Exxon Valdez Oil Spill Restoration Project Annual Report

Sockeye Salmon Overescapement

Restoration Project 94258 Annual Report

This annual report has been prepared for peer review as part of the *Exxon Valdez* Oil Spill Trustee Council restoration program for the purpose of assessing project progress. Peer review comments have not been addressed in this annual report.

Dana C. Schmidt Kenneth E. Tarbox Bruce M. Barrett Gary B. Kyle Jim A. Edmundson Bruce E. King Steven G. Honnald Linda K. Brannian Charles O. Swanton Patrick Shields John M. Edmundson Patricia A. Roche Stan R.Carlson

Alaska Department of Fish and Game Commercial Fisheries Management and Development Division 34828 Kalifornsky Beach Road Soldotna, Alaska 99669

April 1995

Sockeye Salmon Overescapement

Restoration Project 94258 Final Report

Study History: Restoration Project 94258 continues the study effort initiated in 1990 with Fish/Shellfish 27 (same title), which continued until 1992. In 1993, the effort continued with Restoration Project 93002.

Abstract: We provide a continuing examination of the effects of large escapements of sockeye salmon into the Kenai River system and into Red and Akalura lakes on Kodiak Island. Larger than anticipated adult returns to the Kenai River in 1994 suggest earlier reported smolt numbers were underestimated for at least the 1989 brood year. Fall fry from Skilak and Kenai lakes in 1993 were smaller and had less lipid content than Tustumena Lake fry, while spring fry samples indicated major decreases in fat content in Tustumena Lake fry while Skilak Lake fry showed little change. Mortality coupled with some early spring growth in Skilak Lake apparently explains these differences. Spawner abundances from the mainstem Kenai River are correlated with Skilak Lake fall fry size. This suggests a density dependent relationship with escapement into the Kenai River system. The effect of this density dependence on smolt production and subsequent adult returns requires data from returning adults in 1995 and 1996 due to uncertainty of Kenai River smolt esimates from the primary smolt age class migrating out of the system in 1992-93.

Key Words: Escapement, Kenai River, Kodiak Island, lake ecosystems, limnology, Oncorhynchus nerka, overescapement, overwinter survival, rearing, smolt production, sockeye salmon.

Citation:

Schmidt, D.C., K.E. Tarbox, B.M. Barrett, G.B. Kyle, J.A. Edmundson, B.E. King, S.G. Honnald, L.K. Brannian, C.O. Swanton, P. Shields, J.M. Edmundson, P.A. Roche, and S.R. Carlson. 1995. Sockeye salmon overescapement, *Exxon Valdez* Oil Spill Restoration Project Annual Report (Restoration Project 94258), Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Soldotna, Alaska. **REPORT NOTE:** This is a report of studies that are in progress. All data and analyses provided are incomplete and preliminary. This report, as well as the data and analyses contained in the report, should not be cited without an express statement of the incomplete and preliminary nature of the information.

TABLE OF CONTENTS

STUDY HISTORY/ABSTRACT/KEY WORDS/CITATION	i
LIST OF TABLES	iv
LIST OF FIGURES.	
EXECUTIVE SUMMARY	
INTRODUCTION	
OBJECTIVES	3
METHODS	
Adult Sockeye Salmon Escapement Assessment	
Juvenile Sockeye Salmon Assessment	
Sockeye Salmon Smolt Enumeration	
Limnological Studies	
RESULTS AND DISCUSSION	6
Kenai River System Investigations	6
Adult Returns and Escapement	
Smolt Production	
Fry Production	
Limnological Studies	
Kodiak Lake Investigations	
Adults Returns.	
Smolt Abundance, Size, and Age	
Red Lake	
Akalura Lake	
Frazer Lke	
STATUS OF INJURY ASSESSMENT	9
	-
LITERATURE CITED	11
APPENDICES A-H	1 to H-1

Page

LIST OF TABLES

Table 1. Kenai River smolt production by age class. 1	
Table 2. Kenai River smolt age composition summary	.6
Table 3. Kasilof River escapement and smolt production summary by brood year	
Table 4. Kasilof River smolt age class summary. 1	.7
Table 5. Kasilof River smolt fork length by outmigration year. 1	.8
Table 6. Kenai Peninsula lakes fall fry data summary	9
Table 7. Comparison of copepod biomass and fall density of juvenile sockeye salmon inTustumena and Skilak Lakes, Kenai Peninsula, Alaska	20
Table 8. Sockeye salmon smolt estimates by age by brood year escapement for Red Lake,1986-94.2	21
Table 9. Sockeye salmon smolt estimates by brood year escapement for Akalura Lake, 1986-93 2	21
Table 10. Frazer Lake smolt abundance data and escapements. 2	22
Table 11. Sockeye salmon smolt estimates by age for each year for Red Lake,1986-932	22
Table 12. Mean lengths of sockeye salmon smolt by age and year for the Kodiak systems,1990-942	23
Table 13. Mean weights of sockeye salmon smolt by age and year for the Kodiak systems,1990-94.2	24
Table 14. Sockeye salmon smolt estimates by age for each year for Akalura Lake, 1986-93 2	25
Table 15. Sockeye salmon smolt estimates by age for each year and by brood year escapement for Frazer Lake, 1986-93 2	25
Table 16. Tow net results from September, 1994 in Red and Frazer Lakes, Kodiak 2	25

LIST OF FIGURES

Figure 1. Location of Kenai and Kasilof Rivers, Upper Cook Inlet, Alaska.	26
Figure 2. Kodiak study lakes, Alaska	27
Figure 3. Summary of sonar count sockeye salmon escapements and historical escapement goal ranges for the Kenai River	28
Figure 4. Summary of sonar count sockeye salmon escapements and historical escapement goal ranges for the Kasilof River.	29
Figure 5. Relationship between the number of fall fry in Kenai and Skilak Lakes and mainstem potential egg deposition.	30
Figure 6. Relationship of Kenai River sockeye salmon spawning escapement to average weight of 0+ fall fry in Skilak Lake, Alaska	31
Figure 7. Seasonal turbidity fluctuations in Skilak Lake, Stations A, B, and C	32
Figure 8. Inter-annual variation in Skilak Lake mean seasonal biomass	33
Figure 9. The relationship of fall fry mean wet weight versus relative zooplankton biomass are compared for Tustema (1986-94) and Skilak (1987-94) Lakes	34

EXECUTIVE SUMMARY

This status report is the fifth in a series describing progress on studies conducted of the effect of overescapement on the production of sockeye salmon from selected major rearing lakes impacted by the Exxon *Valdez* oil spill. Large escapements can result in the over abundance of juvenile salmon rearing in lakes. By exceeding the rearing capacity, prey resources are altered through changes in species, size composition, and biomass (Koenings and Burkett 1987; Kyle et al. 1988; Koenings and Kyle 1991). In some sockeye salmon systems, escapements of two to three times normal levels create major changes in nursery lakes which affect the abundance, size, and age structure of sockeye salmon smolts. These alterations to nursery lakes may be sustained and adversely affect productivity in succeeding years. We report an update on the results of studies of the 1989 overescapement event caused by the presence of oil on the fishing grounds.

Preliminary data are available on the 1994 smolt production, including size, age structure, and abundance. Adult returns in 1994 from predominantly the 1989 brood year were much higher than forecasts based on the smolt data. This suggests that the smolt numbers were underestimated in 1991. Projected returns from future smolt estimates will have a high degreee of uncertainty and the amount of damages incurred will await adult returns. The smolt estimates for 1994 were up significantly however, suggesting production in the future may be recovering. The pre-smolt however, indicated very low fat content and apparently significant mortality when compared with smolt produced from Tustumena Lake. The Red Lake system demonstrated low numbers of smolt outmigrating in 1994 although lake fry abudnance appeared to be significantly higher. Akalura Lake also had low numbers of smolt and showed continuing poor production.

Further analysis of density related affects in Skilak Lake indicate that low return per spawner and fall weight and lipid content are related to escapements. Because of the uncertainty of the smolt numbers, the effect of these larges escapements on adult production is uncertain. Therefore, detailed studies recommended in the 1994 status report have been delayed for one year, pending the adult return for 1995.

INTRODUCTION

Following the Exxon *Valdez* oil spill (EVOS) in 1989, the presence of oil in the waters of traditional fishing areas in the Gulf of Alaska resulted in the closure of many commercial fisheries. This resulted in the escapement of large numbers of sockeye salmon (*Oncorhynchus nerka*) into some freshwater systems. EVOS-funded studies on the impact of large escapements on future sockeye salmon production were initiated in 1990. Specifically, these investigations assessed impacts to the production and ecology of major sockeye salmon rearing lakes on Kodiak Island and the Kenai Peninsula (Figures 1 and 2).

In the Kodiak Island area, 1989 Red Lake sockeye salmon escapement was 768,000, more than twice the management goal of 200,000 to 300,000. At Akalura Lake, the escapement was 116,000, about twice the 40,000 to 60,000 goal range. However, not all Kodiak systems received higher-than-average escapements. For example, nearby Upper Station Lake had a 286,000 escapement, which is reasonably close to the 200,000 to 275,000 goal.

The Kenai Peninsula in Southcentral Alaska contains several major glacial lakes that have produced large runs of sockeye salmon over the past decade. From 1987 to 1989, escapements of adults into the Kenai River system were approximately double those of previous years, and double the Alaska Department of Fish and Game's management goal of 550,000 adults.

High densities of planktivorous fish can exert top-down control over lower trophic levels, and measurable ecosystem changes within the affected lakes were expected to occur. For example, major forage items within the zooplankton community may be reduced or eliminated, prey item body-sizes may be reduced and preferred food items may be replaced by forms resistant to predation. Kyle et al. (1988) found that large sockeye escapements into Frazer Lake on Kodiak Island resulted in subsequent reductions in smolt size that was correlated to a depressed zooplankton community.

Density-dependent mechanisms may decrease production whereby predation exhausts or alters the availability of the food resources. This reduction in food resources may subsequently lead to decreased survival. Alternatively, climatic variation, such as extended winters could be a primary or an associated cause of poor survival.

Although measuring the magnitude of fish production is a high priority, the measurement of nutrients and the zooplankton community provides information to support potential rehabilitation programs required to restore lost productivity. Therefore, our investigations examined the availability of food resources to sockeye salmon fry in five glacial lake systems on the Kenai Peninsula and three clearwater lakes on Kodiak Island. Our studies attempt to link measurements of the food supply in these lakes with the fall condition and survival of juvenile sockeye salmon. These data also are essential to determine if production changes in fish are related to density rather than climatic or other non-density dependent factors.

This report provides interim observations as to changes that occurred in the biological, physical, and chemical properties during the course of these studies and relies on other investigations for comparative purposes. We also provide preliminary analyses of some of these data with the intent of determining if existing monitoring programs are adequate to measure the biological responses and provide evidence as to the cause of observed changes. Therefore, this report is not complete as sample analysis and data availability are time-dependent (for example adult returns lag 3-5 years from the time of juvenile measurements to estimate survival). It is not intended to be a comprehensive analysis but an overview of studies in progress. In addition, detailed methods and results for some portions of the study are presented in companion reports. These are referenced for further information. In addition, supporting data (e.g., adult run size estimates by river of origin) which are critical to these investigations are conducted and reported independently by ADF&G.

OBJECTIVES

The objectives of this study are to:

- 1. measure critical biological attributes (number, age, size) of juvenile sockeye salmon in the nursery lakes of the Kenai Peninsula and Kodiak Island;
- 2. estimate the biological effects on juvenile sockeye salmon production and subsequent adult returns for brood years with large spawning escapements; and
- 3. measure and prepare nutrient budgets, estimate plankton populations, and measure physical and chemical parameters in the nursery lakes.

Although not included in the original study plan, the collected data inherently provides an opportunity to examine the feasibility of alternative restoration methods.

METHODS

Adult Sockeye Salmon Assessment

Escapements of sockeye salmon were estimated by weirs at Red, Upper Station, and Akalura lakes. Escapement into the Kenai and Kasilof rivers was estimated by sonar counters using fish wheels for capturing fish samples for species apportionment, sex ratios, and size data (King and Tarbox 1991). Sockeye salmon spawners in the Kenai River were estimated from the sonar counts minus the estimated sport fishing harvests above the counting sites. Kenai River spawner estimates were further adjusted by removing escapement estimates from the Russian River and Hidden Lake (weir adults in the fisheries and spawning populations. Standard methods of scale sampling and aging were used.

Juvenile Sockeye Salmon Assessment

For each of the three lake studies on the Kenai Peninsula, the abundance, size and freshwater age of juveniles were estimated through hydroacoustic surveys combined with tow net sampling Detailed survey methods are documented for the Kenai River lakes in Tarbox and King (1992) and for Tustumena Lake in Kyle (1992). Since 1992, hydroacoustic surveys were conducted only on the Kenai Peninsula lakes.

Additional collections of hydroacoustic data and its analysis to determine the vertical distribution of sockeye salmon juveniles within Skilak, Kenai, and Tustumena lakes were initiated in 1992. One of the hydroacoustic transects used in the fall 1992 was surveyed again in May 1993 on Skilak Lake. Multiple recordings of hydroacoustic data from this same transect were obtained from twilight through darkness to determine diel changes in distribution of fry (Appendix A details the 1993 and 1994 Skilak and Kenai Lakes hydroacoustic methods and results).

A hydroacoustic survey of Upper Russian Lake was conducted on 14 September 1994. The survey consisted of 14 orthoganal transects and the data collected with the same equipment as in Skilak and Kenai Lakes. The data were analyzed by a combination of echo integration and echo counting. Counts were made in 8 depth strata. Detailed methods and results from this investigation are reported in Thorne (1994).

Freshwater growth and age of juvenile sockeye salmon from all study systems were determined from scale and otolith measurements made either by direct visual analysis of scales or from otoliths with an optical pattern recognition system. Sampling of fry using a closing net system designed by Biosonics Inc. was deployed in the summer and fall of 1994 in Skilak and Kenai Lake. This provided size and age data at different depth and area strata; stratified sampling methods were used to estimate fry age, weight, and length.

Lipid analyses for the 1994 sampling year are being conducted by the Palmer Laboratory of the University of Alaska using the methods described by Randall (1974). Because of contractual issues and delays which were beyond the control of the investigators these analyses have not been completed. Results will be reported in future reports.

Sockeye Salmon Smolt Enumeration

The total number of sockeye salmon smolt (with 95% confidence intervals) migrating from each of the lake systems in 1990-1994 was estimated by a mark-recapture technique (Rawson 1984). At regular intervals, a sample of sockeye salmon smolt was marked with Bismark Brown dye and released upstream. Recovery rates of the dyed fish were used to estimate trap efficiency. This efficiency rate was then applied to estimate the total smolt outmigration. Methods deviated slightly each year but specific details of sampling are available in Barrett et al. (1993a) for the Kodiak lakes, in King et al. (1991) for the Kenai River, and in Kyle (1992) for the Kasilof River. King et al. (1994; in Appendix A) described the procedures used to estimate smolt abundance in the mainstem Kenai River and Russian River.

Subsamples of smolts from Kodiak Island were stored frozen and sent to the University of Alaska Fairbanks to determine the relative levels of marine versus terrestrial nitrogen from selected Kodiak Island systems. These samples were taken to determine the effects of carcass nutrient additions in maintaining the productivity of Red Lake. These sample sets will be reported in the final report or in a later progress report.

Limnological Studies

Limnological sampling has been conducted in the Tustumena Lake at three stations since 1981. Two stations were sampled from Skilak and Kenai Lakes from 1986-1989, and beginning in 1990 three stations were used to collect limnological parameters. Zooplankton data were collected from Skilak Lake at five stations in 1990, 10 in 1991, and three in 1992, 1993, and 1994. Zooplankton samples from Kenai Lake were collected at three stations during 1990-1994.

Limnological data were collected from three stations in Red Lake, two stations in Akalura Lake, and two stations in Upper Station Lake. Samples were collected at about three-week intervals on each lake during May through October. Study site locations, sampling dates, physical, chemical and biological parameters, and data summaries are provided in Appendix A of Schmidt and Tarbox (1993).

Water nutrients and basic physical parameters, chlorophyll a, and zooplankton samples were analyzed at the State of Alaska's Limnology Laboratory located in Soldotna. Analytical procedures followed standardized laboratory and quality assurance methods (Koenings et al. 1987). In cases where prior years' data are available, limnological parameters during residence of juveniles from the 1987-89 escapements were compared to parameters during prior years.

To collect quantitative data representative of the vertical distribution of the zooplankton community, a closing zooplankton net was utilized. The net is constructed of $153-\mu$ Nitex mesh with a 0.5-m stainless steel ring at the mouth and a 200-ml collection bucket. Essentially, this netting procedure is identical to the methods used for collecting water column zooplankton samples used for biomass estimates. The net is vertically lowered to the desired depth as measured with a tow line marked in 1-m increments. After vertically retrieving a 5- or 10-m tow, the line is sharply jerked triggering the release of a closure mechanism at the opening of the net. Triggering this mechanism causes the net to fold over on itself stopping any further collection of zooplankton.

After the collection bucket is thoroughly rinsed with distilled water, the release mechanism is reset and the net lowered to the depth at which collection had previously been halted.

RESULTS AND DISCUSSION

Kenai River System Investigations

Adults Returns and Escapement

Major departures from the established escapement goals in the Kenai River occurred during 1987-1989 (Figure 3). The 1989 event corresponded with closures associated with the *Exxon Valdez* oil spill. Escapements did not greatly exceed targeted values in the nearby Kasilof River/Tustumena Lake sockeye system during this same time period and was the primary reason this system has been studied has been used for comparison.

Since 1991 escapements into the Kenai River have exceeded the goal range (Figure 3). In contrast, the Kasilof River system has been managed to achieve the desired goal (Figure 4).

Smolt Production

Detailed study results are listed in King et al. (1991) and King et al. (1994, in Appendix A), for the Kenai River smolt investigations and in Kyle (1992) and Todd and Kyle (1992, 1994) for the Kasilof River smolt investigations. The abundance and population characteristics of smolts which migrated from the Kenai and Kasile Rivers are presented in Tables 1-5, respectively. The adult returns in 1994 to the Kenai River setted the Kenai mainstem smolt estimates were substantially below the number which actually grated. An estimated 3.1 million smolt were produced by the 1989 brood year. However, a set of smolt numbers was not produced from the 1994 trap data (individual trap data are presented in Appendix A). The mainstem smolt program has been discontinued in 1995.

Fry Production

The juvenile sockeye salmon production within Kenai and Skilak Lakes as reflected by fall fry abundance are reported in Tarbox and Brannian (1995; Appendix C). The fall fry abundance generally reflects escapement levels (Figure 5).

Fall fry length and weight data from Skilak, Kenai, and Tustumena Lakes are presented in Table 6. The Skilak and Kenai Lake fall fry are generally smaller than in Tustumena Lake. Figure 6 illustrates the relationship between estimated mainstem spawner abundance and fall fry weight in Skilak Lake.

During 1993 and 1994, preliminary side looking hydroacoustic data collected in July indicated near surface daylight schooling aggregations of sockeye salmon in Skilak Lake. These aggregations did not occur in Tustumena Lake. The schools dispersed at dusk and were generally not apparent from downward looking sonar (Appendix D has examples of the echo grams which show this pattern). Examination of sockeye salmon fry stomachs before dusk and after dark were inconclusive relative

to this being a period of increased feeding (Appendix E presents limited food habit data analysed to date).

