180	N	100	136	57
Kenai Rtiver																			
Russian River above/earty	100	1.000	0.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	100	0.000	1.000	0.000	100	0.895	0.105	0.000
Russian River above/late	200	1.000	0.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	200	0.005	0.995	0.000	200	0.875	0.125	0.000
Russian River below	99	0.975	0.025	0.000	100	0.985	0.005	0.010	99	1.000	0.000	99	0.379	0.611	0.010	100	0.800	0.200	0.000
Ptarmigan Creek	198	0.985	0.015	0.000	198	0.985	0.003	0.013	198	1.000	0.000	198	0.323	0.677	0.000	198	0.864	0.136	0.000
Tem Lake	147	1.000	0.000	0.000	149	0.977	0.024	0.000	150	1.000	0.000	150	0.222	0.778	0.000	150	0.663	0.337	0.000
Quartz Creek	199	1.000	0.000	0.000	196	0.972	0.015	0.013	200	1.000	0.000	199	0.277	0.724	0.000	199	0.814	0.186	0.000
Btwn Ken/Ski Lks site I	100	0.985	0.015	0.000	100	0.960	0.015	0.025	100	1.000	0.000	100	0.252	0.748	0.000	100	0.780	0.220	0.000
Btwn Ken/Ski Lks site 2	100	0.980	0.020	0.000	100	0.980	0.020	0.000	100	1.000	0.000	100	0.344	0.656	0.000	100	0.775	0.225	0.000
Btwn Ken/Ski Lks site 3	150	0.990	0.010	0.000	150	0.987	0.003	0.010	150	1.000	0.000	150	0.330	0.663	0.007	150	0.790	0.210	0.000
Btwn Ken/Ski Lks site 4	so	0.970	0.030	0.000	50	0.990	0.010	0.000	50	1.000	0.000	so	0.297	0.693	0.010	50	0.770	0.230	0.000
Btwn Ken/Ski Lks site 5	100	0.980	0.020	0.000	100	0.980	0.005	0.015	100	1.000	0.000	100	0.368	0.633	0.000	100	0.795	0.205	0.000
Btwn Ken/Ski Lks site 5	296	0.998	0.002	0.000	297	0.968	0.010	0.022	297	1.000	0.000	297	0.307	0.693	0.000	297	0.801	0.199	0.000
Hidden Creek	199	1.000	0.000	0.000	200	0.903	0.098	0.000	200	1.000	0.000	198	0.057	0.943	0.000	200	0.993	0.008	0.000
Skilak Lake outlet	793	0.994	0.006	0.000	795	0.993	0.003	0.004	800	1.000	0.000	800	0.329	0.672	0.000	800	0.754	0.246	0.000
Moose Creek, Kenai	199	1.000	0.000	0.000	194	0.997	0.003	0.000	200	1.000	0.000	198	0.113	0.887	0.000	200	0.740	0.260	0.000
Yentna River																			
Chelatna Lake	200	1.000	0.000	0.000	195	0.995	0.005	0.000	200	1.000	0.000	200	0.038	0.962	0.000	200	0.868	0.130	0.003
West Fork Yentna River	200	0.995	0.005	0.000	199	0.972	0.028	0.000	200	1.000	0.000	200	0.071	0.929	0.000	197	0.805	0.195	0.000
Hewitt/Whiskey Lakes	100	1.000	0.000	0.000	99	1.000	0.000	0.000	100	1.000	0.000	99	0.068	0.932	0.000	100	0.625	0.375	0.000
Shell Lake	200	1.000	0.000	0.000	199	1.000	0.000	0.000	200	1.000	0.000	200	0.098	0.902	0.000	200	0.250	0.750	0.000
Trinity/Movic Lakes	200	1.000	0.000	0.000	198	1.000	0.000	0.000	200	1.000	0.000	200	0.049	0.951	0.000	200	0.283	0.718	0.000
Judd Lake	200	1.000	0.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	200	0.360	0.640	0.000	200	0.850	0.150	0.000
Susitna River																			
Byers Lake	99	1.000	0.000	0.000	100	0.980	0.020	0.000	99	1.000	0.000	100	0.188	0.812	0.000	100	0.815	0.185	0.000
Stephan Lake	125	1.000	0.000	0.000	120	1.000	0.000	0.000	125	1.000	0.000	125	0.000	1.000	0.000	125	0.736	0.264	0.000
Larson Lake	200	1.000	0.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	200	0.395	0.606	0.000	200	0.680	0.320	0.000
Birch Creek	67	1.000	0.000	0.000	67	0.993	0.008	0.000	67	1.000	0.000	66	0.282	0.718	0.000	67	0.813	0.187	0.000
Red Shirt Lake	33	1.000	0.000	0.000	34	1.000	0.000	0.000	34	1.000	0.000	34	0.030	0.970	0.000	34	0.588	0.412	0.000
Susitna River slough 11	50	0.990	0.000	0.010	50	0.970	0.030	0.000	47	1.000	0.000	50	0.152	0.849	0.000	50	0.800	0.200	0.000
Western Cook Inlet																			
Coal Creek	199	0.998	0.000	0.003	200	0.998	0.003	0.000	200	1.000	0.000	200	0.464	0.537	0.000	200	0.858	0.143	0.000
Chilligan River	150	1.000	0.000	0.000	145	1.000	0.000	0.000	150	1.000	0.000	150	0.201	0.799	0.000	150	0.927	0.073	0.000
MacArthur River	100	1.000	0.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	100	0.213	0.787	0.000	100	0.780	0.220	0.000
Wolverine Creek	100	1.000	0.000	0.000	98	1.000	0.000	0.000	100	1.000	0.000	100	0.062	0.938	0.000	100	0.970	0.030	0.000
Crescent Lake site 1	100	1.000	0.000	0.000	92	1.000	0.000	0.000	100	1.000	0.000	99	0.130	0.870	0.000	100	0.725	0.275	0.000
Crescent Lake site 2	99	1.000	0.000	0.000	97	1.000	0.000	0.000	100	1.000	0.000	100	0.152	0.849	0.000	100	0.620	0.380	0.000
Crescent Lake site 3	50	1.000	0.000	0.000	50	1.000	0.000	0.000	50	1.000	0.000	50	0.163	0.837	0.000	50	0.610	0.390	0.000
Bear Creek	200	1.000	0.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	200	0.120	0.880	0.000	200	0.668	0.333	0.000
Moose Creek, Tustumena	200	1.000	0.000	0.000	198	1.000	0.000	0.000	198	1.000	0.000	200	0.117	0.883	0.000	200	0.695	0.305	0.000
Glacier Flat Creek	300	0.998	0.002	0.000	299	1.000	0.000	0.000	300	1.000	0.000	300	0.117	0.883	0.000	300	0.678	0.322	0.000
Nikolai Creek	200	0.995	0.005	0.000	200	1.000	0.000	0.000	200	1.000	0.000	200	0.089	0.911	0.000	200	0.688	0.313	0.000
Tustumena Lake site 1	50	1.000	0.000	0.000	50	1.000	0.000	0.000	50	1.000	0.000	50	0.152	0.849	0.000	50	0.670	0.330	0.000
Tustumena Lake site 2	50	1.000	0.000	0.000	50	1.000	0.000	0.000	50	1.000	0.000	50	0.117	0.883	0.000	50	0.620	0.380	0.000
Seepage Creek	99	1.000	0.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	100	0.106	0.894	0.000	100	0.660	0.340	0.000
Northeastern Cook Inlet																			
Bishop Creek	99	1.000	0.000	0.000	99	0.768	0.232	0.000	100	1.000	0.000	100	0.200	0.800	0.000	100	0.320	0.680	0.000
Daniels Lake	199	1.000	0.000	0.000	198	0.710	0.290	0.000	200	1.000	0.000	200	0.213	0.787	0.000	200	0.268	0.733	0.000
Knlk Arm																			
Nancy Lake	100	1.000	0.000	0.000	100	0.985	0.015	0.000	100	1.000	0.000	100	0.123	0.878	0.000	100	0.770	0.230	0.000
Cottonwood Creek	99	1.000	0.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	100	0.057	0.943	0.000	100	0.750	0.250	0.000
Fish Creek	298	0.998	0.000	0.002	300	0.837	0.163	0.000	300	1.000	0.000	293	0.012	0.988	0.000	300	0.583	0.417	0.000