Contrary to earlier inferences from downward looking acoustic tranducer orientation (Schmidt and Tarbox 1993) DVM in juvenile sockeye in Skilak Lake may not occur. Dusk and night dispersions from near surface schools may provide the appearance of DVM when only down looking acoustic data are used (a full discussion of schooling behavior and results will be presented in future reports). This phenomena did not affect the September population estimates. Fish schools were deeper in the water column and dispersion makes them more available for acoustic enumeration.

In 1994, fall hydroacoustic estimate of Russian River sockeye salmon was 1,645,000 fish. This represents mid-water estimate only. No corrections were made for surface orientation.

Extensive tow netting in Skilak Lake in 1993 and 1994 indicated that there was evidence of differences among sampling areas and between depth increments in sockeye salmon fry age structure, size of age-0 fry, and species composition. The two types of gear tested (single boat vs. two boat) gave similar results. Results indicate that daytime tows by area and depth should be undertaken for use in allocation of hydroacoustic targets to species composition and age structure of sockeye salmon fry. Summary memos from Stan Carlson on the results of the 1993 and 1994 tow netting program is attached in Appendix F.

Limnological Studies

In the previous progress report (Schmidt and Tarbox 1993) we established that standing crop biomass of zooplankton in Skilak Lake had changed modestly and water quality parameters had only modest changes. For example, Figure 7 illustrates seasonal fluctuations of the turbidity values from Skilak Lake during the study. The relatively short period of this time series does not afford more detailed analysis relating to growth or survival of Skilak Lake sockeye salmon fry. Limnological data collected in 1994 are presented in Appendix G.

Figure 8 illustrates the trend in biomass of the two dominant copepod species through 1994 (specific station data are presented in Appendix G). *Cyclops* had an apparent increase in abundance in 1993,. However, both *Cyclops* and *Diaptomus* decreased in abundance in 1994.

Table 7 summarizes the relationship of zooplankton densities to fall juvenile sockeye salmon densities in Skilak and Tustumena Lakes. Only in 1993 and 1994 has the biomass of zooplankton per fall fry in Tustumena Lake exceeded that of Skilak Lake. Figure 9 illustrates the relationship of this relative measure of zooplankton density to fall fry weight in Skilak Lake from 1987-94 and in Tustumena Lake from 1986-94. We lack accurate measurements of fall weights prior to 1987 in Skilak Lake to extend this time series, while in Tustumena Lake the stocking of approximately 18 million spring fed fry into this system invalidated any extension of this time series into early years.

Our hypothesis is that fish fall weights are determined by some other factor than the relative abundance of prey throughout the growing season. We suspect that DVM of the zooplankton

(Schmidt et al. 1994) contribute to the differences in apparent growth rates of juvenile sockeye salmon observed between these two lakes. Thus, the availablity of prey is the issue.

Kodiak Lake Investigations

Adult returns

Sockeye salmon escapements to Red Lake were 380,181 fish in 1994. This is approximately 100,000 greater than 1993 and 50% of the escapement realized in 1989 (Table 8). Akalura Lake escapement was 30,692 sockeye salmon which was one half the 1993 escapement and one fourth the 1989 escapement (Table 9). Frazer Lake sockeye salmon escapement was 206,071 fish in 1994 which was close to the historical range since 1989 (Table 10).

Smolt Abundance, Size, and Age

The following information was taken from Swanton et al. (1995), and condensed for this report.

Red Lake

In 1994, an estimated $562,690 \pm 90,385$ sockeye salmon smolt migrated from Red Lake, which was ~34% less than the 1990-94 average (Table 11). Age-2 smolt from the 1991 brood year were most abundant (92% of the total), followed by age-1 smolt (7%). The average length and weight of smolt in 1994 were within the range observed for the 1990-93 period (Tables 12 and 13). The total number of sockeye salmon smolt produced from the 768,000 escapement of 1989 is an estimated 1.6 million fish (Table 8). This respresents a 4-fold increase in smolt compared to the estimate for the 1988 brood year, and a 7-fold increase over the 1990 brood year.

Akalura Lake

The 1994 sockeye salmon smolt migration estimate for Akalura Lake was $170,172 \pm 39,261$, which was 0.1 million less than the average for 1990-93 (Table 14). Age-2 smolt were the most abundant comprising 53% of the estimate. In 1994, age-1 smolt averaged about 14 mm and 2.9 g greater than the average from 1990-93 migrations. The average sizes of both age-2 and age-3 smolts in 1994 were larger in length and weight than the average over 1990-93 (Tables 12 and 13). Brood years 1987 and 1988 both produced about twice the smolts than the 1989 brood year (Table 9). Also, the 1990 brood year produced fewer smolt (about 50% less) than the 1989 brood year. Presently, the causal mechanism for continued depressed smolt production is unknown, although several hypotheses have been forwarded (Edmundson et al. 1994).

Frazer Lake

The 1994 Frazer Lake sockeye salmon smolt outmigration was estimated at $5,902,863 \pm 617,638$ smolts which was 39% less than during 1993 but closely associated with the number of smolts outmigrating in 1991-92 (Table 15). This migration was dominated by age-2 (78.1%) and age-1 (12.3%) smolts with a substantial reduction in age-3 smolt numbers from 1993. That is, in 1991 age-1 smolt comprised 40% and age-2 smolt comprised 59% of the emigration, whereas in 1992 age-2 comprised 89% of the total population. In 1993, all age classes of smolt were similar in size compared to previous years (Tables 12 and 13). The 1989 brood year escapement produced an estimated 12.9 million smolt from an escapement of 360,000. The 1988 and 1990 brood year escapements produced less than half as many smolt from escapements that were only 22% and 28% less than the 1989 brood year escapement.

STATUS OF INJURY ASSESSMENT

The 1994 studies have provided some question as to the extent of reduction in smolt production in the Kenai River and from Red Lake on Kodiak Island. The Kenai River smolt production has decreased over time and major reductions in run returns from these smolt years are likely. The fall fry data coupled with limited sampling in the spring of 1992 provide support for the contention that overwintering mortality of fry in the lake is primarily responsible for the collapse. The 1993 fall data indicate high abundance and small size of juvenile sockeye salmon in Skilak Lake. In contrast, Tustumena Lake produced record sized fall fry in 1993 with increases in zooplankton densities, suggesting variations in the plankton community and in fish survival are most likely caused by density independent factors. Survival of these two populations would be expected to be different, given the pre-winter condition. As other factors may compound overwinter survival, such as length of winter, and availability spring zooplankton, forecasts of the 1994 smolt production from these systems would expect to have a high degree of uncertainty.

More detailed studies of zooplankton behavior, abundance, and distribution in Skilak Lake in 1993 suggests DVM may decline with increased abundance (and presumably increased competition for food), at least for the copepod Cyclops. The electivity of the feeding habits of fry from limited pre-overescapement gut samples is consistent with the hypothesis of reduced availability of copepods in Skilak Lake. DVM patterns in 1993 provided consistent correlation with spatial abundance and electivity indices of fry collected from the same times and areas. Because the current study approach provides only correlative data, we are recommending that in 1995, an enclosure investigation be initiated to determine the effect of altering sockeye salmon fry densities artificially, coupled with nutrient additions, on growth of juvenile sockeye salmon. These studies will provide the basis further restoration activities to facilitate recovery of Skilak Lake sockeye salmon. These investigations need to be coupled to the ongoing time series monitoring Skilak and Tustumena fry production and overwintering survival, in addition to the dynamics of the zooplankton communities.

Smolt production from Red Lake and Akalura Lake on Kodiak Island continue to be depressed. The decline in size of fry and zooplankton density from Akalura Lake suggests density based affects continue. The 1993 zooplankton abundance estimates for Akalura indicate an increase, which hopefully will be paralleled in increased growth and survival of juvenile sockeye salmon. Investigations of the nutrient status of Akalura Lake indicate sufficient nutrients to negate the value of any nutrient enrichment project. Red Lake appeared to have a recovered zooplankton community. Improved recruitment of juveniles to the lake pelagic system through maintaining adequate escapements should allow this system to restore naturally. Continued smolt monitoring until restoration is completed is recommended.

LITERATURE CITED

- Barrett, M., P.A. Roche, and C.O. Swanton. 1993a. Sockeye salmon Oncorhynchus nerka smolt investigations at Red, Akalura, and Upper Station lakes conducted in response to the 1989 M/V Exxon Valdez oil spill, 1990-1992. Alaska Department of Fish & Game, CF Div., Regional Information Report 4K93-1, Kodiak, AK.
- Barrett, M., P.A. Roche, and C.O. Swanton. 1993b. Sockeye salmon smolt abundance, timing, and growth characteristics for Red, Akalura, Upper Station, and Frazer lakes, 1993. Alaska Department of Fish & Game, CFMD Div., Regional Information Report 4K93-32, Kodiak, AK.
- Belsley, D.A., E. Kuh, and R.E. Welsch. 1980. Regression diagnostics: Identifying influential data and sources of collinearity. John Wiley & Sons, New York.
- Bilton, H.T., and G.L. Robbins 1971. Effects of starvation, feeding, and light period on circulus formation on scales of young sockeye salmon (*Oncorhynchus nerka*). J. Fish. Res. Bd. Canada 28: 1749-1755.
- Bollens, S.M., and B.W. Frost. 1989. Predator-induced diel vertical migration in a planktonic copepod. J. Plankton Res. 11(5), 1047-1065.
- Bollens, S.M., and B.W. Frost. 1991. Diel vertical migration in zooplankton: rapid individual response to predators. J. Plankton Res. 13(6), 1359-1365.
- Carpenter, S.R., J.F. Kitchell, and J.R. Hodgson. 1985. Cascading trophic interactions and lake productivity. Bioscience 35:634-639.
- Clutter, R.I., and L.E. Whitesel 1956. Collection and interpretation of sockeye salmon scales. Int. Pac. Salmon Fish. Comm., Bull. 9. 159 pp.
- Eggers, D.M. 1978. Limnetic feeding behavior of juvenile sockeye salmon in Lake Washington and predator avoidance. Limnol. Oceanogr. 23:1114-1125.
- Enright, J.T. 1977. Diurnal vertical migration: adaptive significance and timing. Part 1. Selective advantage: a metabolic model. Limnol. Oceanogr. 22(5) 856-886.
- Frost, B.W. 1988. Variability and possible adaptive significance of diel vertical migration in *Calanus pacificus*, a planktonic marine copepod. Bull. Mar. Sci, 43(3): 675-694.
- Frost, B.W., and S.M. Bollens. 1992. Variability of diel vertical migration in the marine planktonic copepod *Pseudocalanus newmani* in relation to its predators. Can. J. Fish. Aquat. Sci. 49: 1137-1141.

- Gabriel, W., and B. Thomas. 1988. Vertical migration of zooplankton as an evolutionarily stable strategy. Am. Nat. Vol. 132, pp. 199-216.
- Hairston, N.G. Jr. 1976. Photoprotection by carotenoid pigments in the copepod *Diaptomus* nevadensis. Proc. Nat. Acad. Sci. USA 73(3), pp. 971-974.
- Hairston, N.G. Jr., W.E. Walton, and K.T. Li. 1983. The causes and consequences of sexspecific mortality in a freshwater copepod. Limnol. Oceanogr. 28(5), 935-947.
- Honnold, S.G. 1993. Summary of hydroacoustic and tow netting surveys at Red, Akalura and Upper Station lakes conducted in response to the 1989 M/V Exxon Valdez oilspill, 1990-1992. FRED Technical Report No 131.. Fisheries Rehabilitation, Enhancement, and Development Division, Alaska Department Fish and Game.
- Johnsen, G.H., and P.J. Jakobsen. 1987. The effect of food limitation on vertical migration in Daphnia longispina. Limnol. Oceanogr. 32(4), 873-880.
- King, B.E., and K.E. Tarbox. 1991. Upper Cook Inlet salmon escapement studies, 1990. Alaska Department of Fish and Game Division of Commercial Fisheries Technical Fisheries Report No. 91-21, Juneau, AK.
- King, B.E., L.K. Brannian, and K.E. Tarbox. 1991. Kenai River sockeye salmon smolt studies, 1990-91. Alaska Department of Fish and Game Division of Commercial Fisheries Regional Information Report No. 2S91-8, Anchorage.
- King, B.E., L.K. Brannian, and K.E. Tarbox. In review. Kenai River sockeye salmon smolt studies, 1993. Alaska Department of Fish and Game Division of Commercial Fisheries Management and Development Regional Information Report (In Review). Anchorage.
- Koenings, J.P., and R.D. Burkett. 1987. Population characteristics of sockeye salmon (Oncorhynchus nerka) smolts relative to temperature regimes, euphotic volume, fry density, and forage base within Alaskan lakes. p. 216-234. In H. D. Smith, L. Margolis, and C.C. Wood [ed.] Sockeye salmon (Oncorhynchus nerka) population biology and future management. Can. Spec. Publ. Fish. Aquat. Sci. 96.
- Koenings, J.P., R.D. Burkett, and J.M. Edmundson. 1990. The exclusion of limnetic cladocera from turbid glacier-meltwater lakes. Ecology 71(1)57-67.
- Koenings, J.P., J.E. Edmundson, G.B. Kyle, and J.M. Edmundson. 1987. Limnology field and laboratory manual: methods for assessing aquatic production. Alaska Department of Fish and Game, FRED Division Report Series No. 71:212 p.

- Koenings, J.P., and G.B. Kyle. 1991. Collapsed populations and delayed recovery of zooplankton in response to heavy juvenile sockeye salmon (Oncorhynchus nerka) foraging. (Proceedings: International Symposium on Biological Interactions of Enhanced and Wild Salmonids held at Nanaimo, B. C., Canada). Spec. Publ. Can J. Fish. and Aquat. Sci. In review.
- Kyle, G.B. 1992. Summary of sockeye salmon (*Oncorhynchus nerka*) investigations in Tustumena Lake, 1981-1991. Alaska Department of Fish and Game, Division of Fisheries Rehabilitation, Enhancement and Development Division Report No. 122, Juneau.
- Kyle, G.B., J.P. Koenings, and B.M. Barrett. 1988. Density-dependent, trophic level responses to an introduced run of sockeye salmon (*Oncorhynchus nerka*) at Frazer lake, Kodiak Island, Alaska. Canadian Journal of Fisheries and Aquatic Sciences 45:856-867.
- Lampert, W. 1989. The adaptive significance of diel vertical migration of zooplankton. Functional Ecology 3:21-27.
- LeCren, E.D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (*Perca fluviatilis*). J. Anim. Ecol. 20:201-219.
- Levy, D.A. 1990a. Reciprocal diel vertical migration behavior in planktivores and zooplankton in British Columbia lakes. Can. J. Fish. Aquat. Sci. 47: 1755-1764.
- Levy, D.A. 1990b. Sensory mechanism and selective advantage for diel vertical migration in juvenile sockeye salmon, *Oncorhynchus nerka*. Can. J. Fish. Aquat. Sci. 47: 1796-1802.
- Maly, E.J. 1970. The influence of predation on the adult sex ratios of two copepod species. Limnol. Oceanogr. 15(4), 566-573.
- Neill, W.E. 1990. Induced vertical migration in copepods as a defence against invertebrate predation. Nature, Vol. 345, pp. 524-525.
- Neter, J., W. Wasserman, and M.H. Kutner. 1989. Applied Linear Regression Models. Boston, Irwin, Inc. 667 p.
- Ohman, M.D. 1990. The demographic benefits of diel vertical migration by zooplankton. Ecological Monographs, Vol. 60, No. 3, pp. 257-281.
- Ohman, M.D., B.W. Frost, and E.B. Cohen. 1983. Reverse diel vertical migration: an escape from invertebrate predators. Science, Vol. 220, pp. 1404-1407.
- Olsson, H., P. Blomqvist, and H. Olofsson. 1992. Phytoplankton and zooplankton community structure after nutrient additions to the oligotrophic Lake Hecklan, Sweden. Hydrobiologia 243/244:147-155.

- Randall, E.L. 1974. Improved method for fat and oil analysis by a new process of extraction. Jour. of the AOAC, 57(5):1165-1168.
- Rawson, K. 1984. An estimate of the size of a migrating population of juvenile salmon using an index of trap efficiency obtained by dye marking. Alaska Department of Fish and Game. FRED Div. Rep. Ser. No. 28. Juneau, Alaska. 23 p.
- Roche, P.A. 1992. The estimated incidence of Upper Station late run sockeye salmon in the Alitak Bay District, Inner Akalura Section fishery of 20 August 1992. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K92-34, Kodiak.
- Stirling, D.G., D.J. McQueen, and M.R.S. Johannes. 1990. Vertical migration of *Daphnia* galeata mendotae (Brooks): demographic responses to changes in planktivore abundance. Can. J. Fish. Aquat. Sci. 47:395-400.
- Tarbox, K.E., and B.E. King. 1992. An estimate of juvenile fish densities in Skilak and Kenai Lakes, Alaska through the use of dual beam hydroacoustic techniques in 1990. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fisheries Report No. 92-05, Juneau.
- Tarbox, K.E., and L.K. Brannian. 1993. An estimate of juvenile fish densities in Skilak and Kenai Lakes, Alaska, through the use of dual-beam hydroacoustic techniques in 1992. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development. Tech. Fish. Rep. No 93-2008, Anchorage.
- Thorne, R.E. 1982. Application of hydroacoustic assessment techniques to three lakes with contrasting fish distributions. FAO Fish. Rpt. No. 300:369-277.
- Todd, G.L., and G.B. Kyle. 1992. Tustumena Lake sockeye salmon studies. Alaska Department of Fish and Game. Federal Aid Annual Rep. AFS-50-8. Juneau, Alaska. 28 p.
- Todd, G.L., and G.B. Kyle. 1994. Tustumena Lake project report: Sockeye salmon investigations (Fall 1992-1993). Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 5J94-11, Juneau
- Vuorinen, I., M. Rajasilta, and J. Salo. 1983. Selective predation and habitat shift in a copepod species support for the predation hypothesis. Oecologia (Berlin) 59:62-64.
- Weider, L.J. 1984. Spatial heterogeneity of *Daphnia* genotypes: vertical migration and habitat partitioning. Limnol. Oceanogr. 29(2), 225-235.
- Winfield, I.J., and C.R. Townsend. 1983. The cost of copepod reproduction: increased susceptibility to fish predation. Oecologia (Berlin), 406-411.

- Yanusz, R.J. 1989. Diel vertical migration by sockeye salmon fry and zooplankton in a stained and a glacial lake. Thesis for Master of Science, Univ. Alaska. 84 p.
- Zaret, T.M., and J.S. Suffern. 1976. Vertical migration in zooplankton as a predator avoidance mechanisms. Limnol. Oceanogr. 21(6), 804-813.

Brood	Spawning	Total Nun	Brood year		
Year	Escapement	Age-1.0	Age-2.0	Age-3.0	Total
1986	422,000	a	115,000 ^b	16,000	
1987	1,408,000	24,416,000 ^b	5,807,000 ^b	1,000	30,224,000
1988	910,000	5,249,000 ^b	431,000 ^b	0	5,680,000
1989	1,379,000	2,776,000 ^b	312,000°	0	3,088,000
1990	519,000	253,000°	33,000°	d	284,000
1991	431,000	735,000°	d		
1992	807,000	đ			
1993	697,000	d			
1994	857,000	d			

Table 1. Kenai River smolt production by age class.

^a No data collected.

^b Includes Hidden Lake migration not thought to be captured by the km 31 inclined plane traps.