	SSOD-1			TPI-1,2				TPI-3			TPI-4				Heterozygosity	
Population	N	100	48	N	-100	.173	-82	N	100	98	N	100	106	97	Observed	Expected
Kenal River																
Russian River above/carly	100	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	0.0505	0.0528
Russian River above/late	200	1.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	200	1.000	0.000	0.000	0.0460	0.0482
Russian River below	93	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	0.0429	0.0419
Ptarmigan Creek	198	1.000	0.000	198	1.000	0.000	0.000	197	1.000	0.000	198	1.000	0.000	0.000	0.0407	0.0393
Tem Lake	150	1.000	0.000	150	1.000	0.000	0.000	150	1.000	0.000	149	0.993	0.000	0.007	0.0408	0.0410
Quartz Creek	200	1.000	0.000	200	1.000	0.000	0.000	200	0.998	0.003	200	1.000	0.000	0.000	0.0423	0.0425
Btwn Ken/Ski Lks site 1	100	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	0.0481	0.0469
Btwn Ken/Ski Lks site 2	100	1.000	0.000	99	1.000	0.000	0.000	99	0.995	0.005	99	1.000	0.000	0.000	0.0434	0.0452
Btwn Ken/Ski Lks site 3	150	1.000	0.000	150	1.000	0.000	0.000	150	1.000	0.000	150	1.000	0.000	0.000	0.0409	0.0423
Btwn Ken/Ski Lks site 4	50	1.000	0.000	50	1.000	0.000	0.000	50	1.000	0.000	50	1.000	0.000	0.000	0.0411	0.0426
Btwn Ken/Ski Lks site 5	100	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	0.0327	0.0343
Btwn Ken/Ski Lks site 6	297	1.000	0.000	296	1.000	0.000	0.000	296	1.000	0.000	296	1.000	0.000	0.000	0.0441	0.0421
Hidden Creek	199	1.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	200	1.000	0.000	0.000	0.0345	0.0346
Skilak Lake outlet	800	1.000	0.000	800	1.000	0.000	0.000	793	0.999	0.001	798	1.000	0.000	0.000	0.0401	0.0398
Moose Creek, Kenai	199	1.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	200	0.995	0.000	0.005	0.0412	0.0406
Yentna River																
Chelatna Lake	200	1.000	0.000	200	1.000	0.000	0.000	197	1.000	0.000	193	1.000	0.000	0.000	0.0324	0.0347
West Fork Yentna River	200	1.000	0.000	199	1.000	0.000	0.000	199	1.000	0.000	198	1.000	0.000	0.000	0.0382	0.0385
Hewitu/Whiskey Lakes	100	1.000	0.000	99	1.000	0.000	0.000	99	1.000	0.000	99	1.000	0.000	0.000	0.0372	0.0374
Shell Lake	200	1.000	0.000	199	1.000	0.000	0.000	199	1.000	0.000	199	1.000	0.000	0.000	0.0417	0.0436
Trinity/Movie Lakes	200	1.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	198	1.000	0.000	0.000	0.0382	0.0375
Judd Lake	200	1.000	0.000	157	1.000	0.000	0.000	197	1.000	0.000	197	1.000	0.000	0.000	0.0435	0.0424
Susitna River																
Byers Lake	100	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	0.0408	0.0407
Stephan Lake	124	1.000	0.000	124	1.000	0.000	0.000	125	1.000	0.000	125	1.000	0.000	0.000	0.0555	0.0568
Larson Lake	198	1.000	0.000	199	1.000	0.000	0.000	199	1.000	0.000	199	1.000	0.000	0.000	0.0435	0.0382
Birch Creek	67	1.000	0.000	67	1.000	0.000	0.000	67	1.000	0.000	67	1.000	0.000	0.000	0.0260	0.0286
Red Shirt Lake	34	1.000	0.000	34	1.000	0.000	0.000	34	1.000	0.000	34	1.000	0.000	0.000	0.0382	0.0376
Susitna River slough 11	50	1.000	0.000	50	1.000	0.000	0.000	50	1.000	0.000	50	1.000	0.000	0.000	0.0451	0.0432
Western Cook Inlet																
Coal Creek	198	1.000	0.000	200	0.991	0.000	0.009	200	1.000	0.000	193	0.997	0.003	0.000	0.0427	0.0410
Chilligan River	148	1.000	0.000	150	1.000	0.000	0.000	150	1.000	0.000	150	1.000	0.000	0.000	0.0211	0.0219
MacArthur River	100	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	0.0452	0.0435
Wolverine Creek	100	0.995	0.005	100	1.000	0.000	0.000	99	1.000	0.000	99	1.000	0.000	0.000	0.0294	0.0273
Crescent Lake site 1	100	1.000	0.000	100	1.000	0.000	0.000	100	0.950	0.050	100	1.000	0.000	0.000	0.0401	0.0408
Crescent Lake site 2	100	1.000	0.000	100	1.000	0.000	0.000	100	0.995	0.005	100	1.000	0.000	0.000	0.0391	0.0384
Crescent Lake site 3	50	1.000	0.000	50	1.000	0.000	0.000	50	0.980	0.020	50	1.000	0.000	0.000	0.0391	0.0413
	180	1.000	0.000	182	1.000	0.000	0.000	182	1.000	0.000	182	1.000	0.000	0.000	0.0304	0.0299
Bear Creek	199	1.000	0.000	200	0.999	0.001	0.000	200	1.000	0.000	200	1.000	0.000	0.000	0.0452	0.0463
Moose Creek, Tustumena	200	1.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	200	1.000	0.000	0.000	0.0433	0.0451
Glacier Flat Creek	250	1.000	0.000	295	1.000	0.000	0.000	300	1.000	0.000	300	1.000	0.000	0.000	0.0466	0.0478
Nikolai Creek	200	1.000	0.000	200	1.000	0.000	0.000	200	1.000	0.000	200	1.000	0.000	0.000	0.0530	0.0518
Tustumena Lake site 1	50	1.000	0.000	49	1.000	0.000	0.000	49	1.000	0.000	49	1.000	0.000	0.000	0.0422	0.0452
Tustumena Lake site 2	S0	1.000	0.000	50	1.000	0.000	0.000	50	0.990	0.010	50	1.000	0.000	0.000	0.0378	0.0403
Seepage Creek	100	1.000	0.000	98	1.000	0.000	0.000	97	0.995	0.005	98	1.000	0.000	0.000	0.0460	0.0485
Northeastern Cook Iniet																
Bishop Creek	100	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	0.0395	0.0425
Daniels Lake	200	1.000	0.000	199	1.000	0.000	0.000	199	1.000	0.000	199	1.000	0.000	0.000	0.0427	0.0421
Knik Arm																
Nancy Lake	100	1.000	0.000	100	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	0.0355	0.0333
Cottonwood Creek	100	1.000	0.000	98	1.000	0.000	0.000	100	1.000	0.000	100	1.000	0.000	0.000	0.0439	0.0413
Fish Creek	294	1.000	0.000	298	1.000	0.000	0.000	297	1.000	0.000	298	1.000	0.000	0.000	0.0464	0.0464

Appendix II.

Final Report of Contract

Bentzen, P., and Olsen, J. 1996. Microsatellite variation in Cook Inlet sockeye salmon.

Draft. This unpublished data is not cited without permission of the authors.

Microsatellite Variation in Cook Inlet Sockeye Salmon

Final Report

prepared for
Dr. Jim Seeb and Dr. Lisa Seeb
Alaska Department of Fish and Game
Genetics Lab
33 Raspberry Road
Anchorage AK. 99518
by
P. Bentzen and J. Olsen

Marine Molecular Biotechnology Lab
School of Fisheries
University of Washington
Seattle Washington 98105

March, 7, 1996

Introduction

The objective of this project was to use a new class of genetic marker, microsatellites, to examine genetic population structure in Cook Inlet sockeye salmon (Oncorhynchus nerka). Microsatellites are a class of variable number of tandem repeat (VNTR) nuclear DNA sequences that are ubiquitous in eukaryotes and are distributed throughout the genome at intervals of approximately 10 kilobase pairs (Wright 1992). Microsatellites tend to be highly polymorphic with a potential for high resolution of intra-specific population structure in salmonids (Wright and Bentzen 1994). The application of microsatellites to studying population structure of Cook Inlet sockeye salmon is intended to augment the extensive allozyme data base collected by Alaska Department of Fish and Game (ADF\&G) genetics personnel.

Because the use of microsatellites in salmonid population studies is limited our project involved two phases. First, 15 microsatellite primer pairs developed from various species of salmonid were screened in sockeye salmon to assess quality of the amplified polymerase chain reaction (PCR) product, optimize PCR conditions, and assess each microsatellites potential for assessing genetic population structure. In phase two, four candidate primer pairs were chosen from among the 15 and used to survey four Cook Inlet populations from three river drainages. These populations include the Russian River (late) and Skilak Lake outlet (Kenai River drainage), Moose Creek (Kasilof River drainage) and the Yentna River (Susitna River drainage) (Figure 1).

Methods

Phase One:

Microsatellite Screening:

DNA from liver tissue provided by the ADFG\&G genetics lab was extracted from four sockeye using the phenol/chloroform method (Hoelzel and Green 1994). Sequences for 15 microsatellite primers were obtained from the literature and/or via communication and permission from other labs (Table 1). Microsatellite primers were synthesized at the Marine Molecular Biotechnology Lab (MMBL) on a Beckman Oligo 1000_{TM} DNA synthesizer.

The initial PCR parameters were based on general guidelines from the literature and past experience with salmonid microsatellite primers at the MMBL and other labs (Table 1). Each PCR
was carried out in a $10 \mu \mathrm{l}$ volume consisting of 10 mM Tris- $\mathrm{HCL}(\mathrm{pH} 8.3), 50 \mathrm{mM} \mathrm{KCL}, 1.5 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 0.8 \mathrm{mM} \mathrm{dNTP}$'s, 0.4 units Taq polymerase, $0.3 \mu \mathrm{M}$ primer, 50 ng DNA template and $\mathrm{H}_{2} \mathrm{O}$. Results of each PCR were assessed by visualizing the PCR product following its electrophoresis in an 0.8% agarose or 6% non-denaturing polyacrylamide gel. For each microsatellite primer pair a quality grade of 1-5 was assigned following a modified protocol of Pepin et al. 1995. A grade of 1 represented strong amplification with one or two bands and no smearing. A grade of 5 indicated no amplification. Following the quality assessment, further PCRs were carried out under more stringent conditions (e.g. increased annealing temperature and/or decreased MgCl_{2} concentration) for those microsatellite primers receiving a grade of 3 or below. To simplify the final screening a standard PCR profile $($ PCR profile $\underline{A})$ was used: $\left(94^{\circ}(2 \mathrm{~min})+7\left(94^{\circ}(1 \mathrm{~min})+\mathrm{XX}^{\circ}(30 \mathrm{sec})+72^{\circ}(15 \mathrm{sec})\right)+\right.$ $\left.18\left(94^{\circ}(30 \mathrm{sec})+\mathrm{XX}^{\circ}(30 \mathrm{sec})+72^{\circ}(15 \mathrm{sec})\right)\right)$. Ultimately, those primers receiving a grade below 3 were excluded from the battery of primers recommended for use in phase two. Four microsatellite primers were chosen from among the 15 tested for use on Cook Inlet sockeye.

Multiplex PCR:

Prior to initiating the population survey in phase two, an attempt was made to co-amplify the four loci in a single PCR. Co-amplification or "multiplexing" allows rapid detection of microsatellite variation and reduces processing cost (O'Reilly et al., in press; Urquhart et al. 1995). We employed the Perkin Elmer-Applied Biosystems Inc. (ABI) four color labeling system to label the forward primer for each microsatellite locus (Perkin Elmer 1995). One of three different color labels was assigned to each microsatellite locus based on expected allelic range. With this system up to three loci with overlapping alleles may be multiplexed using the ABI GeneScan color detection system. A fourth color was reserved for the internal lane (sizing) standard. All fluorescently tagged primers were synthesized at the MMBL as described above. Because the optimal annealing temperature differed for the four primer sets (Table 1), the multiplex was tested at $52^{\circ}, 54^{\circ}$ and 56° using first two, then three and four of the primer sets in the same PCR. PCR primer concentrations were adjusted following each test to achieve similar product quantity as judged by peak height for each microsatellite allele on the Genotyper electropherogram. The four individuals used in the initial screening were genotyped using the multiplex system and alleles were scored for each microsatellite locus to assure co-amplification did not alter fragment length.