^C Includes Hidden Lake and Moose River migration not thought to be captured by the km 31 inclined plane traps.

d 1994 migrating smolt numbers were not estimated.

			position (%)		
Smolt Year	Age-0	Age-1	Age-2	Age-3	n
1989	0	99.7	0.3	0	3567
1990	0	46.7	53.1	0.2	3422
1991	0	86.1	13.9	0	3741
1992	0	17.3	82.7	0	981
1993	8.5	88.5	3.0	0	1200
1994	0.7	95.7	3.6	0	2705

Table 2. Kenai River smolt age composition summary.

	Spawner	Numb	ers of smolt w	ith percent hat	chery contribution	
	Escapement	Age-1*1000	% Hatchery	Age-2 *1000	% Hatchery	Total *1000
1981	256,625	6,817	40.7	2,869	20.6	9,686
1982	180,239	11,390	36.3	4,001	7.7	15,391
1983	210,270	12,580	27.8	2,223	11.1	14,803
1984	231,685	5,268	30.2	3,540	31.1	8,808
1985	505,049	1,074	59.2	2,549	17.0	3,623
1986	275,963	2,056	52.0	3,009	10.2	5,065
1987	249,246 ª	3,109	30.3	3,521	3.0	6,630
1988	204,000	3,916	2.0	2,335	1.0	6,25
1989	158,206	2,400	7.0	2,012	1.3	4,412
1990	144,136	2,107	7.5	1,833	3.3	3,940
1991	238,269	7,189	6.3	1,763	1.1	8,952
1992	184,178	7,376	4.7			
1993	149,939	,				•
1994	205,117					

Table 3. Kasilof River escapement and smolt production summary by brood year.

^aBecause of sonar failure, escapement estimates were from stream surveys and spawning stream weir counts above Tustumena Lake. See Kyle (1992) for statistics of smolt abundance precision estimates.

Smolt	<u>% Smolt Age Composition</u>				
Year	n	Age-1	Age-2		
1983	1163	84	16		
1984	1192	80	20		
1985	1263	76	24		
1986	1348	70	30		
1987	1635	23	77		
1988	1275	45	55		
1989	1125	51	49		
1990	1150	53	47		
1991	1018	51	49		
1992	1150	56	44		
1993	942	80	20		
1994	737	81	19		

Table 4. Kasilof River smolt age class summary.

Table 5. Kasilof River smolt fork length by outmigration year."

		Age-1			Age-2	
Year	Mean	n	SD	Mean	n	SD
1983	70	712	3.8	83	451	5.4
1984	73	1005	3.5	85	187	4.4
19z`85	70	9 81	2.8	84	282	5.4
1986	69	983	3.9	84	365	5.1
19 87	64	412	6.1	77	1223	4.8
1988	68	623	4.0	78	652	4.5
1989	66	609	4.4	81	516	4.5
1990	69	683	4.4	82	467	4.2
1991	68	529	3.5	80	489	3.2
1992	74	594	3.8	87	556	4.7
1993	69	755	3.5	82	187	4.2
1994	72	737	3.6	86	163	4.0

^aValues are in mm; n = sample size; SD=1 standard deviation.

.

Table 0. F				Age-0		<u>.</u>				Age-1		
Location			Length	•		Weight			Length	-		Weight
	Year	(n)	(mm)	SD	(n)	(g)	SD	(n)	(mm)	SD	(n)	(g)_SD
Skilak												
	1986	15	57	n/a				8	74			
	1988	109	50	5.3	109	0.9	0.4					
	1989	136	50	3.3	136	1.2	0.3	126	64	6.0	126	2.8 0.7
	1990	928	49	4.3	290	1.3	0.3	34	72.8	3.3	20	4.0 0.4
	1991	863	51	4.9	286	1.5	0.5	55	73.8	3.8	14	4.7 0.5
	1992	883	54	6.0	883	1.8	0.6	10	89	3.0	10	7.0 0.8
	1993	3652	49	5.0	3652	1.2	0.4	55	75	5.0	55	4.5 0.9
	1994	687	50	4	687	1.4	0.4	110	68.2	3.6	110	3.6_0.6
Kenai												
	1986	227	52	n/a	227			2	77			
	1989	38	48	4.5	38	1.0	0.2	56	64	4.6	56	2.5 0.6
	1990	1484	52	4.6	1484	1.5	0.4	62	69.4	4.2	22	3.6 0.6
	1991	1364	54	6.5	1364	2.0	0.6	40	75.9	4.8	15	5.5 1.0
	1992	1492	56	7.3	1492	2.0	0,8	12	78	10	12	5.6 1.7
	<u>1993</u>	2969	45	4.0	2969	1.0	0.2	4	68	1.0	4	3.3 0.5
	1994	861	54	4.6	.861	1.9	0.5	39	76.8	3.7	39	5.2 0.7
Tustumen												
	1980	222	59	6.1	222	2.3	0.7	20	80	3.5	20	5.7 0.7
	1981	197	55	5.1	197	1.6	0.4	21	73	4.6	21	3.8 0.7
	1982	194	54	5.1	194	1.8	0.5	17	74	3.9	17	4. 0.9
	1983	562	60	6.1	562	2.5	0.7	55	80	5.0	55	5.8 1.1
	1984	388	61	4.6	388	2.5	0.6	186	79	3.7	186	5.3 0.8
	1985	173	56	5.6	173	2.1	0. 6	52	78	5.0	52	5.6 1.2
	1986	156	50	6.4	156	1.3	0.5	92	73	4.5	92	4.1 0.7
	1987	143	53	5.9	143	1.8	0.6	50	71	3.8	50	4.2 0.6
	1988	303	55	5.3	303	1.8	0.5	89	75	3.6	. 89	4.5 0.6
	1989	47	52	5.7	47	1.9	0.6	18	74	4.6	18	5.1 0.9
	1990	200	57	5.5	200	1.5	0.4	50	75	2.9	50	3.4 0.5
	1991	202	57	5.4	202	2.0	0.5	47	78	6.5	47	5.1 1.2
	1992	323	59	4.4	323	2.0	0.4	21	79	4.1	21	4.52 0.7
	1993	417	63	6.7	417	2.9	0.8	46	81	3.0	46	6.18_0.7
	1994	318	64	5.0	318	2.6	0.6	76	83	3.0		5.5 0.5

Table 6.	Kenai Peninsula	lakes fall	frv data	summary.
----------	-----------------	------------	----------	----------

Missing values indicate no data available. n =sample size; SD = 1 standard deviation.

Table 7. Comparison of copepod biomass and fall density of juvenile sockeye salmon in Tustumena and Skilak lakes, Kenai Peninsula, Alaska. Copepod biomass reflect the seasonal mean biomass m⁻². Fall fry densities estimated by hydroacoustics.

	Copepod biomass						Fall sock	eye density \a	Copepod bi	omass/fall fry	
Rearing			m	g m ⁻²			fry m ⁻²		mg fry-1		
Year	Skilak	SE	n \c	Tustumena	SE	n \c	Skilak	Tustumena	Skilak	Tustumena	
1986	514	46	2	115	13	3	0.22	0.056	2,370	2,062	
1987	586	28	2	100	23	3	0.09	0.045	6,426	2,242	
1988	565	6	2	75	10	3	0.31	0.051	1,805	1,472	
1989	783	257	2	90	18	3	0.22	0.056	3,554	1,599	
1990	417	55	5	74	5	5	0.23	0.062	1,833	1,186	
1991	571	40	10	165	15	5	0.07	0.052	8,418	3,181	
1992	637	191	3	110	9	5	0.09	0.051	7,428	2,136	
1993	710	134	3	204	29	5	0.34	0.049	2,082	4,198	
1994\b	432	44	5	209	31	5	0.13	0.041	3,323	5,070	

a Standard error (SE) of fall fry density estimates are <25% of the mean.

\b Preliminary data

\c n=number of stations

Table 8. Sockeye salmon smolt estimates by age by brood year escapement for Red Lake, 1986-94

Number of Smolt (by Age)									
Brood Year	Escapement	1	2	3	Total				
1986	318,135			6,427	6,427				
1987	261,913		493,026	38,184	531,210				
1988	291,774	240,500	119,849	25,792	386,143				
1989	768,101	105,467	1,365,082	89,739	1,560,288				
1990	371,282	29,482	201,307	1,895	232,684				
1991	374,859	315,301	520,391		835,692				
1992	344,184	40,404							
1993	286,170								
1994	380,181								

Missing data indicates not available.

.

Table 9. Sockeye salmon smolt estimates by brood year escapement for Akalura Lake, 1986-93.

			Num	ber of Smolt	(by Age)	
Brood Year	Escapement	1	2	3	4	Total
1986	9,800			0	0	
1987	6,116		408,330	1,251	0	409,581
1988	38,618	66,460	299,591	8,315	238	374,604
1989	116,029	9,086	182,963	12,315	0	204,364
1990	47,181	1,921	73,062	7,141		82,124
1991	44,189	3,259	90,467			93,726
1992	63,269	72,474				72,474
1993	30,692					
1994	13,381	<u> </u>	· <u></u>			

Missing data indicates not available.

Number of Smolt (by Age)											
Brood	Escapement	1	2	3	4	Total					
1986	126,529			0			<u></u>				
1987	40,544			3,786	0	3,786					
1988	246,704		3,777,426	557,584	612	4,335,622					
1989	360,373	2,552,835	5,739,150	4,687,083		12,979,068					
1990	226,960	108,489	5,077,866	566,824		5,753,179					
1991	190,358	23,496	4,608,258			4,631,754					
1992	185,825	727,781									
1993	178,391										
1994	206,071										

Table 10. Frazer Lake smolt abundance data and escapements.

Missing data indicates not available.

Table 11. Sockeye salmon smolt estimates by age for each year for Red Lake, 1986-93.

			A	ges		9	5 % CI
Smolt		1	2	3	Total	Low	High
	Y						-
	e						
	а						
	r						
1990	#	240,500	493,026	6,427	739,954	402,905	1,077.004
	%	32.5	66.6	0.0	100.0		
1991	#	105,467	119,849	38,184	263,500	178,221	348,782
	%	40.0	45.5	14.5	100.0		
1992	#	29,482	1,365,082	25,792	1,420,356	1,117,748	1,722,965
	%	2.1	96.1	1.8	100.0		
1993	#	315,301	201,307	89,739	606,349	449,267	763,430
	%	52.0	33.2	14.8	100.0		
1994	#	40,404	520,391	1,895	562,690	474,305	647,655
	%	7.2	92.5	0.3	100.0		

				Smolt Fork Length (mm)													
		Age-0				Age-1			Age-2			Age-3		Age-4		4	
System	System Smolt Year	N	Mea	n	SE	N	Mean	SE	N	Mean	SE	N	Mean	SE	N	Mean	SE
Red Lak	e																
	1990		0			342	106.5	0.2	1,052	111.8	0.3	20	117.9	1.9	0		
	1991		0			1,135	88.2	0.1	977	106.7	0.3	407	113.0	0.3	0		
	1992		0			85	99.5	0.9	1,667	110.2	0.2	63	119.7	1.4	0		
	1993		Ō			1,409	91.7	0.1	516	108.6	0.5	397	120.1	0.6	0		
	1994		Ō			225	86.2	0.5	1,718	98.7	0.2	7	104.9	2.3	0		
Akalura			-												_		
ARGIGI	1990		0			577	73.9	0.3	748	85.9	0.2	0			0		
	1991		Ō			41	77.2	2.0	1,382	77.5	0.2	22	97.3	4.0	0		
	1992			59.0		25	75.7	1.0	2,014	78.8	0.1	61	86.4	0.6	0		
	1993		ō			74	61.8	1.2	992	85.8	0.2	94	90.8	0.7	2	101.5	2.5
	1994			73.0		721	87.5	0.2	763	93.1	0.2	146	95.8	0.6			
Frazer	1334		-	/0.0													
riazei	1990		0			574	84.2	0.2	553	104.3	0.2	44	113.0	1.6	0		
	1990		ŏ			746	89.7	0.2	1,344	89.5	0.2	4	120.8	9.1	0		
			õ			49	86.4	1.1	2,951	83.9	0.1	191	91.1	0.5	0		
	1992						89.9	0.5	682	100.3	0.1	913	104.2	0.2	3	121.3	9.4
	1993		0				86.3	0.2	1,456	102.6	0.1	302	112.8	0.3	0		
	1994		0			713	00.3	0.2	1,400	102.0		002			2		

,

Table 12. Mean lengths of sockeye salmon smolt by age and year for the Kodiak systems, 1990-94.

.

Table 13. Mean weights of sockeye salmon smolt by age and year for the Kodiak systems, 1990-94.

•

<u>Smolt Weight (g)</u>

•

			_Age-0)	<u> </u>	Age-1			Age-2			Age-3		A	<u>ge-4</u>	
System	Smolt Year	N	Mean	SE	N	Mean	SE	N	Mean	SE	N	Mean	SE	N	Mean SE	£
Red La	ke															
	1990	0			341	10.0	>0.1	1,05	0 11.0	>0.1	20	13.0	0.1	0		
	1991	0			1,135	5.0	0.0	97	7 9.5	0.1	407	11.3	0.1	0		
	1992	0			85	8.8	0.3	1,66	6 11.8	0.1	63	15.2	0.6	0		
	1993	0			1,409	7.3	>0.1	51	7 11.0	0.1	395	14.5	0.2	0		
	1994	0			225	5.1	0.5	1,71	7 7.6	>0.1	7	9.0	0.6			
Akaluri	8															
	1990	0			577	3.6	<0.1	74	9 5.3	<0.1	0			0		
	1991	0			41	4.3	0.5	1,38	2 4.0	0.0	22	8.9	1.2	0		
	1992	1	1.5		25	3.7	0.3	2,00	7 3.9	0.0	61	4.9	0.1	0		
	1993	0			74	2.2	0.1	99.	2 5.7	0.0	94	6.8	0.2	2	10.10.5	
	1994	2	3.4	0.3	721	6.1	>0.1	76	3 7.3	0.1	146	7.7	0.2	0		
1	1990	0			574	4.5	0.0	552	9.0	0.1	44	12.2	0.7	0		
	1991	0			745	5.4	0.0	1,34	3 5.6	0.0	4	15.7	3.9	0		
	1992	0			49	6.1	0.2	2,94	7 5.5	0.0	194	7.2	0.1	0		
	1993	0			8	6.1	0.2	68	4 8.3	0.0	899	9.2	0.0	2	17.7 5.1	
	1994	0			713	5.2	>0.1	1,45	6 8.1	>0.1	302	10.7	0.1	0		

,

				Ages			95	% CI	
Smolt		1		3	4	Total	Low	High	
	Y							-	
	e								
	а								
	r								
1990	#	66,460	408,330	0	0	474,790	318,734	630,846	
	%	14.0	86.0	0.0	0.0	100.0			
1991	#	9,086	299,591		0	309,9 28	237,981	381,875	
	%	2.9	96.7	0.04	0.0	100.0			
1992	#	1,921	182,963	8,315	0	193,199	153,765	232,638	
	%	2.9	96.7	4.3	0.0	100.0			
1993	#	3,259	73,062	12,315	238	88,873	35,943	141,802	
	%	3.7	82.3	13.9	0.1	100.0			
1994	#	72,474	90,467	7,141	0	170,172	130,910	209,433	
	%	42.6	53.2	4.2	0.0	100.00			

Table 14. Sockeye salmon smolt estimates by age for each year for Akalura Lake, 1986-93.

.

Table 15. Sockeye salmon smolt estimates by age for each year and by brood year escapement for Frazer Lake, 1986-93.

		95% CI						
Smolt a		1	2	3	4	Total	Low	High
1991	#	2,552,835	3,777,426	3,786	0	6,334,047	2,128,460	10,539,634
	%	40.3	59.6	0.1	0.0	100.0		
1992	#	108,489	5,739,150	557,584	0	6,405,222	2,649,678	10,160,766
	%	2.9	89.6	8.7	0.0	100.0		
1993	#	23,496	5,077,865	4,687,084	612	9,789,057	3,309,885	16,268,229
	%	0.2	51.9	47.9	0.0	100.0		
1994	#	727,781	4,608,258	566,824	0	5,902,863	5,285,225	6,520,501
	%	12.3	78.1	9.6	0.0	100.0		

Table 16. Tow net results from September, 1994 in Red and Frazer Lake, Kodiak

		No.		Leng	th (mm)	Weight (g)				
Lake	Ag	ge	Samı	oled	Mean	SD	Mean SD			
Red	0	44	49	6.9	0.9	0.4	<i>~~~</i> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	1	7	81	7.1	4.9	1				
Frazer	0	22	65	5.6	1.5	0.4				
	1	2	97	7	6.1	1.1				

Figure 1. Location of the Kenai and Kasilof Rivers, Upper Cook Inlet, Alaska.

Figure 2. Kodiak study lakes, Alaska.

Thousands

Figure 3. Summary of sonar count sockeye salmon escapements and historical escapement goal ranges for the Kenai River. Data represent total cumulative daily apportioned sonar counts at mile 19 of the Kenai River. Height of bars represents maximum escapement goal with the bottom of the gray bar representing the minimum escapement goal.

Figure 5. Relationship between the number of fall fry in Kenai and Skilak lakes and mainstem potential egg deposition. Vertical bars are standard errors of estimated fry abundance. Two models were used to assess the relationship: one with the constant term (y = 7.32 + .010(x); R²=.503; P<.05) and one without the constant (y = .014(x); R²=.390; P<.05). 1993 data point preliminary and not included in the regression.

Figure 6. Relationship of Kenai River sockeye salmon spawning escapement to average weight of 0+ fall fry in Skilak Lake, Alaska. Brood year is indicated by data point label (1993 Brood Year indicates weight of fall fry in 1994.

Figure 7. Seasonal turbidity fluctuations in Skilak Lake, Stations A, B and C. Station C was not sampled prior to 1990. Ordinates are in nephelometric turbidity units (NTU).

Figure 8. Inter-annual variation in Skilak Lake mean seasonal biomass. Error bars reflect one standard error of among sampling station variation.

Figure 9. The relationship of fall fry mean wet weight versus relative zooplankton biomass are compared for Tustumena (1986-94) and Skilak (1987-94) lakes.

APPENDIX A:

Kenai River Sockeye Salmon Smolt Studies, 1993 by Bruce E. King, Linda K. Brannian, and Kenneth E. Tarbox

~

•

KENAI RIVER SOCKEYE SALMON SMOLT STUDIES, 1993

Bruce E. King

Linda K. Brannian

and

Kenneth E. Tarbox

Regional Information Report¹ No. 2A94-41

Alaska Department of Fish and Game Commercial Fisheries Management and Development Division 333 Raspberry Road Anchorage, Alaska 99581

December 1994

¹Contribution 94-41 is from the Soldotna area office. The Regional Information Report Series was established in 1987 to provide an information access system for all unpublished divisional reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate timely reporting of recently collected information, reports in this series may undergo only limited internal review and may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without prior approval of the author or the Commercial Fisheries Management and Development Division.

AUTHORS

Bruce E. King is an Assistant Research Project Leader for the Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Region II, Upper Cook Inlet, 34828 Kalifornsky Beach Road Suite B, Soldotna, AK 99669.

Linda K. Brannian is the Regional Biometrician for the Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Region II, 333 Raspberry Road, Anchorage, Alaska, 99518

Kenneth E. Tarbox is the Research Project Leader for the Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Region II, Upper Cook Inlet, 34828 Kalifornsky Beach Road Suite B, Soldotna, AK 99669.

ACKNOWLEDGEMENTS

We would like to acknowledge the permanent seasonal staff responsible for collecting the data: Dave Westerman (Crew Leader), Mark Schlenker, Bill Glick (Crew Leader), Dennis Beliveau, Stan Walker, Pako Lehtinen, Michael Houghton, Dave Gilleland, Jennifer Brannen and James Browning (Crew Leader). Stan Carlson provided biometric support and Stephen Fried reviewed the results and edited the text.