Phase Two:

Population Survey:

Samples of liver tissue from 50 individuals from each of the four populations was provided by the ADF\&G genetics lab. Genomic DNA for PCR was extracted using a rapid, simplified cell lysis protocol modified from Hoelzel and Green, 1994. Approximately 10 mg of tissue from each sample was placed in a cell lysis buffer consisting of 10 mM TrisHCL $\mathrm{pH} 8.3,50 \mathrm{mM} \mathrm{KCL}$, and 0.5% TWEEN 20. One $\mu \mathrm{l}$ of proteanase $\mathrm{K}(10 \mathrm{mg} / \mathrm{ml})$ was added to each sample before incubation at 37° for approximately 12 hours. The samples were then heated to 95° for 15 minutes, centrifuged for 5 minutes at $14,000 \mathrm{RPM}$ and frozen at -20° until needed for PCR.

Using the multiplex system, 200 individuals were genotyped for the microsatellite loci identified in phase 1. Following PCR, the amplified products were electrophoresed on a de-naturing polyacrylamide gel and detected using an $\mathrm{ABI} 373 \mathrm{~A}_{\mathrm{fm}}$ automated sequencer. The GeneScan software uses the internal lane standard and color code to determine length (in base pairs) of each microsatellite allele. Final analysis and synthesis of the GeneScan data was performed with the Genotyper software provided by ABI.

Statistical Analysis:

Two methods were used to evaluate within and between population genetic variation using the microsatellite allele frequency data. First, a test for Hardy-Weinberg equilibrium (HWE) and population differentiation was performed using GENEPOP ver. 1.1 (Raymond and Rousset 1994). GENEPOP utilizes recently developed algorithms that provide estimates of significance levels for Fisher exact tests of HWE and contingency chi-square analysis of independence between populations and the allelic composition. The exact test has been suggested for VNTR data because many loci have 10 or more alleles and some genotype frequencies are very low or zero. These algorithms were developed to utilize exact tests when allele numbers per locus are large (>4) and computation time would otherwise be prohibitive. Second, estimates of genetic differentiation among populations as indicated by the fixation index, F_{ST}, were made using GENEPOP which computes F-statistics according to Weir and Cockerham (1984).

Two estimates of genetic relatedness were made using PHYLIP ver. 3.5c (Felsenstein 1993). First, GENEDIST was used to compute Nei's genetic distance using the allele frequency data. The distance data was then used to construct phylogenies by applying both UPGMA and neighbor joining methods in NEIGHBOR. Second, a maximum likelihood algorithm (CONTML) was used to analyze the microsatellite data and group the four populations according to similarity of allele frequencies.

Results and Discussion

Microsatellite Screening and Multiplex PCR:

The results of the phase one screening are shown in Table 1. For each microsatellite primer pair Table 1 summarizes the optimum PCR condition, quality of the PCR product, approximate product size (in base pairs), primer sequence, source of the sequence (lab and/or author) and source species. Based on the quality criteria described above, ten of fifteen microsatellite primer pairs were considered for the population study and four were chosen from among the group of ten. These included One μ 1, One 11 , One $\mu 14$ and Ssa293 (Scribner 1996; P. Bentzen pers. Comm.). Table 1 shows the fluorescent amidite label used for each of the four primer sets and their corresponding color display. The four primer pairs co-amplified using an annealing temperature of 52° for PCR profile A . Primer concentrations for PCR were adjusted to achieve similar band intensity as follows: One $\mu 1(\mathrm{Hex})(0.07 \mu \mathrm{~m})$, One $\mu 11(\mathrm{Tet})(0.07 \mu \mathrm{~m})$, One $\mu 14(\mathrm{Hex})(0.15 \mu \mathrm{~m})$, Ssa293(Tet) $(0.10 \mu \mathrm{~m})$.

Ssa293:

At this point it is worth noting the exceptionally low observed heterozygosity $\left(\mathrm{H}_{\mathrm{O}}\right)$ at the Ssa 293 locus (Table 2). In fact some samples failed to amplify. This is likely the result of mutation at one or more alleles in the DNA sequence complementary to the microsatellite primer. These "null" alleles have been described previously for human microsatellites (Callen et al. 1993) and are more likely a concern when transferring primers between species (Forbes et al. 1995). Verification of the "null" allele(s) by adjusting priming sites and sequencing has not been done. To complete the population survey all 200 fish were screened for a fifth microsatellite locus, Oneq2. The Ssa293 data was not included in subsequent statistical analyses.

Allelic Variation at each Microsatellite Locus:

Table 2 summarizes the microsatellite variability by locus and population. With the exception of Onepl in the Russian River, all loci were polymorphic in all populations. The range of variation was considerable as indicated by heterozygosity and allele number. Excluding Ssa293, observed heterozygosity ranged from 0.20 to 0.90 . The mean heterozygosity for all loci was approximately 0.50 for Moose Creek, Skilak Lake and Yentna River. The Russian River exhibited the lowest degree of variability with a mean heterozygosity of 0.32 . The test for Hardy-Weinberg equilibrium revealed no significant differences between observed versus expected heterozygosities within each population at each locus (Table 2). Numbers of alleles per locus ranged from 2-10.

Allele frequencies differed among all populations and ranged from 1-100\% (Figure 2). No clear pattern was evident in the shapes of the allele distributions across populations. For each locus the same allele was most frequent in all populations: One μ 1(114bp), One 2 2(270bp), One $\mu 11$ (150bp), One 1 14(150bp). At three of the four loci at least one population unique allele was present. Notably, the 129 and 137 bp alleles at Oneu 14 in Moose Creek and Russian River sockeye respectively had frequencies of 11% and 8%. Additional screening would be needed to determine if these alleles are present in other populations.

Significant differences in allele frequencies ($p<0.0001, S E<0.0001$) were shown for all populations using the Markov chain algorithm to estimate the probability of independence from an exact Fisher test on multiple RxC contingency tables (Table 3). Further, a pairwise comparison of all populations using the same algorithm showed significant differences ($\mathrm{p}<0.05$) in allele frequencies at most loci (Table 3). The exceptions were: Moose Creek and Skilak Lake at Oneq1 and One $\mu 2$; Moose Creek and Russian River at One 11; Russian river and Skilak Lake at One 11. Finally, an estimate of $\mathrm{F}_{S T}$ for each locus revealed moderate genetic differentiation (Table 4). Values ranged from 0.042-0.100. For all loci, combined F_{ST} was estimated to be 0.071 with a bootstrap confidence interval of 0.049-0.092 (95\% CI).

Genetic Relationships Among Populations:

Estimated genetic relatedness among the four sockeye populations is depicted in three phenograms in Figure 3. The three methods gave very similar results placing Moose Creek and Skilak Lake outlet populations closest and approximately the same distance from the Russian River
and Yentna River populations. The two clustering methods using Nei's distance placed the Moose Creek and Skilak Lake populations closest to the Russian River population while the maximum likelihood method placed them closest to Yentna River.

Interestingly, the pairwise comparison of allele frequencies and cluster analysis suggest the Skilak Lake and Moose Creek populations are most genetically similar and the Russian River population is significantly different from both and equally close to the Yentna River population (Susitna River drainage). This seems counter to geographic considerations which would suggest Skilak Lake and Russian River, because they share the same watershed, would show the greatest genetic affinity. Two possible explanations for this apparent contradiction are offered. First, due the glacial history of this region these populations are evolutionarily young. Colonization events have occurred most likely within the last 2000 years (Burger et al. submitted). The genetic relationships evident here, while based on only four microsatellite loci, may be the result of founding effects and chance genetic convergence through drift. Genetic bottlenecking due to recent colonization may explain the non-uniform allele distribution at each locus and the presence of alleles in one population which are lacking in the other two (e.g. the 129 bp and 137 bp alleles at Oneq14). A second explanation is that the four microsatellite loci used in this study do not reflect the overall genetic relationships among these four populations. Short of screening additional loci, evidence for or against this explanation will rest with how well our data accords with others who have screened the same populations with different markers.

References

Bentzen, P. University of Washington Marine Molecular Biotechnology Lab. 3707 Brooklyn Ave. N.E. \#175, Seattle Wa. 98105-6715.

Burger, C.V., and W.J. Spearman. 1996. Submitted. Genetic differentiation of sockeye salmon subpopulations from a geologically young Alaskan lake system.
Callen, D.F., A.D. Thompson, Y. Shen, H.A. Phillips, R.I. Richards, J.C. Mulley and G.R.
Sutherland. 1993. Incidence and origin of "null" alleles in the (AC)n microsatellite markers. Am. J. Hum. Genet. 52:922-927
Estoup, A., P. Presa, F. Kreig, D. Vaiman and R. Guyomard. 1993. (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71:488-496.

Forbes, S.H., J.T. Hogg, F.C. Buchanan, A.M. Crawford and F.W. Allendorf. 1995. Mocrosatellite evolution in congeneric mammals: domestic and bighorn sheep. Mol. Biol. Evol. 12(6):11061113.