PROJECT SPONSORSHIP

This investigation was partially financed by Exxon Valdez Oil Spill Restoration funds under Restoration Science Study Number 93002 titled "Sockeye Salmon Overescapement".

i

TABLE OF CONTENTS

Page	1
LIST OF TABLES iii	Ĺ
LIST OF FIGURES	r
ABSTRACT vi	ί
INTRODUCTION 1	
METHODS 2	,
Fishing Methods	
Kenai River	
Estimating Smolt Abundance	ì
Estimating Trap Efficiency	
Run Timing	
Age, Weight, and Length Sampling	
Climatological and Hydrological Sampling7	,
RESULTS	,
Km 31 Site	,
Russian River)
DISCUSSION 11	
LITERATURE CITED 15	
TABLES 18	;
FIGURES)

LIST OF TABLES

1. Numbers of fish captured by trap 1 in the Kenai River, May 17 through July 5, 1993	18
2. Numbers of fish captured by trap 2 in the Kenai River, May 17 through July 5, 1993	19
3. Numbers of fish captured by trap 3 in the Kenai River, May 17 through July 5, 1993	20
4. Numbers of fish captured by trap 4 in the Kenai River, May 17 through July 3, 1993	21
5. Numbers of fish captured by smolt traps 1-4 at the Kenai River km 31 site, May 17 through July 5, 1993	22
6. Numbers of juvenile fish caught with inclined plane traps in the Kenai River, 1990-1993	23
7. Numbers of sockeye salmon smolt captured daily in the Kenai River, 1989-1993	24
8. Comparison of catches in Kenai River traps 1-6, 1993	25
9. Numbers of fish captured by trap 5 in the Kenai River, May 17 through July 2, 1993	26
10. Numbers of fish captured by trap 6 in the Kenai River, May 17 through July 2, 1993	27
11. Dyed Kenai River sockeye salmon smolt releases and recaptures by date, 1993	28
12. Results of sockeye salmon smolt dye tests conducted on the Kenai River, 1989-1993	29
13. Estimated daily sockeye salmon smolt seaward migration from the Kenai River, 1993	30
14. Cumulative proportion of sockeye salmon smolt seaward migration by day, 1989-1993	31

LIST OF TABLES (continued)

<u>Table</u>	<u>Pa</u>	ge
15.	Summary of Kenai River sockeye salmon smolt age composition, 1989-1993. Data collected at river km 31	32
16.	Sockeye salmon smolt mean length and weight by age class and time strata, 1989-1993. Data collected at river km 31	33
17.	Comparison of trap efficiency by length for Moose River coho salmon, 1993	34
18.	Water parameters measured daily at the Kenai River km 31 smolt enumeration site, 1993	35
19.	Sockeye salmon adult escapement and smolt production in the Kenai River, 1986-1993	36
20.	Numbers of fish captured by smolt trap from the Russian River, May 18 through July 15, 1993	37
21.	Results of sockeye salmon smolt dye experiments in the Russian River, 1993	38
22.	Morphological information collected from sockeye salmon smolt captured in the Russian River, 1993	39

•

LIST OF FIGURES

<u>Figure</u>	<u>P</u>	age
1.	Kenai River drainage	40
2.	Top view, Kenai River km 31 sockeye salmon smolt enumeration project site	41
3.	Cross section, Kenai River km 31 sockeye salmon smolt enumeration project site	42
4.	Top view (top) and cross section (bottom) of the Russian River sockeye salmon smolt enumeration site	43
5.	Daily numbers of sockeye salmon smolt, all ages (top) and by age class (bottom), migrating seaward from the Kenai River, 1993	44
6.	Mean length and 95% confidence bounds for age-1. and -2. sockeye salmon sampled at the Kenai River km 31 smolt enumeration site, 1989-1993	45
7.	Mean weights and 95% confidence bounds for age-1. and -2. sockeye salmon sampled at the Kenai River km 31 smolt enumeration site, 1989-1993	46
8.	Length frequency distribution of coho salmon smolt (top) and sockeye salmon smolt (bottom) captured in the Kenai River drainage, 1993	47
9.	Length frequency distribution of age-1. (bottom) and -2. (top) sockeye salmon smolt from the Kenai River drainage, 1993. Estimated numbers of smolt from weirs (Hidden Creek and Moose River) and dye studies (km 31 and Russian River)	48
10.	Capture efficiency of km 31 traps for different length coho salmon smolt from the Moose River, 1993	49
11.	Daily Kenai River discharge, 1989-1993	50
12.	Daily physical parameters measured, and numbers of sockeye salmon smolt captured in the Kenai River, 1993. Y scales adjusted for graphing purposes	51

ABSTRACT

Inclined plane traps were placed in the Kenai River to capture seaward migrating sockeye salmon *Oncorhynchus nerka* smolt. Only 3,200 sockeye smolt were captured, continuing a trend of decreasing total annual catches since the first year of the study, 1989, when 161,000 smolt were captured. Historic trap efficiency data were used to calculate a 1993 seaward migration estimate of approximately 486,000 smolt. The minimum migration, including Moose River and Hidden Creek smolt which were not sampled by our traps, was 833,000 smolt. Approximately 88.5% of the population was age-1. smolt and the remainder smolt were age-2. (3.0%) and -0. (8.5%). Coho and sockeye salmon smolt length frequency data revealed decreased trap efficiency with increased smolt size. Age-0. smolt were not thought to be of Skilak Lake origin.

KEY WORDS: Sockeye salmon smolt, *Oncorhynchus nerka*, biological sampling, migratory timing, bismark brown dye, mark-recapture, population estimation, length frequency distribution

INTRODUCTION

The Kenai River (Figure 1) typically contributes more than 50% to annual Upper Cook Inlet (UCI) commercial harvests of sockeye salmon *Oncorhynchus nerka* (Ruesch and Fox 1993). Forecasting the return of this stock is important to the successful management of the fishery. Until 1993, forecasting was based on a combination of adult spawning escapements, age specific maturity schedules, and average numbers of returning adults per spawner. The 1993 forecast included adult sockeye salmon run estimates projected from the number and age composition of sockeye salmon smolt migrating out of the Kenai River.

The Kenai River smolt project has provided an estimate of the number and age composition of sockeye salmon smolt migrating out of the drainage since 1989 (King et al. 1990, 1991, 1994) This information has been used to evaluate sockeye salmon production in the Kenai River drainage in conjunction with estimates of spawners (Davis et al. 1993), juveniles rearing in Kenai and Skilak lakes (Tarbox and Brannian 1993), and adults passing weirs across Hidden Creek (Fandrei 1993) and Russian River (Marsh 1993a, 1993b) tributaries. Comparable production studies are being done in the Kasilof River drainage, the second largest producer of sockeye salmon in UCI (Kyle 1992).

Commercial fishing closures in UCI due to the 1989 Exxon Valdez oil spill resulted in an extremely large spawning escapement into the Kenai River. A suite of projects was designed to evaluate the effects of large spawning escapements on resulting progeny and lake rearing habitat. The Kenai River smolt project was a component of Natural Resource Damage Assessment Project No. 27, "Sockeye Salmon Overescapement", from 1990 to 1992 (Schmidt and Tarbox 1991, 1992).

Objectives of the 1993 Kenai River smolt project were to:

- 1. estimate the number of sockeye salmon smolt migrating seaward during the peak migration period from 15 May through 30 June;
- 2. determine the age composition, mean weight, and mean length of sockeye salmon smolt;
- 3. describe daily and seasonal migration timing of sockeye salmon smolt;
- 4. determine the number of sockeye salmon smolt migrating adjacent to the right bank; and
- 5. assess the feasibility of using inclined plane traps to enumerate sockeye salmon smolt migrating from Russian River.

METHODS

Fishing Methods

All traps were similar in design to those used to estimate smolt migrations from the Crescent and Kasilof Rivers of UCI (Kyle 1983). Each trap was 2.1 m long, 1.5 m wide, and tapered in height from 1.05 m at the mouth to 0.1 m at the outlet or downstream end. Trap frames were constructed of angle aluminum and the bottom covered with perforated aluminum plate with 13 mm holes. The sides and top were covered with vexar plastic netting with 13 mm square mesh. The outlet end emptied into a $1.5 \times 1.1 \times 0.6$ m live box which contained one vertical baffle. The mouth and outlet ends of the trap could be adjusted vertically to control fishing depth and the amount of water which entered the live box. Traps typically fished to approximately 1.0 m below the surface. All traps were fished continuously throughout the study. Traps were monitored continuously and emptied at least twice between 0001 h and 0500 h. Traps were checked only sporadically through the remainder of the day, and generally emptied once more between 2200 and 2300 h. All captured juvenile salmonids were counted and recorded by species and stage of development.

Kenai River

Six stationary floating inclined plane traps were placed in the Kenai River approximately 31 km upriver from the mouth (Figure 2). The river was 105 m wide with a maximum water depth of 2.5 m at the km 31 trap location (Figure 3). The thalweg occurred 25-30 m from the left bank and both current velocity and water depth generally decreased as one moved toward the right bank. Four of the six traps at km 31 were anchored from the left (south) bank with steel cable, and held at 9, 15, 21, and 24 m from shore with tubular aluminum booms. The inshore trap was designated trap 1. Traps on the left side of the river were placed in the area of highest surface water velocities and greatest flow volume, since we thought most smolt would travel downriver through this area (Hoar 1954, Foerster 1968, Bue et al. 1988). The remaining two traps, designated traps 5 and 6, were initially held 30 m offshore of the right bank using a similar cable and boom arrangement. On June 19 the right bank traps were moved closer to shore because increasing water velocity and debris load precluded continued deployment in the original location.

An additional two traps were placed in the river adjacent to the left bank at km 35. The two traps were anchored and held offshore 6 m and 12 m using cables and booms.

Russian River

A single smolt trap was placed in the Russian River 200 m above the confluence with the Kenai River. The front of the trap was anchored to the river bottom with steel stakes and cabled to shore. The rear of the trap was suspended between the legs of a quadrapod. The quadrapod was outfitted with a cable winch to raise and lower the outlet end of the trap. This controlled the flow of water entering the live box.

The trap was centered approximately 6 m from the right bank (Figure 4). Weir panels extended from the front of the trap, increasing the opening width to approximately 4 m. The near shore panel was 4 m long and ended 4 m from the left bank. The off shore panel was 8 m long and ended 9 m from the left bank.

The Russian River was 28 m wide at the front end of the trap weir panels (Figure 4). The maximum water depth of 0.54 m occurred 6 m from the right bank. Water depth decreased erratically to the left bank.

Estimating Smolt Abundance

Estimating Trap Efficiency

Methods used to estimate trap efficiency were similar at the Kenai River km 31 and Russian River sites. Sockeye salmon smolt were dyed and released each day until a minimum sample size was attained. No new releases of dyed smolt were made during the next 48 hours to allow those released to pass the counting site. This provided trap efficiency data within time strata. Sample size for each stratum was 2800 dyed sockeye salmon smolt for the Kenai River and 500 dyed sockeye salmon smolt for the Russian River.

The km 35 site was established as a dye site only. By dyeing 2800 sockeye salmon smolt at this site, we hoped to preclude dyeing at the km 31 site and allow the crew there to focus on examining fish for dye. We also suspected that we were subjecting fish to additional stress at the km 31 site by first examining them for dye and then using the same fish for dyeing.

At the km 35 site, sockeye salmon smolt were dyed in a solution of 5 g Bismark Brown in 190 l of water (approximately 1:36,000) for twenty minutes. Dyeing was done in the morning, using the previous night's catch. As sockeye salmon smolt were removed from the trap, they were counted and immediately placed into a live tank mounted in a boat. The water in this tank was constantly replaced by fresh river water using a battery operated pump. Smolt were dyed, held in the live tank for at least 12 hours, and released at approximately 2200-2300 h. After live smolt were released, dead smolt were counted to determine percent mortality from handling and dyeing. All smolt captured in the km 31 traps in the next 48 hours were examined for evidence of dye.

Russian River sockeye salmon smolt were dyed for 60 minutes in a 1:75,000 solution of neutral red. We used neutral red at this site to avoid including smolt dyed at the Russian River with dyed smolt recovered in the km 31 traps. Oxygen was pumped into the tank throughout the dyeing procedure. After 60 minutes in the dye, smolt were placed in perforated containers in the river and held until approximately 0500 h. Dyed smolt were then transported in buckets to a live box located approximately 0.8 km upstream of the trap for release the next evening at approximately 2200 h. Prior to release, we removed and counted any weak or dead smolt. We assumed that since dyed smolt were released in mid-stream at the onset of the nightly smolt migration, there would be adequate mixing of dyed

smolt and other migrating sockeye salmon smolt prior to arrival at the trap. All smolt captured in the trap were examined for evidence of dye.

The number of smolt dyed and released (M_i) each marking period at the km 35 site was set at 2,800 to obtain an estimate of abundance (N_i) with a relative error of +/-25% for trap efficiencies equal to or greater than 2%. Trap efficiency was defined as the number of recaptures (r_i) divided by the number of smolt dyed and released. Required M_i for a given trap efficiency varied only slightly with number of smolt caught (\hat{C}_i) , but increased dramatically with decreasing trap efficiency. A 2% trap efficiency was twice that seen in previous years, but sample size requirements for lower efficiencies would require handling more smolt than we thought we could capture and process. We also assumed that dye marking events could be pooled since trap efficiencies of adjacent time strata were not significantly different in 1989 and 1990 (χ^2 -test with $\alpha = 0.05$ critical level). Pooling just two adjacent strata would result in a sample size of 5,600 smolt, which would provide estimates with the desired relative error for trap efficiencies as low as 1%.

At the Russian River site, we thought that the trap efficiency could reach 15%. We therefore selected a minimum sample size of 500 sockeye smolt for each stratum. This would give a relative error of +/-25% for the estimate even if trap efficiency was as low as 10%.

Our estimator, like other mark-recapture estimates of population size, was biased when low numbers of dyed sockeye salmon smolt were recaptured (Seber 1982). To keep the level of bias below 10%, enough smolt had to be marked to ensure that at least 10 dyed smolt were recaptured within each time stratum. Fewer recaptures would result in a positive bias which would increase rapidly as recaptures fell below 10 smolt (King et al. 1994).

Analyses assumed: (1) all released dyed sockeye salmon smolt moved past the trap site within 48 hours so dyed smolt from one time period would not be caught in another; (2) the probability of capture among traps at km 31 was the same for marked and unmarked smolt; (3) the probability of capture for each individual smolt was independent of that of other smolt.

Estimating Sockeye Salmon Smolt Abundance

Sockeye salmon smolt abundance (\hat{N}_i) was estimated from trap data collected at km 31 (traps 1 through 4 only) using LaPlace's ratio estimate (Cochran 1978) as adapted by Rawson (1984):

$$\hat{N}_{i} = \hat{C}_{i} \frac{M_{i}}{r_{i}} [1 + \frac{M_{i} - r_{i}}{M_{i} r_{i}}] , \qquad (1)$$

where:

- \hat{N}_i = number of undyed sockeye salmon smolt migrating past traps in period i
- \hat{C}_i = number of sockeye salmon smolt caught in traps in period i
- M_i = number of sockeye salmon smolt dyed and released upstream in period i
- r_i = number of dyed sockeye salmon smolt recaptured in traps in period i.

The variance of \hat{N}_i was estimated as:

$$V(\hat{N}_{i}) = \hat{C}_{i}(\hat{C}_{i}+r_{i})M_{i}\frac{(M_{i}-r_{i})}{r_{i}^{3}} , \qquad (2)$$

and the $(1-\alpha)$ confidence interval as:

$$\hat{N}_i \pm z_{\alpha} \sqrt{V(\hat{N})} , \qquad (3)$$

where z_{α} = the (1- α)/2 percentage point of the standard normal distribution.

Sockeye salmon smolt abundance in 1993 was also estimated with a resampling technique (Effron 1982) based on the number of smolt dyed and recovered each spring from 1989 through 1993. Data from each year were pooled when trap efficiencies were not significantly different (χ^2 test, p=0.05) between time strata. Data for the entire season were pooled for 1989, 1991, 1992 and 1993, but had to be split into two strata for 1990. These six pairs of M_i and r_i values were randomly chosen with replacement to produce estimates of 1993 smolt abundance using equation 1. The mean of five hundred bootstrap replications was used to estimate smolt abundance in 1993 (N₉₃):

$$N_{93} = \frac{\sum_{b=1}^{500} N_b}{500},$$
(4)

Variance of N₉₃ was then calculated as:

$$V(N_{92}) = \frac{\sum_{b=1}^{500} (N_b - N_{92})^2}{500 - 1} \quad . \tag{5}$$

A 95% confidence interval was approximated by ranking 500 estimates in ascending order and then using the 13th largest estimate (2.5 percentile) as the lower bound, and the 486th largest estimate (97.6 percentile) as the upper bound.

Run Timing

Migration timing was based on the proportion of the total catch made each day. We assumed that most smolt migrating from the Kenai River system passed the trap sites during the operational period. Therefore the mean date of the migration was the date when 50% of the total catch had occurred at the trap sites.

Age, Weight, and Length Sampling

Sockeye salmon smolt captured in km 31 and Russian River traps were sampled for age, weight, and length (AWL) information. A scale smear from the preferred area (INPFC 1963) of each smolt was placed on a standard laboratory slide for age determination, and each smolt was weighed to the nearest 0.1 g and measured (fork length) to the nearest mm.

Because of low catches at both the km 31 and Russian River sites, desired sample sizes were not obtained for the any of the 5 day time strata originally set for AWL sampling. However, nearly all smolt not used for the mark-recapture experiment were sampled for AWL information. Sample periods were initially redefined as the number of days needed to collect at least 300 smolt. This sample size provides a binomial (two age classes) simultaneous 90% confidence interval of +/- 0.05 when the proportion of the major age class in the population is at least 0.75. No samples were taken at the km 31 site from 1 to 9 June, the period when most of the smolt migrated from the system, since all available smolt were dyed for trap efficiency tests. We also could not use the next 300 smolt sample to estimate the age composition of the migration since half of the sample was obtained later in June when age-0. smolt were most abundant. Consequently, we divided this 300 smolt sample into two periods and used only smolt captured during 10-12 June to represent the migration during 1-15 June.

AWL data were also collected from sockeye salmon smolt migrating from Moose River and Hidden Creek. We compared age composition, mean length and length frequencies for smolt from these tributaries to values from samples collected at the km 31 site to determine whether these substocks were represented in the km 31 trap catches. Age-specific mean lengths were compared among smolt samples from km 31, Moose River, Hidden Creek, and Russian River sites using one-way ANOVA to determine whether differences could be detected. Contrast statements were used to determine which sites were different. All tests were conducted at the nominal $P \le .05$ level of significance. The same analyses were performed on mean lengths for age-0. smolt captured in the km 31 traps, 1992 age-0. fall fry captured in Skilak Lake, and 1993 age-0. summer fry captured in Skilak Lake.

We also examined length data from adipose fin clipped coho salmon smolt captured in the km 31 traps to provide another measure of trap efficiency. These marked coho salmon smolt were captured in the Moose River and marked by inserting a coded wire tag into the snout and removing the adipose fin (Carlon and Hasbrouck 1993). Nearly all coho salmon smolt passing the weir were tagged except a random sample preserved daily for collection of AWL

passing the weir were tagged except a random sample preserved daily for collection of AWL data. We assumed that the length frequency distribution of the AWL sample (n=1,217) accurately represented the distribution for marked migrants. We were therefore able to apportion the total Moose River coho salmon smolt migration and the total km 31 catch of marked coho salmon smolt into 5 mm length interval strata. We then calculated a trap efficiency for each length stratum.