Felsenstein J. 1993. PHYLIP ver 3.5c. Distributed by author. Department of Genetics, University of Washington, Seattle.
Hedgecock, D., M.A. Banks, B.A.Baldwin, D.J. McGoldrick and S.M. Blankenship. In press. Pedigree analysis of captive brood stock for an endangered chinook salmon, using simple tandem-repeat DNA polymorhisms.
Hoelzel, A.R., and A. Green. 1994. Analysis of population-level variation by sequencing PCRamplified DNA. In A.R. Hoelzel (ed). Molecular Genetic Analysis of Populations. A Practical Approach. Oxford University Press. pp. 159-186
McConnell, S.K., P. O’Reilly, L. Hamilton, J.M. Wright, and P. Bentzen. 1995. Polymorphic microsatelite loci from Atlantic salmon (Salmo salar): genetic differentiation of north American and European populations. Can. J. Fish. Aquat. Sci. 52:1863-1872.
O'Reilly, P.T., L.C. Hamilton, S.K. McConnell and J.M. Wright. In press. Rapid detection of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites.
Pepin, L., Y. Amigues, A. Lepingle, J. Berthier, A. Bensiad and D. Vaiman. 1995. Sequence conservation of microsatellites between Bos taurus (cattle), and Capra hircus (goat) and related species. Examples of use in parentage testing and phylogeny analysis. Heredity 74:53-61.
Perkin Elmer. 1995. GeneScan ${ }_{T M}$ chemisrty guide. 94 pp
Raymond, M. and F. Rousset. 1994. GENEPOP manual version 1.1. Laboratoire de Genetique et Environment URA CNRS 327 Institut des Sciences de l'Evolution CC 065, USTL Place E. Bataillon 34095 Montpellier cedex 05, France.
Sakamoto, T., N. Okamoto, Y., Nakamura and T. Sato. 1994. Dinucleotide-repeat polymorphism in DNA of rainbow trout and its application in fisheries science. J. Fish Biol. 44:1093-1096.
Scribner, K. 1996. In press. Can. J. Fish. Aquat. Sci.
Urquhart, A., N.J. Oldroyd, C.P. Kimpton, and P. Gill. 1995. Highly discriminating heptaplex short tandem repeat PCR system for forensic identification. Biotechniques 18:116-121.
Weir, B.S. and C.C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:1358-1370.
Wright, J.M. 1992. DNA Fingerprinting in Fishes. In: Hochachka and Mommsen (eds). Biochemistry and Molecular Biology of Fishes, Vol. 2. Elsevier Science Publishers B.V.
Wright, J.M. and P. Bentzen. 1994. Microsatellites: genetic markers for the future. Reviews in Fish Biology and Fisheries 4:384-388.

Table 1: Sockeye salmon (Oncorhynchus nerka) microsatellite screening log

Primer	Primer Sequence Source	Size Range of product	Anneal (oC)	$\begin{gathered} \mathrm{MgCl} \\ \mathrm{mM} \end{gathered}$	Primer (uM)	PCR Profile	Product Qual II	Amidite Color Lahel Display	Source Species
FgIF	5'-AGA-TTT-ACC-CAG-CCA-GGT-AG Sakamoto et al. 1993	190-200	56	1.5	0.3	A	1		Oncorhynchus
Fgir	5-CAT-AGT-CTG-AAC-AGG-GAC-AG								mykiss
Omy 77 F	5'-CGT-TCT-CTA-CTG-AGT-CAT Bentzen, (pers. com.)	N/A	51	1.5	0.3	A	5		Oncorlyynchus
Omy 77 R	5'-GGG-TCT-TTA-AGG-CIT-CAC-TGC-A								mykiss
	月58								
Gotem	3 hitract Sh								
$\begin{aligned} & \text { Ots6F } \\ & \text { Ois6R } \\ & \hline \end{aligned}$	5'-TCT-CTT-CCA-GCA-CCA-CAC-A 5'-AGA-CAG-TIT-TTC-CAC-ATC-C	N/A	60	1.5	0.3	A	5		Oncorhynchus ishawylscha
PuPuPyF PuPuPyR	5' ATG-CAG-CGG-ATG-TAG-GGG-GA 5'-TTA-AGT-GAA-AAG-ACG-TAA-GTC Bentzen, (pers. com.)	N/A	52	1.5	0.3	A	5		Oncorhynchus mykiss
$\begin{aligned} & \text { Ssa4F } \\ & \text { Ssa4R } \end{aligned}$	5'-ATT-AGG-CAG-CAG-CAG-GCT-GC McConnell et al. 1995 5'-TGT-TCA-CTC-ACT-GAC-ACG-CG	120	57	1.5	0.3	A	2		Salino salar
$\begin{aligned} & \text { Ssa85F } \\ & \text { Ssa85R } \end{aligned}$	5'-AGG-TGG-GTC-CTC-CAA-GCT-AC O'Reilly et al. in press 5'ACC-CGC-TCC-TCA-CTT-AAT-C	140	58	1.5	0.3	A	2		Salmo salar
$\begin{aligned} & \text { Ssa171F } \\ & \text { Ssa171R } \end{aligned}$	5'-TTA-TTA-TCC-AAA-GGG-GTC-AAA-A O'Reilly et al. in press 5'-GAG-GTC-GCT-GGG-GTT-TAC-TAT	N/A	58	1.5	0.3	A	5		Salmo salar
$\begin{aligned} & \mathrm{Ssa} 202 \mathrm{~F} \\ & \mathrm{Ssa} 202 \mathrm{R} \end{aligned}$	5'-CTT-GGA-ATA-TCT-AGA-ATA-TGG-C O'Reilly et al. in press 5'-TTC-ATG-TGT-TAA-TGT-TGC-GTG	N/A	58	1.5	0.3	A	5		Salmo salar
		$6{ }^{6}{ }^{6}$	5	${ }^{[15}{ }^{4}$	080				
$\begin{aligned} & \text { Str60F } \\ & \text { Sur60R } \end{aligned}$	5'-CGG-TGT-GCT-TGT-CAG-GTT-TC \quad Estoup et al. 1993 5'-GTC-AAG-TCA-GCA-AGC-CTC-AC	120	57	1.5	0.3	A	1		Salmo trulta
$\begin{aligned} & \text { Str73F } \\ & \operatorname{Str} 73 \mathrm{R} \\ & \hline \end{aligned}$	5'-CCT-GGA-GAT-CCT-CCA-GCA-GGA Estoup et al. 1993 5'-CTA-TTC-TGC-TTG-TAA-CTA-GAC-CTA	130	58	1.5	0.3	A	2		$\begin{aligned} & \text { Salmo } \\ & \text { trutia } \\ & \hline \end{aligned}$

Product Quality (After Pepin et al. 1995):
I- strong amplification with one or two bands and no smearing.
2 - weak to moderate amplification with one or two bands and/or some smearing.
3 - multiple bands and no smearing.
4- multiple bands and smearing.
5 - no amplification at all.