Climatological and Hydrological Sampling

Water velocity (m/sec) measurements were taken at the surface in front of each km 31 trap whenever river depth rose or fell 0.3 m. Water depth (m), temperature (°C), and turbidity (maximum depth in m a secchi disc was visible) were measured daily at this site. Kenai River daily discharge was calculated from stage height data gathered at river km 34 by the Alaska River Forecast Center (L. Rundquist, National Weather Service, NOAA, Anchorage, pers. comm.).

RESULTS

Km 31 site

Traps were fished from 17 May until 5 July 1993 at the km 31 site. Although we were prepared to subsample catches (King et al. 1991), the seaward migration was small enough to allow us to identify and count all fish captured.

A total of 105,229 fish were captured in traps 1-4 (Tables 1 through 5). Three percent (3,200) of the total fish caught were sockeye salmon smolt. Captures of fry of all salmonid species exceeded those recorded in previous years (Table 6). The historical trend of increased numbers of smolt and decreased numbers of fry with distance from shore of all species continued. Sockeye salmon smolt captures have decreased each year since the inception of the project in 1989 (Table 7).

Traps 5 and 6 caught a combined total of 14,357 fish of which 670, or 4.7% were sockeye salmon smolt (Tables 8-10). Most of the catch consisted of sockeye fry (36.7%), pink fry (20.9%), chinook fry (15.1%) and coho fry (10.8%). Catches of fry, except pink salmon, were proportionally higher than traps 1-4 combined, and the proportions of each group were most similar to traps 1 and 2. Sockeye salmon smolt catches from traps 5 and 6 represented 17% of the total catch of all traps, roughly half of that expected if smolt were uniformly distributed in the river. One dyed sockeye salmon smolt was captured in trap 6 on 5 June. Over 75% of trap 5 and 6 sockeye salmon smolt captures occurred prior to moving the traps closer to shore on June 19. Approximately the same percentage of the catch of sockeye salmon smolt in traps 1-4 also occurred prior to that date.

A total of 1,934 sockeye salmon smolt were dyed and released upstream. Survival during the holding period between dyeing and release ranged from 0.905 to 0.969 and averaged 0.926 (Table 11). The high survival rate reflected changes in procedures instituted in 1992 to reduce handling stress (King et al. 1994).

Six of the dyed sockeye salmon smolt released were recaptured in traps 1 through 4, resulting in a total trap efficiency of 0.003. This compares with trap efficiencies for the years 1989 through 1992 of 0.007 to 0.021 (Table 12). The ratio of dyed to undyed smolt was the same among traps 1 through 4 (χ^2 =3.38, p=0.337, 3 df). Using the 1993 M_i and r_i values resulted in an estimate of migration of 1,202,844 sockeye salmon smolt.

We chose to use the six pairs of M_i and r_i values from 1989-93 to generate 500 bootstrap estimates for 1993. The mean of 486,181 sockeye salmon smolt (Table 13) was used to estimate the 1993 smolt population. The 95% confidence bounds ranged from 163,998 to 1,202,844 smolt.

Sixty-three percent of the measured sockeye salmon smolt seaward migration occurred between 1 and 8 June, although within that time frame there were three distinct peaks in the daily passage rate (Figure 5). Only 1.0% of the migration occurred within the first 8 days of counting, and a relatively steady daily migration which constituted 20% of the total occurred during the last two weeks of the project. Age-2 sockeye smolt left the drainage earlier than age-1 smolt (Table 14).

An estimated 88.5% of the sockeye salmon smolt sampled at the km 31 site were age 1. (Table 15). There was a significant (χ^2 =37.06, p=0.05, 1 df) decrease in the proportion of age-2. smolt in period 2. In addition, there was a significant (χ^2 =99.07, p=0.05, 1df) decrease in age-1. and increase in age-0 migrants in period 3.

Age-0. sockeye salmon smolt, which comprised 8.5% of the estimated migration, have not been captured in the traps in previous years. These smolt were first captured on 19 June. The mean length for the first time stratum after their initial appearance was 51 mm (Table 16). Analysis of variance indicated that the mean length of the age-0. smolt captured at km 31 was smaller (P < 0.0001) than that of the 1992 fall fry captured from Skilak Lake (Tarbox and Brannian 1993). Conversely, ANOVA revealed that the 1993 age-0. smolt were longer (P < 0.0001) than 1993 age-0. fry sampled in July in Skilak Lake (mean = 41 mm; K. Tarbox, ADF&G, Soldotna, pers comm.).

As in 1992, mean lengths and weights of sockeye salmon smolt were greater than in any of the previous years (Table 16; Figures 6 and 7). In 1993 the mean length of age-1. sockeye salmon smolt from the km 31 (mainstem) traps and from samples collected in the Moose, Hidden, and Russian tributaries were, respectively, 77.9 mm, 114.2 mm, 130.1 mm, and 80.9 mm. The mean length of the km 31 age-1. smolt was significantly less than each of the substocks (P < 001 in all cases). Mean length of age-2. sockeye smolt from the km 31 traps and from samples collected in Hidden, and Russian tributaries were, respectively, 98.2 mm, 187.4 mm, and 93.7 mm. The mean length of km 31 age-2. smolt was significantly different than Hidden Creek p < 0.001), and Russian River (p = 0.008) substocks.

In general, Hidden Creek sockeye salmon smolt appeared to be missing from the km 31 trap catches (Figure 8). There was some overlap in the length frequency distribution of km 31 and Moose River age-2. smolt, and the length frequency distributions of age-1. and -2. sockeye salmon smolt captured in the Russian River were very similar to that for the km 31 trap captures. Weighting the length frequency distributions by estimated smolt abundance from each of the tributaries and km 31 again showed that Hidden Creek age-1. smolt were not captured by the mainstem traps, and that Moose River age-2. sockeye smolt were partially available to the gear (Figure 9). Inclined plane traps at km 31 probably also missed most of the age-2. smolt exiting the Russian River. Conversely, the mainstem traps appeared to have captured a representative sample of the Russian River age-1. smolt.

Our analysis of length frequency data for Moose River marked coho salmon smolt (Carlon and Hasbrouck 1993) captured at km 31 indicated that trap efficiency decreased with increased length (Figure 10). Coho salmon smolt in the 100 to 114 mm length range had an equal probability ($\chi^2 = 0.101$, p < 0.05, 2df) of capture (approximately 1.6 to 1.7%; Table 17). Significant differences (p=0.05) in trap efficiency were detected at 5 to 10 mm intervals in length frequency for other smolt size ranges. The lowest calculated trap efficiency, 0.17%, was for coho smolt from 155 to 159 mm long (based on only one recovery), and none of the estimated 415 tagged fish larger than 160 mm were captured at km 31.

Seasonal trends in hydrological parameters were similar to previous years. Water level increased daily until mid-June, while temperature fluctuated between 7 and 13° C at the km 31 site throughout the study (Table 18). Total discharge was the second highest on record for May (Figure 11). Changes in water clarity were significantly correlated (r = 0.136, p = 0.01, 48 df) with changes in discharge (Figure 12).

The 1993 adult sockeye salmon return provided the first opportunity to evaluate the accuracy of smolt estimates based on adult returns of all age classes. The 1987 parent year escapement of 1,408,000 adult spawners (Table 19), produced approximately 37,000,000 age-0. fry which reared in the two major lakes in the drainage (Tarbox and King 1989). This was a minimum estimate of fry production since Russian River, Hidden Lake, and Moose River were not included. However, these systems were thought to produce only a small portion of the production that year. The 1987 parent year spawning escapement produced 30,224,000 smolt. Most of these smolt (24,416,000) migrated to sea at age-1. Some (5,807,000) 1987 brood year juveniles remained in freshwater and left as age-2. smolt the next spring. The age-1. smolt brought back 7,793,000 age-1.2 and -1.3 adults giving an age-1. smolt to adult survival of 31.9%. The return of 2,017,000 age-2.2 and -2.3 adults in 1992 and 1993 gave an age-2. smolt-to-adult survival rate of 34.7%. The total smolt to adult survival rate for the 1987 brood year was 32.5%. Survival of Tustumena Lake (Kasilof River) 1987 brood year sockeye smolt from smolt to adult was approximately 15%.

The 1988 adult spawning escapement of 910,000 produced 5,249,000 age-1. smolt and 431,000 age-2. smolt for a total smolt production of 5,680,000. Survival of age-1. smolt from the 1988 brood year was similar to 1987 with relatively few (1.9%) returning as age-1.2

adults and more (22.8%) returning as age-1.3 adults for a total survival of 1 freshwater smolt to adult of 24.7%.

The 1989 parent year adult spawning escapement of 1,379,000 produced 2,776,000 age-1. smolt and 312,000 age-2. smolt. The 1990 adult spawning escapement of 519,000 produced only 253,000 age-1. and 36,000 age-2. smolt. The 1991 spawning escapement of 431,000 fish has to date produced 797,000 smolt (age-1. only). The age-2. component of the 1991 brood year will migrate to sea in 1994.

Russian River

The Russian River inclined plane trap collected 43,791 fish from 18 May through 15 July 1993 (Table 20). Sockeye salmon fry comprised 76.1% of the catch. A total of 8,425 sockeye salmon smolt, making up 19.2% of the total, were also captured.

Dyed sockeye salmon smolt were released on 20 nights. Recapture data for these dates were grouped into seven time strata, each with a minimum of 475 released dyed sockeye salmon smolt (Table 21). Trap efficiencies by stratum ranged from 0.011 to 0.152, and were not significantly different between strata 1 and 2 ($\chi^2=0.59$, p=0.44, 1df), and among strata 4,5 and 6 ($\chi^2=4.36$, p=0.11, 2df). By combining data from statistically similar strata, we established three periods with distinct trap efficiencies. Using these data we estimated 222,024 smolt with a 95% confidence interval of 119,485 to 324,562. However, this estimate was used only for comparison of weighted length frequency distributions of various Kenai River substocks because of uncertainties in the dye and recovery process.

There were two sockeye salmon smolt migration peaks during May and June. Approximately one-fourth of the trap captures occurred between 18 May and 6 June, followed by a period of 18 days in which our maximum daily catch was 46 smolt (Table 18). The latter period accounted for less than 5% of the total catch. On 25 June, 5 days before the project was scheduled to end, catches again increased, and between that date and 15 July we counted 69.2% of the catch total for the season. The catch on the last day of operation was 1.4% of the total.

Age-2. sockeye salmon smolt were numerically dominant in the catch from mid-May until early June (Table 22). After 2 June, age-1. sockeye smolt were the most abundant age class collected. There was a significant difference (($\chi^2 = 1021.14$, p<0.001, 15df) in age class composition of the smolt captured each period except for those sampled from 1 through 15 July. Mean length and weight of age-1. smolt was at least 10 mm and 2.0 grams smaller than age-2. smolt during each of the time strata sampled.

DISCUSSION

From the beginning of the season through the time period when most of the sockeye salmon smolt migration occurred in past years, the right and left bank traps were separated by approximately 25 m. The traps closest to the middle of the river, traps 4 and 5, were approximately equidistant from their respective banks. Catches from traps placed adjacent to the shallower right bank, traps 5 and 6, contained proportionally fewer sockeye salmon smolt than those on left bank. In addition, catches of other age classes and species, especially fry, were very similar to those of the left bank near shore traps 1 and 2. Nearshore distribution of fry was also observed by Clark and Smith (1972). This catch information suggests that traps 5 and 6 were placed in areas not preferred by sockeye salmon smolt, and that large numbers of smolt were not migrating past the right bank. These data, along with the high proportion of the total sockeye salmon smolt catch in trap 3, however did not provide sufficient evidence that few smolt migrate in the section of the river between the two sets of traps.

The high relative proportion of the sockeye salmon smolt catch (48.9%) from trap 3 was not observed in previous years. Historically, traps 3 and 4 have had approximately equal seasonal catch totals. The only other year when the proportion of the catch in trap 3 exceeded that of trap 4 was 1990 when the two traps captured 46% and 33% of the total sockeye salmon smolt, respectively. Both 1990 and 1993 also had greater daily and total discharge rates for May than other study years. Since surface velocities measured at the mouth of traps 3 and 4 were essentially the same, it did not appear that the relatively high proportion of sockeye salmon smolt catches in trap 3 was solely a function of flow regime.

We decided to exclude the data from traps 5 and 6 in this year's estimate so that it would be comparable with previous years. Traps 5 and 6 accounted for 17% of all sockeye salmon smolt and 14% of the dyed smolt caught, and the ratios of dyed to undyed smolt were not different among traps 1 through 6 (χ^2 =w.74, p=0.59, 5 df). When these data were included in the bootstrap model, the estimate of migrants was 548,746 smolt, an increase of 12.9% over our chosen best estimate.

Numbers of sockeye salmon smolt continued a downward trend in catch from the 161,111 in 1989, the initial year of the study. In contrast, the numbers of smolt and fry of other species have either remained relatively constant or increased. Several questions, however, remain to be answered about our estimates of trap efficiency and smolt behavior before we feel comfortable with our smolt estimates.

An important assumption underlying the population estimate is that marked and unmarked smolt behave similarly. A violation of this assumption would be apparent if we obtained very different marked to unmarked ratios among traps. Since no differences were detected among traps 1-4, we had no evidence to suggest that marked and unmarked fish behaved differently. Differences were found in previous years, so our ability to detect differences this year may have been hampered by the small number of dyed smolt recovered in 1993. As in 1992, the minimum sample size for a single dye event was not attained. The small sample size released on any given day also precluded examination of changes in trap efficiency over time. In addition, since fewer than 10 dyed smolt were recaptured, the mark-recapture estimate could be biased (Seber 1982). Finally, the minimum number of dyed smolt needed each period was based on the assumption that trap efficiency would either equal 2%, or be consistent over time if less than 2%. Sample sizes greater than 5,700 were needed to ensure a relative error of less than 25% for efficiencies equal to or less than 1%. Since we could not meet these requirements, our estimate had very wide confidence intervals. Although neither 1992 or 1993 dyed smolt sample sizes met the sampling objectives, we elected to include both in the bootstrap procedure because the range in trap efficiencies and subsequent confidence intervals reflected the uncertainty of our estimate.

The lack of sockeye smolt captures and increase in smolt size in 1992 and 1993 have led us to seriously question the validity of our population estimator. The bootstrap technique helped alleviate some sample concerns, but since smolt were larger in 1992 and 1993 than in previous years, it is possible that the mean bootstrap estimate is conservative because larger smolt may have been able to better avoid capture. Despite these potential problems, we think that the decrease in total smolt catch relative to 1989 supports our conclusion that the 1993 seaward migration was very low.

In 1992, we were concerned that larger smolt may have a different probability of capture in our traps than smaller smolt (King et al. 1994). Prior to 1992, age-2. sockeye smolt lengths from traps samples appeared to be normally distributed (King et al. 1991) which suggested that size selectivity did not occur. We assumed that length frequency distributions would be truncated at larger values or be skewed toward smaller sizes if larger smolt were better able to evade capture. Length frequency data for Russian River, Moose River, and Hidden Creek sockeye smolt, first collected in 1992, suggested that Hidden Creek (age-1.) and Moose River (age-2.) sockeye smolt were not represented in mainstem trap catches. Their length frequency distribution had little overlap with that measured for mainstem trap smolt samples, and the corresponding mean lengths were different. In contrast, there was sufficient overlap between the mainstem and Russian River age-2. length frequency distributions to infer that Russian River smolt were at least partially represented in mainstem catches. These results were duplicated in 1993. In addition, the length frequency distribution of Russian River age-1. sockeye salmon smolt very closely resembled that of the km 31 catch age-1.

Most surprising was the low abundance of age-1. sockeye salmon smolt in the 60-70 mm size range, the size of migrants we expected to leave Skilak Lake. It is unlikely that these juveniles grew from a mean length of 59 mm measured as age-0. fry in December 1992 to a mean length of 78 mm as age-1. smolt by May 1993, since fry only grew an average 5 mm in the 2.5 months prior to the December 1992 sampling period (Tarbox and Brannian 1993). Also, sockeye salmon fry in Skilak Lake in November 1993 were 97.7% age-0. (K. Tarbox, ADF&G, Soldotna, pers comm.), eliminating holdover as a possible reason for the apparent lack of age-1. migrants from Skilak Lake. Three explanations for their absence in the trap catches can be put forward. First, smolt may have migrated out of the system during a time frame, or in an area of the river not monitored by the project. Second, the estimated 9.5 million fry inhabiting Kenai and Skilak Lakes the previous fall may have survived at a very low rate. Third, trap avoidance may have been much greater than we suspected which would have violated the assumption that probability of capture was the same for marked and unmarked smolt.

The presence of age-0. sockeye salmon smolt in the migration was unusual since we have not captured this age group in previous years. These smolt first appeared in the traps after 80-90% of the total migration had occurred. The 51 mm mean length of this age class was nearly 10 mm smaller than the average for any smolt age group we have documented in any year of the study. In addition, age-0. fry captured in the traps were uniformly 25-35 mm in length.

We examined the possibility that the age-0. sockeye salmon smolt were of Skilak Lake origin. One hypothesis was that they were actually misaged age-1. smolt. If this were true, then the age-0. smolt would not have been smaller than the 1992 age-0. Skilak Lake fall fry, unless the spring smolt were all that remained of the smallest size of the Skilak Lake 1992 fall fry, implying that only the smallest fall fry survived until spring. A second hypothesis was that these age-0. sockeye salmon were identified as smolt, but were merely 1993 recruitment that had washed out of the lake as a result of the relatively high flow rates which occurred in May. This does not appear to be the case since 1993 age-0. smolt were larger than 1993 age-0. fry sampled in July in Skilak Lake. A third hypothesis, is that the age-0. migrants came from a lake in the drainage in which age-0. fry responded to higher than average spring temperatures by smolting. No sockeye juveniles of this description were observed in the Moose River in 1993, although the weir was dismantled three days prior to the first capture at km 31. Fandrei (1993) did not report atypically small fish leaving Hidden Creek in 1993.

A comparison of length frequency distributions for coho salmon captured in Moose River, Hidden Creek and the mainstem Kenai River suggested size selectivity in trap catches (Figure 10). Carlon and Hasbrouck (1993) found a significant (p < 0.001) difference in mean length between coho tagged in the Moose River and those recovered in the traps, and stated that traps could not be used to estimate the number of coho salmon migrating seaward from that drainage. We found that trap efficiency could be estimated for coho salmon smolt of various size ranges, and that smolt from 100-114 mm were caught at a rate of slightly less than 2%. Since we were unable to capture Moose River and Hidden Creek sockeye salmon smolt which had similar lengths to the coho salmon smolt captured at km 31, it appears that trap efficiency differed among species as well as within a species. Similar results were reported by Thedinga et al. (1993) for screw traps used on the Situk River in Southeastern Alaska.

Mean smolt length and weight have increased dramatically since 1989. However, fry to smolt survival experienced declines of a similar or greater level during the same time period. The relationship of increased smolt size with decreased numbers has been observed in other sockeye systems (Macdonald et al. 1987). The trend in fry to smolt survival seems counter intuitive; we would expect that larger smolt to have survived at a higher rate. That the opposite has been observed suggests two possible causes: there was less competition for food in the lake after most of the overwintering fry died which allowed the survivors to grow more rapidly; or, there was a change from earlier years of the project in the relative magnitude of the tributary populations being measured at the km 31 smolt enumeration site.

The sockeye salmon smolt estimate for 1993 was considerably less than that expected from fall fry estimates adjusted for average winter survival. Fall 1992 lake surveys produced estimates of 9,506,000 age-0. and 102,300 age-1. fry in Kenai and Skilak Lakes (Tarbox and Brannian 1993). If winter survival was average (75%), approximately 7,000,000 age-1. and 77,000 age-2. smolt should have migrated from Kenai and Skilak Lakes, in addition to smolt from Hidden Lake, Moose River, and Russian River.

If our estimates were reasonably accurate, our data suggest that sockeye salmon smolt production from the 1987-1991 parent years varied considerably despite record large escapements achieved in most of those years (Table 22). The numbers of smolt per spawner declined rapidly from over 20 to less than 1, even with the production from Moose River and Hidden Lake added to the smolt estimated at km 31.

We used the estimate of Russian River sockeye salmon smolt abundance in 1993 as an index of the order of magnitude of the migration. We encountered several problems which could affect the accuracy of the estimate, and decided to alter the program in 1994 prior to generating an estimate of migration. The primary area of concern was variation in trap efficiency through time. During the period 18 May through 29 June, the trap efficiency of 0.05 was much less than expected if trap catch was proportional to area of the river sampled. Large age-2. smolt made up at least 57.0% of the migrants prior to 2 June and were absent from the samples by 30 June. During the last three weeks of the project, the migration was nearly all age-1. smolt with a mean length 11 to 17 mm less than the age-2. smolt which migrated in May and June. The age-1. smolt were recaptured at a rate of 0.13. Only if the dyed age-2. smolt were able to avoid recapture completely during the last three weeks, could we have approached the trap efficiency recorded for the early period. During the middle period, 30 June through 3 July, only 8 of 760 dyed fish were recovered. Using that trap efficiency (0.01), and the numbers of smolt captured, resulted in half the total estimated migration occurring during that period. Clearly there were enough uncertainties in the recapture results to question migration estimates. In 1994 we intend to increase the number of traps to two and weir most of the river except for a small migratory channel for adults. We hope that this will increase trap efficiency, and provide us with a clearer understanding of trap avoidance.

LITERATURE CITED

- Bue, B.G., D.L. Bill, W.A. Bucher, S.M. Fried, H.J.Yuen, and R.E. Minard. 1988. Bristol Bay sockeye salmon studies for 1986. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 88-15, Juneau.
- Carlon, J. and J.J. Hasbrouck. 1993. Marking juvenile coho salmon in the Kenai River with coded, microwire tags. Alaska Department of Fish and Game Division of Sport Fisheries Fishery Data Series No. 93-52, Anchorage.
- Cochran, W.G. 1978. LaPlace's ratio estimator. In Contributions to survey sampling and applied statistics, edited by H.A. David, Academic Press, New York, pp. 3-10.
- Clark, W.C. and H.D. Smith. 1972. Observations on the migration of sockeye salmon fry (Oncorhynchus nerka) in the lower Babine River. Journal of the Fisheries Research Board of Canada 29.
- Davis, R.Z., B.E. King, and K.E. Tarbox. 1993. Upper Cook Inlet salmon escapement studies, 1992. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report (94-15), Juneau.
- Effron, B. 1982. The jackknife, the bootstrap and other resampling plans. CBMS-NSF Regional Conference Series in Applied Mathematics 38, Society for Industrial and Applied Mathematics, Philadelphia.
- Fandrei, G. 1993. Hidden Lake sockeye salmon enhancement progress report 1993. Cook Inlet Aquaculture Association, Soldotna.
- Foerster, R.E. 1968. The sockeye salmon, Oncorhynchus nerka. Fisheries Board of Canada Bulletin 162. Ottawa.
- Hoar, W.S. 1954. The behavior of juvenile pacific salmon, with particular reference to the sockeye (Oncorhynchus nerka). Journal of the Fisheries Research Board of Canada 11(1).
- INPFC (International North Pacific Fisheries Commission). 1963. Annual Report 1961. Seattle, Washington.
- King, B.E., L.K. Brannian, and K.E. Tarbox. 1990. Kenai River sockeye salmon smolt studies, 1989. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2S90-5, Anchorage.
- King, B.E., L.K. Brannian, and K.E. Tarbox. 1991. Kenai River sockeye salmon smolt studies, 1990-91. Alaska Department of Fish and Game Division of Commercial Fisheries Regional Information Report No. 2S91-8, Anchorage.

LITERATURE CITED (continued)

- King, B.E., L.K. Brannian, and K.E. Tarbox. 1994. Kenai River sockeye salmon smolt studies, 1992. Alaska Department of Fish and Game Division of Commercial Fisheries Regional Information Report No. 2A93-28, Anchorage.
- Kyle, G.B. 1983. Crescent Lake sockeye salmon smolt enumeration and sampling, 1982. Alaska Department of Fish and Game, Fisheries Rehabilitation, Enhancement and Development Division Report Series No. 17, Juneau.
- Kyle, G.B. 1992. Summary of sockeye salmon (Oncorhynchus nerka) investigations in Tustumena Lake, 1981-1991. Alaska Department of Fish and Game, Division of Fisheries Rehabilitation, Enhancement and Development Division Report No. 122, Juneau.
- Macdonald, P.D.M., H.D. Smith and L. Jantz. 1987. The utility of Babine smolt enumerations in management of Babine and other Skeena River sockeye salmon (Oncorhynchus nerka) stocks. In: H.D. Smith, L. Margolis, and C.C. Wood. Editors. Sockeye salmon (Oncorhynchus nerka) population biology and future management. Canadian Special Publications in Fisheries and Aquatic Sciences 96.
- Marsh, L. 1993a. Catch and effort statistics for the sockeye salmon sport fishery during the early run to the Russian River with estimates of escapement. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 93-28, Juneau.
- Marsh, L. 1993b. Catch and effort statistics for the sockeye salmon sport fishery during the late run to the Russian River with estimates of escapement. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 93-35, Juneau.
- Nelson, D.C. 1980. Russian River sockeye salmon study. Alaska Department of Fish and Game. Anadromous Fish Studies, Annual Performance Report, 1980-1981, Project AFS-44, 22 (AFS-44-7):1-48, Juneau.
- Rawson, K. 1984. An estimate of the size of a migratory population of juvenile salmon using an index of trap efficiency obtained by dye marking. Alaska Department of Fish and Game, Division of Fisheries Rehabilitation, Enhancement and Development Report 28, Juneau.
- Ruesch, P.H. and J. Fox. 1993. Upper Cook Inlet Commercial Fisheries Annual Management Report, 1992. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 2A93-17, Anchorage.

LITERATURE CITED (continued)

- Schmidt, D. and K.E. Tarbox. 1991. Sockeye salmon overescapement. Fish/Shellfish Study No. 27. State/Federal Natural Resource Damage Assessment Draft Preliminary Status Report, Soldotna.
- Schmidt, D. and K.E. Tarbox. 1992. Sockeye salmon overescapement. Fish/Shellfish Study No. 27. State/Federal Natural Resource Damage Assessment Draft Preliminary Status Report, Soldotna.
- Seber, G.A.F. 1982. The estimation of animal abundance and related parameters. second edition. Macmillan Publishing Co., New York.
- Tarbox, K.E. and B.E. King. 1989. An estimate of juvenile fish densities in Skilak and Kenai Lakes, Alaska through the use of dual beam hydroacoustic techniques in 1988. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 2889-07, Anchorage.
- Tarbox, K.E. and L.K. Brannian. 1993. An estimate of juvenile fish densities in Skilak and Kenai Lakes, Alaska through the use of dual beam hydroacoustic techniques in 1992. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fisheries Report (in progress), Juneau.
- Thedinga, J.F., S.W. Johnson, M.L. Murphy, J.M. Lorenz, and K.V.Koski. 1993. Salmonid smolt yield determined with rotary screw traps in the Situk River, Alaska to predict effects of glacial flooding.

Table 1. Numbers of fish captured by trap 1 in the Kenai River, May 17 through July 5, 1993.

				Nu	mbers of Fish	2			
	Sockeye	Sockeye	Chinook	Chinook	Coho	Coho	Pink		
Date	Smolt	Fry	Smolt	Fry	Smolt	Fry	Fry	Other	Tota
17-May	0	9	0	24	0	2	21	1	
18–May	0	4	Ó	11	Ō	ō	44	Ō	5
19-May	0	10	8	24	1	9	9	4	6
20 – May	0	20	2	31	0	0	30	2	8
21–May	0	0	10	0	0	0	72	8	9
22 – May	0	11	3	22	1	6	79	2	12
23 – May	0	10	8	37	0	3	194	9	26
24 – May	0	0	17	37	4	2	146	6	212
25 - May	0	21	6	17	2	31	56	2	13
26 – May	2	1	16	10	3	4	. 151	6	193
27 – May	5	21	18	20	0	2	46	5	117
28 – May	1	8	5	12	1	1	123	5	156
29 – May	0	25	2	12	õ	4	544	0	587
30 - May	0	7	1	5	1	2	158	5	179
31 – May	1	5	6	6	2	1	140	4	16
01 – Jun	4	55	2	16	1	2	135	6	22
02 – Jun	3	128	17	13	1	2	119	8	291
03-Jun	4	328	4	15	1	12	128	7	499
04-Jun	5	274	1	1	Ō	1	152	3	437
05-Jun	2	215	0	4	0	ō	135	5	361
06-Jun	1	99	0	2	0	2	128	5	237
07 – Jun	11	48	2	2	3	1	213	4	284
08-Jun	2	70	1	3	7	4	155	5	247
09-Jun	2	1	1	1	1	0 0	125	3	134
10-Jun	1	43	3	1	ō	Õ	41	1	90
11-Jun	0	18	3	ō	ů 0	1	85	4	111
12-Jun	1	10	ō	ŏ	2 2	5	80	3	10
13-Jun	1	7	1	1	5	3	50	1	69
14 – Jun	0	8	0	13	0	1	120	2	144
15-Jun	0 0	33	3	3	Ő	Ō	50	0	89
16-Jun	Ő	20	4	4	ŏ	õ	25	2	55
17 – Jun	Ő	3	8	4	1	8	60	2	86
18-Jun	ů.	1	5	6	Ō	4	40	0	56
19 – Jun	ů	8	1	28	1	11	50	2	101
20-Jun	ů 0	33	2	35	1	4	140	4	219
21-Jun	1	24	2	13	1	3	80	1	125
22 – Jun	0	0	2	32	0	0	90	2	126
23-Jun	Ő	44	5	15	Ő	8	30	õ	102
24 – Jun	2	45	0	26	1	12	20	3	102
25 – Jun	1	40	10	20	1	14	20	0	107
26 – Jun	1	0	6	32	1	1	20	1	62
27 – Jun	1	30	18	15	0	3	30	1	98
28 - Jun	1	35	3	6	0	4	20	2	71
28-Jun 29-Jun	2	18	7	32	1	5	3	0	68
29–Jun 30–Jun	5	25	5	52	3	27	5	0	70
01-Jul	3	71	15	43	0	3	10	1	146
02-Jul	4	71	20	43 70	1	25	10	4	195
02–Jul 03–Jul	4 7	27	20 43	70 34	0	25 26	6	4	19.
03 – Jul 04 – Jul	1	21	43	.54	U	20	0	-+	14
04 – Jul 05 – Jul	0	56	44	32	0	19	0	6	157
Total	74	2,039	340	7 97	48	278	4,179	151	7,90

² No traps were fished on July 4.

Table 2. Numbers of fish captured by trap 2 in the Kenai River, May 17 through J	iuly 5, 1993.
--	---------------

				Nu	Numbers of Fish ^a												
 Date	Sockeye Smolt	Sockeye Fry	Chinook Smolt	Chinook Fry	Coho Smoit	Coho Fry	Pink Fry	Other	Tota								
							1(2		173								
17–May	1	2	3	4	0	0	162 479	1	480								
18–May	2	0	2	0	0	1		2	400 618								
19– May	0	7	1	17	2	4	576	11 9	27								
20 – May	1	0 0	6 5	2 3	1 1	0 1	258 493	9 7	51:								
21-May	3	1	3	0	13	4	396	7	42								
22-May	0	0	3	1	2	2	529	2	53								
23 – May	0	0	9	6	4	1	406	1	43								
24 – May	5 2	0	10	2	47	7	400 94	1	129								
25 – May	2	1	23	10	7	2	329	6	380								
26 – May		4	21	0	1	3	205	8	24								
27 – May	3 4	15	6	6	3	0	675	4	713								
28 – May 29 – May	4	3	5	11	6	3	610	27	660								
29-May	1	8	2	6	5	3	639	6	670								
30 – May	2	0	2	4	3	Ő	770	6	78								
31 – May 01 – Jun	17	3	6	5	0	0	255	13	299								
01-Jun 02-Jun	24	183	20	12	11	4	755	11	1,020								
02–Jun 03–Jun	24	370	5	4	10	13	1032	10	1,46								
03–Jun 04–Jun	23 38	196	2	4 0	2	0	750	7.	., 10								
04–Jun 05–Jun		196	4	3	2 9	2	1330	4	1,53								
	11	89	3	1	8	3	601	8	72								
06 – Jun 07 – Jun	33	52	8	0	6	0	734	1	834								
		32 27	4	Ő	28	1	600	1	694								
08 – Jun 09 – Jun	33 6	0	1	2	28 7	0	300	4	320								
09–Jun 10–Jun	2	5	1	0	2	0	355	ò	36								
10—Jun 11—Jun	2	20	2	Ő	3	3	355	1	38								
11-Jun 12-Jun	2	10	1	ŏ	15	õ	240	3	272								
12–Jun 13–Jun	1	10	3	1	20	2	34	8	70								
	0	0	4	7	5	2	390	2	410								
14 – Jun		7	9	4	5	2	240	4	27								
15-Jun	1	5	9	4	2	0	160	2	18:								
16-Jun	1		24	5	15	17	110	2	17								
17 – Jun	1	2	24 14	6	6	4	200	2	23:								
18-Jun	1	0	14	15	6 6	11	300	2	34								
19 – Jun	1	0 17	8 4	13	4	10	510	2	56								
20 – Jun	0		4	21	4	5	290	0	35								
21-Jun	6	28 0	17	8	0	6	150	1	18								
22-Jun	4	41	29	23	2	14	150	6	27								
23–Jun 24–Jun	5 4	26	15	18	4	21	140	3	23								
		20 21	42	44	3	42	7	3	16								
25–Jun 26–Jun	4 5	0	26	32	1	5	60	1	13								
20-Jun 27-Jun	12	3	45	19	Ō	5	200	3	28								
27–Jun 28–Jun	6	7	14	15	2	13	90	3	15								
		15	46	35	2	3	5	6	11								
29 – Jun 20 – Jun	6	21	88	51	7	19	25	3	22								
30 – Jun 01 – Jul	14 7	41	55	67	2	2	10	2	18								
01–Jul 02–Jul	4	62	108	30	3	35	32	3	27								
02–Jul 03–Jul	4 12	42	100 97	36	2	37	30	3	25								
03–Jul 04–Jul	12	72	21		2	2.	20	2									
04–Jul 05–Jul	3	48	84	44	4	16	1	2	20								
Total	329	1,558	903	598	252	328	17,062	230	21,26								

^a No traps were fished on July 4.

Table 3. Numbers of fish captured by trap 3 in the Kenai River, May 17 through July 5, 1993.

				Nu	mbers of Fish	2			
	Sockeye	Sockeye	Chinook	Chinook	Coho	Coho	Pink		
Date	Smolt	Fry	Smolt	Fry	Smolt	Fry	Fry	Other	Tota
17-May	0	1	0	1	0	0	376	5	383
18–May	1	0	2	0	0	0	501	6	510
19–May	2	1	2	6	1	0	364	7	383
20 – May	2	1	0	0	2	2	1024	5	1,036
21 – May	0	0	0	0	11	0	646	3	660
22-May	0	1	2	2	15	0	1089	2	1,111
23–May	3	2	2	1	9	3	1543	3	1,566
24 – May	9	0	19	1	13	0	641	4	687
25 – May	5	0	8	1	5	8	473	3	503
26-May	26	3	35	4	10	4	1425	5	1,512
27 – May	47	20	20	19	7	0	1920	10	2,043
28 – May	39	4	12	2	18	0	2140	9	2,224
29-May	5	6	3	8	11	0	1793	15	1,841
30-May	11	13	1	19	22	0	2720	5	2,791
31-May	39	7	4	6	16	0	1520	10	1,602
01-Jun	253	2	7	2	15	0	757	7	1,043
02-Jun	168	75	19	17	45	5	1680	11 -	2,020
03–Jun	77	321	16	11	41	5	2565	6	3,042
04-Jun	332	165	7	1	17	0	1280	4	1,806
05-Jun	59	130	3	4	13	2	2110	2	2,323
06-Jun	89	52	7	4	26	1	1685	5	1,869
07 – Jun	251	7	11	4	36	4	2090	6	2,409
08-Jun	121	16	3	2	98	1	2385	7	2,633
09 – Jun	52	0	1	0	20	0	915	2	990
10-Jun	12	2	0	0	8	0	1145	3	1,170
11-Jun	8	2	3	0	13	0	680	2	708
12-Jun	9	10	6	0	13	0	550	4	592
13 – Jun	0	1	0	0	5	0	60	0	66
14-Jun	3	0	8	2	11	3	1245	3	1,275
15 – Jun	2	4	7	3	7	1	450	0	474
16-Jun	3	0	25	1	15	0	360	3	407
17–Jun	5	0	29	5	64	8	250	2	363
18-Jun	7 [.]	0	25	10	27	8	670	4	751
19 – Jun	14	0	22	23	16	16	580	1	672
20-Jun	1	9	11	7	3	6	790	0	827
21 – Jun	7	50	4	3	7	1	1220	5	1,297
22 – Jun	24	1	54	5	9	8	200	3	304
23–Jun	15	41	59	19	11	23	920	6	1,094
24-Jun	34	47	72	18	10	22	570	8	781
25 – Jun	45	5	94	42	8	50	280	3	527
26 – Jun	95	5	50	55	3	13	230	2	453
27 – Jun	24	4	60	12	2	34	550	1	687
28 – Jun	30	14	40	16	2	16	310	1	429
29 – Jun	40	14	84	22	9	29	13	3	214
30-Jun	31	4	112	36	5	38	20	1	247
01-Jul	34	62	126	56	3	9	2	3	295
02-Jul	17	43	116	48	7	19	6	1	257
03 – Jul	92	44	171	13	7	23	72	2	424
04 — Jul									C
05-Jul	3	26	98	21	7	12	0	0	167
Total	2,146	1,215	1,460	532	723	374	44,815	203	51,468

^a No traps were fished on July 4.

Table 4. Numbers of fish captured by trap 4 in the Kenai River, May 17 through July 3, 1993.