PCR profile A :
1X- $94^{\circ}(120 \mathrm{~s})$
$7 \mathrm{X}-\left(94^{\circ}(60 \mathrm{~s})+\mathrm{XX}^{0}(30 \mathrm{~s})+72^{\circ}(15 \mathrm{~s})\right)$
$18 \mathrm{X}-\left(94^{\circ}(30 \mathrm{~s})+\mathrm{XX}^{\circ}(30 \mathrm{~s})+72^{\circ}(15 \mathrm{~s})\right)$
4° (Hold)

Table 2. Allele number (A), observed heterozygosity (H_{O}), and expected heterozygosity (H_{E}) at four microsatellite loci in Cook Inlet sockeye salmon. (P) is the statistical P-value (probability that H_{O} and H_{E} are statistically similiar). S.E. is the standard error of $(\mathrm{P}) 1 \backslash$.

Moose Creek							Russian River						Skilak Lake						Yentna River					
Locus 21	n	A	H_{0}	H_{E}	(P)	S.E.	n	A	H_{0}	H_{E}	(P)	S.E.	n	A	H_{0}	H_{E}	(P)	S.E.	n	A	H_{0}	H_{E}	(P)	S.E.
Oneu1	50	2	0.20	0.18	1.00		50	1	0.00	0.00	*	*	50	3	0.24	0.22	1.00		50	3	0.38	0.40	0.79	
Oneu2	50	10	0.76	0.80	0.15	0.01	50	6	0.38	0.40	0.53	0.01	48	9	0.90	0.83	0.59	0.01	50	7	0.68	0.72	0.70	0.01
Oneull	50	3	0.46	0.43	0.35		50	3	0.36	0.45	0.08		50	4	0.42	0.42	0.74		50	3	0.58	0.65	0.15	
Oneul4	50	8	0.64	0.67	0.72	0.01	50	5	0.52	0.51	0.48	0.01	50	8	0.54	0.55	0.17	0.01	50	5	0.38	0.38	0.35	0.01
Ssa293	43	4	0.28	0.70	0.00		41	5	0.10	0.57	0.00	0.00	40	9	0.25	0.76	0.00	0.00	41	8	0.34	0.59	0.00	0.00
Avg./Pop		5.8	0.52	0.52				3.8	0.32	0.34				6.0	0.52	0.51				4.5	0.51	0.54		

II Standard error values are provided for those loci in which the Markov-chain method was used to estimate P.
$2 \backslash$ Average/population data does not include Ssa293.

Table 3. Results of the pairwise test of independence between populations and allelic composition. The P -value is the probability that two populations have similar allele frequencies. S.E. is the standard error of the P-value estimate

	Oneul							
P-value	S.E.	Oneu2 P-value		S.E.	Onell P-value	S.E.	P-value	S.E.
Moose Ck x Russian R	0.0008	0.0006	0.0000	0.0000	0.5669	0.0141	0.0000	0.0000
Moose Ck x Skilak L	0.3503	0.0094	0.0534	0.0077	0.0035	0.0012	0.0025	0.0014
Moose Ck x Yentna R	0.0041	0.0022	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Russian R x Skilak L	0.0006	0.0004	0.0000	0.0000	0.0875	0.0068	0.0000	0.0000
Russian R x Yentna R	0.0000	0.0000	0.0000	0.0000	0.0002	0.0002	0.0000	0.0000
Skilak L x Yentna R	0.0009	0.0007	0.0010	0.0008	0.0000	0.0000	0.0227	0.0000
All Populations	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Table 4. F ST $^{\text {according to Weir and Cockerham (1984) }}$

Locus	$\mathrm{F}_{\text {ST }}$
Oneul	0.100
Oneu2	0.085
Oneull	0.068
Oneu14	0.042
All Loci	0.071
$95 \% \mathrm{CI}$	$0.049-0.092$

Figure 1. Map of Cook Inlet showing Moose Creek, Skilak Lake, Russian River, and Yentna River.

Ruscian R .	Oneul Oneu2			Oneul4
Yentiar.				
ω				
Skilak 1.x				

Figure 2. Allete frequency distributions for four microsatellite loci in four poputations of Cook Inlet sockeye salmon.

C)

Figure 3. Genetic relatedness among four populations of Cook Inlet sockeye salmon calculated from allele frequencies at four microsatellite loci. A) Cluster analysis (UPGMA) of Nei's genetic distance. B) Cluster analysis (Neighbor-Joining) of Nei's genetic distance. C) Maximum likelyhood analysis of allele frequencies. Numbers at branches indicate relative genetic distance.

[^0]: ${ }^{1}$ Genotypes in this category have a probability of less than 1.0×10^{-10} of belonging to any population in the baseline.

[^1]: ${ }^{1}$ Genotypes in this category have a probability of less than 1.0×10^{-10} of belonging to any population in the baseline.