_	Numbers of Fish ^a											
Date	Sockeye Smolt	Sockeye Fry	Chinook Smolt	Chinook Fry	Coho Smolt	Coho Fry	Pink Fry	Other	Tota			
		<u> </u>			<u> </u>							
7–May	0	1	0	1	0	0	296	5	29			
8-May	1	0	3	0	4	0	370	5	37			
19 – May	0	0	0	0	2	0	237	4	23			
20 – May	0	2	2	2	5	0	550	7	56			
21 – May	0	0	1	1	4	1	560	15	56			
2—May	0	1	0	3	28	0	817	4	84			
3—May	3	0	2	0	7	0	781	6	79			
24 – May	0	0	8	0	15	1	339	10	36			
25 – May	4	0	3	0	9	0	88	3	10			
26-May	8	0	26	2	9	0	276	8	32			
27 – May	19	6	22	7	10	0	290	8	35			
28-May	4	1	3	2	10	0	440	9	46			
9-May	4	1	3	7	30	0	510	10	55			
30 – Mav	6	0	2	8	13	· 0	710	13	73			
31-May	20	0	3	4	15	0	750	7	79			
01-Jun	96	9	12	Ó	8	ŏ	312	10	43			
02-Jun	60	21	13	6	32	27	971	11	1,13			
03-Jun	34	141	8	0	25	5	755	5	96			
04–Jun		141	6	2	23 7	0	838	3 ·	1,05			
04–Jun 05–Jun	98 15	50	2	2 7	20	2	1,110	3	1,05			
05–Jun 06–Jun	24		4	3					89			
		10			23	1	830	11				
07-Jun	81	62	2	0	38	0	1,065	5	1,24			
08-Jun	22	13	2	1	52	16	1,360	4	1,46			
09-Jun	6	0	3	0	16	2	576	3	60			
1 0 -Jun	6	10	0	1	3	0	808	1	82			
11-Jun	4	0	2	0	17	3	460	4	48			
12-Jun	2	10	1	0	23	2	400	1	43			
13 – Jun	0	0	3	1	46	1	185	5	23			
14 – Jun	1	0	4	0	16	3	630	3	65			
15–Jun	1	0	13	2	17	0	220	1	25			
16 – Jun	0	0	21	3	16	1	180	2	22			
17 – Jun	2	0	33	6	59	9	120	1	22			
18 – Jun	3	1	28	11	30	6	230	4	30			
19 – Jun	2	0	17	0	11	8	440	0	47			
20 – Jun	2	2	9	5	5	4	700	4	72			
21-Jun	6	10	11	8	4	1	420	1	46			
22-Jun	16	10	27	9	5	6	120	3	19			
23-Jun	8	0	45	29	5	18	50	3	15			
24 – Jun	8	8	54	18	1	29	120	1	23			
25-Jun	9	22	80	26	5	52	220	3	41			
26 – Jun	24	10	26	43	1	1	30	1	13			
27 – Jun	8	0	46	16	Ô	18	350	1	43			
28-Jun	5 7	10	32	31	2	16	150	4	24			
29 – Jun 29 – Jun	8	2	86	12	3	7	6	4	12			
29—Jun 30—Jun	4	27	75	12	10	28	20	4	15			
01-Jul	4	22	88	53	3	28 10	20 10	4	19			
01-Jul 02-Jul		15	63	36		33	5	1	16			
02-Jul 03-Jul	6 14	13 20	113	36 16	3 2	33 19	29	1	21			
Total	651	585	1,007	396	669	330	20,734	223	24.37			

^a No traps were fished on July 4.

Table 5. Numbers of fish captured by smolt traps 1-4 at the Kenai River km 31 site, May 17 through July 5, 1993.

	Numbers of Fish ^a											
_	Sockeye	Sockeye	Chinook	Chinook	Coho	Coho	Pink					
Date	Smolt	Fry	Smolt	Fry	Smolt	Fry	Fry	Other	Tota			
17–May	1	13	3	30	0	2	855	12	916			
18 – May	4	4	7	11	4	1	1394	13	1,438			
19-May	2	18	11	47	6	13	1186	26	1,309			
20 – May	3	23	10	35	8	2	1862	23	1,966			
21-May	3	0	16	4	16	2	1771	33	1,845			
22–May	0	14	8	27	57	10	2381	15	2,512			
23–May	6	12	15	39	18	8	3047	20	3,165			
24 - May	14	0	53	44	36	4	1532	21	1,704			
25 – May	11	21	27	20	23	46	711	15	874			
26 – May	38	5	100	26	29	10	2181	25	2,414			
27–May	74	51	81	46	18	5	2461	31	2,767			
28 – May	48	28	26	22	32	1	3378	27	3,562			
29 – May	10	35	13	38	47	7	3457	52	3,659			
30 - May	18	28	6	38	41	5	4227	29	4,392			
31-May	62	12	15	20	36	1	3180	27	3,353			
01 – Jun	370	69	27	23	24	2	1459	36	2,010			
02-Jun	255	407	69	48	89	38	3525	41 .	4,472			
03-Jun	138	1160	33	30	77	35	4480	28	5,981			
04-Jun	473	743	16	4	26	1	3020	17	4,300			
05-Jun	87	570	9	18	42	6	4685	14	5,431			
06 – Jun	126	250	14	10	57	7	3244	29	3,737			
07 – Jun	376	169	23	6	83	5	4102	16	4,780			
08 - Jun	178	126	10	6	185	22	4500	17	5,044			
09 – Jun	66	1	6	3	44	2	1916	12	2,050			
10-Jun	21	60	4	2	13	0	2349	5	2,454			
11 - Jun	14	40	10	0	33	7	1580	11	1,695			
12-Jun	15	40	8	0	53	7	1270	11	1,404			
13-Jun	2	9	7	3	76	6	329	14	446			
14–Jun	4	8	16	22	32	9	2385	10	2,486			
15-Jun	4	44	32	12	29	3	960	5	1,089			
16-Jun	4	25	59	12	33	1	725	9	868			
17-Jun	8	5	94	20	139	42	540	7	855			
18-Jun	11	2	72	33	63	22	1140	10	1,353			
19-Jun	17	8	48	66	34	46	1370	5	1,594			
20 – Jun	3	61	26	61	13	24	2140	10	2,338			
21 – Jun	20	112	21	45	13	10	2010	7	2,238			
22 – Jun	44	11	100	54	14	20	560	9	812			
23-Jun	28	126	138	86	18	63	1150	15	1,624			
24 – Jun	48	126	141	80	16	84	850	15	1,360			
25-Jun	59	88	226	133	17	158	527	9	1,217			
26 – Jun	125	15	108	162	6	20	340	5	781			
27 – Jun	45	37	169	62	2	60	1130	6	1,511			
28 – Jun	44	66	89	68	6	49	570	10	902			
29-Jun	56	49	223	101	15	44	27	13	528			
30-Jun	54	57	280	107	25	112	70	8	713			
01 – Jul	49	196	284	219	8	24	32	7	819			
02 – Jul	31	190	307	184	14	112	44	9	891			
03–Jul	125	133	424	99	11	105	137	10	1,044			
04 – Jul									0			
05–Jul	6	130	226	97	11	47	1	8	526			
Total	3,200	5,397	3,710	2,323	1,692	1,310	86,790	807	105.229			

^a No traps were fished on July 4; on July 5 only traps 1-3 were fished.

	<u> </u>			Numbers of	Fish				
Trap	Sockeye	Sockeye	Chinook	Chinook	Coho	Coho	Pink		
No.	Smolt	Fry	Smolt	Fry	Smolt	Fry	Fry	Other	Total
1990							· · · · · · · · · · · · · · · · · · ·		<u> </u>
1	8,708	481	861	300	a	87	23	148	10,60
2	18,132	180	1,168	239	2	69	17	134	19,9
3	59,528	631	2,776	232	a	106	100	184	63,5
4	43,499	43	3,114	68	2	58	44	272	47,0
Total	129,867	1,335	7,919	839		320	184	738	141,2
1 99 1									
1	1,758	62	451	131	93	27	a	177	2,6
2	3,291	30	918	97	224	31	2	161	4,7
3	10,540	23	1,526	62	775	10	2	200	13,1
4	10,239	17	1,697	57	832	9	2	182	13,0
Total	25,828	132	4,592	347	1,924	77		720	- 33,6
1992									
1	47	1,594	500	944	141	117	23	183	3,5
2	189	306	598	274	338	44	23	159	1,9
3	1,205	223	1,198	229	1,021	46	32	179	4,1
4	1,725	82	1,544	136	1,968	45	17	269	5,7
Total	3,166	2,205	3,840	1,583	3,468	252	95	790	15,3
1993									
1	74	2,039	340	797	48	278	4,179	151	7,9
2	329	1,558	903	598	252	328	17,062	230	21,2
3	2,146	1,215	1,460	532	723	374	44,815	203	51,4
4	651	585	1,007	396	669	330	20,734	223	24,5
Total	3,200	5,397	3,710	2,323	1,692	1,310	86,790	807	105,2

Table 6. Numbers of juvenile fish caught with inclined plane traps 1-4 in the Kenai River, 1990-1993.

^a No counts conducted

Table 7. Numbers of sockeye salmon smolt captured daily in the Kenai River, 1989-1993.

			Year						Year		
Date	1989 *	1990	1991	1992	1993	Date	1989 *	1990	1991	1992	1993
15-May	******	8		<u> </u>	<u>-</u>	16-Jun	2,197	165	279	100	4
10 - May 16 - May	348	5	4	0		10 - Jun 17 - Jun	1,369	123	182	99	8
17 – May	155	34	4	0	1	18 – Jun	607	17	24	49	11
18 – May	204	376	1	1	4	19 - Jun	972	36	658	57	17
19 – May	195	507	1	0	2	20 – Jun	952	186	2,252	94	3
20-May	454	3,159	8	0	3	21 – Jun	1,036	168	1,971	16	20
21 – May	271	4,760	13	0	3	22 – Jun	639	108	2,446	3	44
22 – May	716	2,690	36	0	0	23 – Jun	2,835	37	923	14	28
23 – May	1,546	414	680	0	6	24 – Jun	1,833	20	407	5	48
24 – May	1,184	282	389	0	14	25 – Jun	660	56	377	2	59
25 – May	988	1,645	319	2	11	26 – Jun	679		2,972	2	125
26 – May	785	16,411	622	1	38	27 – Jun	486		263	6	45
27 – May	2,699	8,057	306	0	74	28 – Jun			320	40	44
28 – May	2,056	1,903	151	1	48	29 – Jun			213	18	56
29 – May	1,532	1,745	414	1	10	30 – Jun			122	31	54
30 – May	2,268	9,578	502	2	18	01 – Jul			517		49
31 – May	6,257	9,878	494	5	62	02 — Jul			19		31
01 – Jun	8,221	3,305	284	1	370	03 — Jul			239		125
02 – Jun	2,697	2,587	904	9	255	04 – Jul			494		
03 – Jun	4,350	8,037	459	9	138	05 — Jui			10		6
04 – Jun	10,170	10,182	414	56	473	06 – Jul			32		
05-Jun	17,579	14,143	440	35	87	07 – Jul			30		
06 – Jun	49,451	8,931	262	144	126	08 – Jul			40		
07 – Jun	16,276	8,337	579	69	376	09 – Jul			33		
08 – Jun	3,482	4,430	633	28	178	10 — Jul			6		
09 – Jun	3,271	6,336	492	94	66						
10 – Jun	2,188	429	699	69	21	TOTAL	161,111	129.868	28,173	3,166	3,200
11 – Jun	988	261	525	250	14						
12 – Jun	1,656	248	825	329	15						
13 – Jun	1,044	93	1,296	300	2						
14 – Jun	3,052	51	934	101	4						
15-Jun	763	131	654	1,123	4						

^a Three traps were fished in 1989; four traps were fished in the remaining years.

				Numbers of	Fish				
Trap	Sockeye	Sockeye	Chinook	Chinook	Coho	Coho	Pink		
No.	Smolt	Fry	Smolt	Fry	Smolt	Fry	Fry	Other	Total
1	74	2039	340	797	48	278	4179	151	7755
2	329	1558	903	598	252	328	17062	230	21030
3	2146	1215	1460	532	723	374	44815	203	51265
4	651	585	1007	396	669	330	20734	223	24372
Total 1-4	3200	5397	3710	2323	1692	1310	86790	807	104422
5	322	2612	681	863	188	780	1739	169	7185
6	348	2650	397	1304	102	767	1267	168	6835
Total 5–6	670	5262	1078	2167	290	1547	3006	337	14020
Total	3,870	10,659	4,788	4,490	1,982	2,857	89,796	1,144	118,442
		<u>. </u>		Percent of In	ndividual Tra	ap Catch			·
1	1.0	26.3	4.4	10.3	0.6	3.6	53.9	1.9	100.0
2	1.6	7.4	4.3	2.8	1.2	1.6	81.1	1.1	100.0
3	4.2	2.4	2.8	1.0	1.4	0.7	87.4	0.4	100.0
4	2.7	2.4	4.1	1.6	2.7	1.4	85.1	0.9	100.0
Total 1-4	3.1	5.2	3.6	2.2	1.6	1.3	83.1	0.8	100.0
5	4.5	36.4	9.5	12.0	2.6	10.9	24.2	2.4	100.0
6	5.1	38.8	5.8	19.1	1.5	11.2	18.5	2.5	100.0
Total 5-6	4.8	37.5	7.7	15.5	2.1	11.0	21.4	2.4	100.0
Total	3.3	9.0	4.0	3.8	1.7	2.4	75.8	1.0	100.0
			<u> </u>	Percent of T	otal Catch				
1	0.1	1.7	0.3	0.7	0.0	0.2	3.5	0.1	6.5
2	0.3	1.3	0.8	0.5	0.2	0.3	14.4	0.2	17.8
3	1.8	1.0	1.2	0.4	0.6	0.3	37.8	0.2	43.3
4	0.5	0.5	0.9	0.3	0.6	0.3	17.5	0.2	20.6
Total 1–4	2.7	4.6	3.1	2.0	1.4	1.1	73.3	0.7	88.2
5	0.3	2.2	0.6	0.7	0.2	0.7	1.5	0.1	6.1
6	0.3	2.2	0.3	1.1	0.1	0.6	1.1	0.1	5.8
Total 5-6	0.6	4.4	0.9	1.8	0.2	1.3	2.5	0.3	11.8
Total	3.3	9.0	4.0	3.8	1.7	2.4	75.8	1.0	100.0

25

Table 9. Numbers of fish captured by trap 5 in the Kenai River, May 17 through July 2, 1993.

_		- <u></u>		<u>Nu</u>	mbers of Fish				
Date	Sockeye Smolt	Sockeye Fry	Chinook Smolt	Chinook Fry	Coho Smolt	Coho Fry	Pink Fry	Other	Tota
			<u></u>			······			
17 – May	0	0	0	0	0	0	11	0	1
18-May	1	2	2	46	1	0	66	4	12
19-May	1	8	1	24	0	3	43	0	8
20 – May	0	2	0	19	1	1	68	0	9
21 – May	2	2	1	39	7	0	32	2	8
22 – May	0	6	0	32	1	6	28	2	7
23 – May	1	10	8	20	0	3	80	0	12
24 – May	5	1	7	32	4	9	120	1	17
25-May	6	29	2	15	3	15	43	2	11
26 – May	18	2	28	46	2	3	. 41	9	14
27-May	32	35	25	6	2	1	10	12	12
28-May	10	8	6	13	3	3	59	7	10
29 – May	5	47	2	15	3	23	28	3	12
30 – May	2	54	3	19	7	3	39	3	13
30 – May 31 – May	5	2	4	11	4	8	47	9	9
	16	58	4 14	71	4 9	8 6	131	3	
01-Jun									30
02-Jun	15		8	75	6	27	173	9.	38
03-Jun	24	585	4	28	11	19	58	10	73
04-Jun	48	362	0	1	5	3	172	8	59
05-Jun	14	590	3	8	1	2	55	5	67
06-Jun	5	115	3	13	9	8	48	11	21
07-Jun	5	6	0	1	0	1	36	0	4
08-Jun	20	134	2	10	11	2	131	15	32
09 – Jun	11	37	1	3	5	3	38	3	10
10-Jun	9	46	1	1	6	0	15	2	8
11-Jun	0	21	6	0	4	5	3	3	4
12–Jun	0	10	3	1	4	12	20	3	5
13 – Jun	1	18	3	0	6	17	16	4	6
14-Jun	0	10	1	8	0	10	3	1	3
15-Jun	1	9	24	9	2	2	4	0	5
16-Jun	1	9	46	14	8	1	2	1	8
17-Jun	0 0	1	45	11	25	34	2 0	1	11
18-Jun	3. 3.	8	29	10	5	24	30	2	11
19-Jun 19-Jun	2	27	22	6	3	15	3	3	8
19–Jun 20–Jun	2	19	4	23	4	21	50	1	12
20—Jun 21—Jun	14	20	16	23 24	5	17	2	· 2	12
22–Jun 22–Jun	1	51	8	3	6	46	2	5	12
	4	26	24				0	2	
23-Jun	•			13	3	32			10
24 – Jun	7	31	35	13	4	90	5	2	18
25 – Jun	5	11	67	31	0	35	0	1	15
26 – Jun	5	3	23	35	0	20	2	2	9
27 - Jun	6	15	22	10	1	28	10	2	9
28 - Jun	1	9	12	14	1	44	0	3	8
29 - Jun	2	12	26	15	0	33	5	1	9
30 - Jun	3	10	31	12	3	35	0	2	9
01 – Jul	7	22	93	27	2	46	10	2	20
02–Jul	2	56	16	37	1	64	0	6	18
Total	322	2,612	681	863	188	780	1,739	169	7,35

Table 10.	Numbers of fish	captured by trap	6 in the Kenai River,	May 17 through July 2, 1993.
-----------	-----------------	------------------	-----------------------	------------------------------

				Nu	mbers of Fish			Pink										
	Sockeye	Sockeye	Chinook	Chinook	Coho	Coho												
Date	Smolt	Fry	Smolt	Fry	Smolt	Fry	Fry	Other	Tota									
17–May	0	0	0	0	0	0	4	0	4									
18—May	0	0	0	23	0	0	26	0	49									
19-May	0	3	0	13	4	2	15	3	37									
20-May	0	6	1	12	0	0	22	0	41									
21 – May	0	1	0	31	1	0	16	2	49									
22 – May	0	22	0	42	0	5	13	4	82									
23–May	1	10	1	27	0	0	18	2	57									
24–May	3	0	1	24	1	1	30	2	60									
25-May	2	19	0	15	0	9	3	1	48									
26 – May	12	3	2	53	0	0	45	4	115									
27 – May	39	39	3	12	1	7	11	4	112									
28 – May	7	13	8	34	2	0	58	12	122									
29 – May	3	49	3	21	1	7	34	5	118									
30 – May	2	27	0	9	4	5	1	2	48									
31 – May	1	0	1	15	0	4	31	3	52									
01-Jun	7	39	1	53	2	2	120	4	224									
02-Jun	12	92	4	42	2	5	140	17	297									
03-Jun	11	596 272	7	442	6	25	34	9	1,121									
04 – Jun	53	272 270	1	0 11	1 1	10 1	148 50	4.	485									
05-Jun 06-Jun	8 5	176	2 2	11	0	8		1 6	343 253									
00-Jun 07-Jun	50	178	2 5	14	5	11	40 45	8	205									
07–Jun 08–Jun	22	148	5 9	14	3	4	45 105	7	263									
08–Jun 09–Jun	7	60	2	0	2	4	50	3	122									
10–Jun	5	103	0	3	2	0	13	0	126									
10-Jun 11-Jun	1	25	2	0	8	2	11	3	49									
11-Jun 12-Jun	3	13	1	1	7	7	23	1	55									
13-Jun	0	17	2	0	3	9	12	4	43									
14-Jun	õ	30	0	3	5	17	1	2	56									
15-Jun	1	8	14	3	4	1	ò	4	31									
16-Jun	3	16	38	8	Ó	4	õ	2	69									
17 – Jun	3	23	33	10	12	27	30	- 1	138									
18-Jun	2	6	18	14	4	14	30	4	88									
19-Jun	3	39	13	4	5	8	5	4	77									
20 – Jun	2	31	1	32	2	11	30	4	109									
21 – Jun	19	13	0	29	1	14	11	2	87									
22-Jun	2	55	9	7	1	38	3	4	115									
23 – Jun	11	46	11	24	2	59	5	, Ó	158									
24 – Jun	4	25	39	22	4	98	0	4	192									
25 – Jun	7	16	54	34	1	53	10	3	175									
26 – Jun	7	14	12	50	0	2	0	0	85									
27 – Jun	10	49	22	30	0	10	0	3	121									
28 – Jun	4	14	10	19	0	25	5	1	77									
29 – Jun	4	25	7	25	1	49	0	2	111									
30-Jun	6	31	14	14	0	80	1	2	146									
01 — Jul	3	42	31	34	3	62	10	5	185									
02 – Jul	3	64	13	30	1	70	0	4	181									
Total	348	2,650	397	1,304	102	767	1,267	168	6,835									

Table 11. Dyed Kenai River sockeye salmon smolt releases and recaptures by date, 1993.

Date	Number of Fish Dyed	Numbers of Dyed Fish Released	Capture to Release Survival ^a	Number of Dyed Fish Recovered	Trap Efficiency
02–Jun	313	291	0.930	0	
03-Jun	1 79	162	0.905	0	
04–Jun	678	632	0.932	4	
05-Jun	112	107	0.955	0	
06-Jun	137	124	0.905	0	
07-Jun	446	402	0.901	. 2	
08-Jun	223	216	0.969	0	
Total		1934	0.926	6	0.003

~

^a Number of dyed fish released/Number of dyed fish.

Date	Number of Fish Dyed	Number of Dyed Fish Recovered	Trap Efficiency
1989 total	12,599	86	0.007
1990 period 1	2,793	21	0.008
1990 period 2-4	8,409	109	0.013
1991 total	1,923	19	0.010
1992 total	926	19	0.021
1993 total	1,934	6	0.003

Table 12. Results of sockeye salmon smolt dye tests conducted on the Kenai River, 1989-1993.

Table 13. Estimated daily sockeye salmon smolt seaward migration from the Kenai River, 1993.

	Daily					
	Sockeye		Estimate of Sockey	e Smoit Migration ^a		
Date	Smolt Trap Catch	Daily	Cumulative	Age-0.	Age-1.	Age-2
17-May	1	152	152	0	118	34
18-May	4	608	760	0 0	471	13
19-May	2	304	1,064	Ő	235	6
20-May	3	456	1,519	0	353	10
21-May	3	456	1,975	Ő	353	10
22-May	Ő	0	1,975	0	0	14
23-May	6	912	2,887	ő	706	20
24-May	14	2,127	5,014	ő	1,648	47
25-May	11	1,671	6,685	0	1,295	37
26-May	38	5,773	12,458	0 0	4,473	1,30
27-May	74	11,243	23,701	Ő	8,711	2,53
28-May	48	7,293	30,994	õ	5,650	1,642
29-May	10	1,519	32,513	Ő	1,177	34
30-May	18	2,735	35,248	0	2,119	610
31-May	62	9,420	44,668	0	7,299	2,12
01-Jun	370	56,215	100,883	0	55,525	69
01-Jun 02-Jun	255	38,743	139,625	0	38,267	- 47
02Jun 03Jun	138	20,967	160,592	0	20,709	
03-Jun 04-Jun	473	71,864		0	70,982	25
	473 87	13,218	232,455			88
05-Jun	126	19,143	245,673	0	13,056	16
06-Jun	376	57,126	264,817	0	18,908	23 70
07-Jun			321,943	0	56,425	
08-Jun	178	27,044	348,987	0	26,712	33
09-Jun	66	10,027	359,014	0	9,904	12
10-Jun	21	3,191	362,205	0	3,151	39
11-Jun	14	2,127	364,332	0	2,101	20
12-Jun	15	2,279	366,611	0	2,251	2
13-Jun	2	304	366,915	0	300	•
14-Jun	4	608	367,522	0	600	
15-Jun	4	608	368,130	0	600	•
16-Jun	4	608	368,738	281	326	(
17-Jun	8	1,215	369,953	563	653	(
18-Jun	11	1,671	371,625	774	898	(
19-Jun	17	2,583	374,207	1,196	1,387	(
20-Jun	3	456	374,663	211	245	(
21-Jun	20	3,039	377,702	1,407	1,632	(
22-Jun	44	6,685 4,254	384,387	3,095	3,590	(
23-Jun	28		388,641	1,969	2,285	(
24-Jun	48	7,293	395,934	2,094	5,152	47
25-Jun	59	8,964	404,898	2,574	6,333	58
26-Jun	125	18,991	423,889	5,452	13,417	12
27-Jun	45	6,837	430,726	1,963	4,830	44
28-Jun	44	6,685	437,411	1,919	4,723	4
29-Jun	56	8,508 8,204	445,919	3,135	5,346	21
30-Jun	54	8,204	454, 123	3,023	5,155	2.
01-Jul	49	7,445	461,568	2,743	4,677	24
02-Jul	31	4,710	466,278	1,735	2,959	1:
03-Jul	125	18,991	485,269	6,997	11,932	62
04–Jul	ь					
05-Jul	6	912	48 6,181	336	573	3
Total	3,200	486,181		41,465	430,213	14,503

⁴ Total migration - 486,181. Lower confidence interval - 163,998; Upper confidence interval - 1,202,844.
 ^b No traps were fished on 4 July; only traps 1-3 were fished on 5 July.

Table 14. Cumulative proportion of sockeye salmon smolt seaward migration by day, 1989-1993.

			Age-1.			Age-2.						
Date	1989	1990	1991	1992	1993	1989	1990	1991	1992	199:		
		0.000					0.000					
16–May	0.002	0.000	0.000	0.000		0.002	0.000	0.001	0.000			
17-May	0.003	0.000	0.000	0.000	0.000	0.003	0.001	0.002	0.000	0.002		
l8–May	0.004	0.004	0.000	0.000	0.001	0.004	0.007	0.002	0.000	0.012		
9-May	0.006	0.008	0.000	0.000	0.002	0.006	0.015	0.002	0.000	0.01		
0-May	0.008	0.036	0.000	0.000	0.003	0.008	0.067	0.004	0.000	0.02		
21-May	0.010	0.078	0.000	0.000	0.004	0.010	×0.146	0.007	0.000	0.03		
22-May	0.015	0.101 0.105	0.000 0.003	0.000 0.000	0.004 0.005	0.015 0.024	0.190	0.015	0.000 0.000	0.03		
23–May 24–May	0.024 0.031	0.106	0.005	0.000	0.009	0.024	0.197 0.299	0.256	0.000	0.04 0.07		
25 - May	0.031	0.112	0.003	0.001	0.012	0.038	0.217	0.328	0.000	0.10		
26-May	0.042	0.169	0.010	0.001	0.022	0.042	0.387	0.469	0.001	0.19		
27–May	0.059	0.197	0.010	0.001	0.043	0.059	0.471	0.533	0.001	0.36		
28-May	0.072	0 204	0.015	0.001	0.056	0.072	0.490	0.550	0.002	0.48		
29-May	0.082	0.216	0.027	0.002	0.059	0.082	0.503	0.583	0.002	0.50		
0-May	0.096	0.282	0.041	0.002	0.063	0.096	0.574	20.624	0.003	0.54		
31-May		0.358	0.055	0.004	0.080	0.134	0.647	0.664	0.004	0.59		
01-Jun	0.185	0.373	0.063	0.004	0.210	0.185	0.672	0.687	0.004	0.74		
	0.202	0.391	0.089	0.007	0.298	0.292	0.691	0.759	0.007	0.77		
03-Jun	0.229	0.469	0.102	0.009	0.347	0.229	0.736	0.797	0.010	0.79		
04-Jun	0.292	0.569	0.113	0.026	0.512	0.292	0.781	0.830	0.028	0.85		
05-Jun	0.401	0.705	0.126	0.036	0.542	0.401	0.531	0.865	0.039	0.86		
06-Jun	0.708	0.793	0.133	0.079	0.586	0.708	0.895	0.887	0.086	0.88		
07-Jun	0.809	0.874	0.155	0.099	20217	0.309	0.936	0.898		0.92		
08-Jun	0.831	0.918	0.179		0.779	0.831	0.958	0.910	0.117	0.95		
09-Jun	0.851	0.979	0.198	0.135 0.155	0.802	0.851	0.989 0.992	0.919 0.933	0.147 0.169	0.96 0.96		
10-Jun 11-Jun	0.865 0.871	0.983 0.986	0.245		0.809	0.865 0.871	0.992	0.933	0.109	0.96		
12-Jun	0.871	0.988	0.245 0.277	0.272	0.820	0.881	0.993	0.950	0.366	0.96		
12–Jun 13–Jun	0.888	0.989	0.329	0.272	0.820	0.888	0.995	0.962	0.467	0.90		
14-Jun		0.990	0.366	0.352	0.822	0.907	0.995	0.970	0.502	0.9		
15-Jun	0.911	0.991	0.392	0578	0.823	0.911	0.995	0.976	0.883	0.90		
16-Jun	0.925	0.993	20403	0.657	0.824	0.925	0.996	0.979	0.905	0.96		
17-Jun	0.934	0.994	0.411	07.0	0.825	0.934	0.997	0.980	0.927	0.9		
18-Jun	0.937	0.994	0.412	0.773	0.827	0.937	0.997	0.980	0.937	0.9		
19-Jun	0.943	0.994	0.438	C EIS	0.831	0.943	0.997	0.983	0.950	0.9		
20-Jun	0.949	0.996	0.530	0.892	0.831	0.949	0.998	0.991	0.970	0.9		
21-Jun	0.956	0.998	0.610	0.905	0.835	0.956	0.999	0.998	0.974	0.9		
22-Jun	0.960	0.999	0.711	0.907	0.843	0.960	0.999	0.998	0.974	0.9		
23-Jun	0.977	0.999	0.749	0.918	0.849	0.977	1.000	0.999	0.977	0.9		
24-Jun	0.989	0.999	0.766	0.922	0.861	0.989	1.000	0.999	0.978	0.9		
25-Jun	0.993	1.000	0.781	0.924	0.875	0.993	1.000	0.999	0.979	0.9		
26-Jun	0.997		0.904	0.925	0.010	0.997		0.999	0.979	0.9		
27-Jun	1.000		0.914	0.930	0.918	1.000		1.000	0.981 0.989	0.9 0.9		
28-Jun 29-Jun			0.928 0.936	0.961 0.976	0.929 0.941			1.000 1.000	0.989	0.9		
30-Jun			0.930	1.000	0.953			1.000	1.000	0.9		
01-Jui			0.963	1.000	0.964			1.000	1.000	0.9		
02-Jul			0.964		0.971			1.000		0.9		
03-Jul			0.973		0.999			1.000		1.0		
04-Jul			0.994		0.999			1.000		1.0		
05-Jul			0.994		1.000			1.000		1.0		
06-Jul			0.996					1.000				
07-Jul			0.997					1.000				
08-Jul			0.998					1.000				
09-Jul			1.000					1.000				
10-Jul			1.000					1.000				

* Shaded blocks highlight .1 proportion increments

		Percent of Seaw			
Sample Period	Age - 0.	Age-1.	Age – 2.	Age – 3.	Sample Size
5/15-5/23/90	0.0	31.9	68.1	0.0	75
5/24-5/28/90	0.0	22.8	76.7	0.5	42
5/29-6/2/90	0.0	45.0	54.7	0.3	42
6/3-6/25/90	0.0	63.4	36.6	0.0	1,81
5/16-5/27/91	0.0	11.3	88.5	0.2	42
5/28-6/6/91	0.0	68.4	31.6	. 0.0	85
6/7-6/11/91	0.0	92.5	7.5	0.0	42
6/12-6/17/91	0.0	96.5	3.5	0.0	42
6/18-6/21/91	0.0	98.6	1.4	0.0	42
6/22-7/15/91	0.0	99.9	0.1	0.0	1,19
5/16-6/10/92	0.0	16.1	83.9	0.0	34
6/11-6/15/92	0.0	11.0	89.0	0.0	31
6/16-6/30/92	0.0	43.0	57.0	0.0	31
5/17-5/31/93	0.0	77.4	22.6	0.0	26
6/1-6/15/93	0.0	98.8	1.2	0.0	16
6/16-6/23/93	46.3	53.7	0.0	0.0	16
6/24-6/28/93	28.7	70.6	0.6	0.0	31
6/29-7/6/93	36.8	62.8	0.3	0.0	30
eason Summary					
1989	0.0	99.7	0.3	0.0	3,55
1990	0.0	46.7	53.1	0.2	3,42
1991	0.0	86.1	13.9	0.0	3,74
1992	0.0	17.3	82.7	0.0	98
1993	8.5	88.5	3.0	0.0	1,20

Table 15. Summary of Kenai River sockeye salmon smolt age composition, 1989-1993. Data collected at river km 31.

Table 16. Sockeye salmon smolt mean length and weight by age class and time strata, 1989-1993. Data collected at river km 31.

					Length						Weight			
	Time							Stand.	-					Stand
Year	Period	Age	N	Mean	Min.	Max.	Var.	Dev.	N	Mean	Min.	Max.	Var.	Dev
93	6/1-23	0.	75	51	44	78	25	5	75	1.4	0.9	4.2	0.2	0
93	6/24-28	0.	89	52	41	64	18	4	89	1.4	0.7	2.5	0.1	0
93	6/29-7/6	0.	112	54	43	74	27	5	112	1.7	0.9	3.9	0.2	0
89	5/16-20	1.	413	60	46	80	19	4	413	1.9	0.8	4.3	0.18	0.4
89	5/21-25	1.	338	61	60	72	22	5	338	2.1	1.2	3.3	0.13	0.3
89	5/26-30	1.	421	60	53	77	17	4	421	1.9	1. 2	3.8	0.15	0.
89	5/31-6/04	1.	424	59	49	70	13	4	424	1.8	1.0	3.4	0.13	0.
89	6/06-09	1.	423	59	46	73	15	4	424	1.8	0.8	3.7	0.15	0.
89	6/10-14	1.	425	58	49	74	14	4	425	1.8	1.1	3.5	0.12	0.:
89	6/15-6/19	1.	429	58	46	75	17	4	429	1.8	0.2	4.0	0.20	0.4
89	6/20-27	1.	679	60	19	85	19	4	679	2.1	1.0	5.4	0.26	0.5
90	5/15-23	1.	241	65	48	82	30	5	241	2.2	1.0	4.2	0.34	0.
90	5/24-28	1.	97	63	52	78	25	5	97	2.0	1.0	3.8	0.27	0.
90	5/29-6/02	1.	191	61	47	90	25	5	191	1.9	0.8	5.3	0.28	0.
90	6/03-25	1.	1,150	70	52	138	53	7	1,150	3.1	1.0	23.8	2.17	1.
91	5/23-27	1.	48	73	52	110	92	10	48	3.4	1.8	10.4	2.15	1.
91	5/28-6/01	1.	292	65	52	89	41	6	292	2.3	1.1	5.5	0.55	0.
91	6/02-06	1.	289	67	55	100	44	7	289	2.5	1.3	7.4	0.75	0.
91	6/07-11	1.	393	64	50	79	16	4	393	2.4	1.2	4.8	0.22	0.
91	6/13-17	1.	410	65	49	84	16	4	410	2.7	1.2	5.9	0.31	0.
91	6/18-21	1.	419	65	50	79	21	5	419	2.8	1.3	5.6	0.40	0.
91	6/22-25	1.	340	66	50	84	19	4	340	2.9	1.3	5.6	0.34	0.
91	6/26-30	1.	424	65	50	75	11	3	424	2.7	1.2	4.3	0.21	0.4
91	7/01-05	1.	425	67	54	80	13	4	425	3.1	1.5	5.9	0.31	0.
92	6/05-10	1.	56	74	60	90	54	7	28	3.9	2.5	6.3	1.21	1.
92	6/11-15	1.	35	78	66	95	35	6	17	5.1	3.2	10.7	3.03	1.
92	6/16-29	1.	135	78	58	130	86	9	97	4.7	1.9	22.0	5.33	2.
93	5/17-31	1.	203	76	59	124	81	9	145	4.4	2.0	19.7	3.5	1
93	6/1-23	1.	248	77	60	93	45	7	248	4.2	1.8	7.4	1.4	1
93	6/24-28	1.	219	80	62	90	18	4	219	4.9	2.3	8.2	0.7	(
93	6/29-7/6	1.	191	79	65	90	17	4	191	5.0	2.9	6.6	0.4	(
90	5/15-23	2.	515	74	62	123	21	5	515	3.2	1.9	13.4	0.55	0.
90	5/24-28	2.	326	74	61	115	35	6	326	3.2	1.8	8.8	0.68	0.
90	5/29-6/02	2.	232	74	62	104	43	7	232	3.2	1.2	8.9	1.12	1.
90	6/03-25	2.	665	75	60	102	28	5	665	3.7	1.8	7.8	0.71	0.
91	5/23-27	2.	376	80	71	108	29	5	376	4.2	2.8	10.7	1.07	1.
91	5/28-6/01	2.	133	7 9	70	101	32	6	133	4.1	3.0	8.9	1.01	Ι.
91	6/02-06	2.	136	79	68	110	41	6	136	4.2	2.5	10.1	1.30	1.
91	6/07-11	2.	32	78	70	91	25	5	32	4.1	2.4	6.3	0.85	0.
91	6/13-17	2.	15	76	68	86	20	4	15	4.0	3.3	5.2	0.29	0.
92	6/05-10	2.	292	97	71	117	62	8	151	7.7	3.3	11.2	2.73	1.
92	6/11-15	2.	284	89	76	110	22	5	156	6.9	4.3	10.4	1.08	1.
92	6/16-29	2.	179	89	69	111	20	4	134	6.5	3.2	12.0	1.16	1.
93	5/17-31	2.	59	9 9	86	115	47	7	33	8.5	6.1	14.0	3.6	

Table 17. Comparison of trap efficiency by length for Moose River coho salmon, 1993.

			ration Sit olt Recov					Moose F	River Weir Coho S	molt a	
	Length F	requency	y Distribu	tion	Length F	requency	/ Distribu	tion	Proportion of	Estimated Total Number	T
	Age-1.	Age-2.	Age-3.	Total	Age-1.	Age-2.	Age-3.	Total	Total Tagged Smolt	of Tagged Smolt	Trap Efficiency ь
90-94	0			0	1	<u></u>		1	0.001	82	0.0000
95-99	0	0		0	0	0		0	0.000	0	-
100-104	3	5		8	3	3		6	0.005	491	0.0163
105-109	14	23		37	8	20		28	0.023	2292	0.0161
110-114	12	50	0	62	5	39		44	0.036	3602	0.0172
115-119	9	97	1	107	4	112	0	116	0.095	\$496	0.0113
120-124	4	107	1	112	2	171	8	181	0.149	14818	0.0076
125-129	3	79	1	83	4	250	4	258	0.212	21121	0.0039
130-134	0	47	4	51	0	200	10	210	0.173	17192	0.0030
135-139		21	5	26	1	149	23	173	0.142	14163	0.0018
140-144		13	2	15	1	83	27	111	0.091	9087	0.0017
145-149		3	0	3	1	29	14	44	0.036	3602	0.0008
150-154		2	2	4	0	15	10	25	0.021	2047	0.0020
155-159		0	1	1		3	4	7	0.006	573	0.0017
160-164		1	2	3		4	3	7	0.006	573	0.0052
165-169		0	0	0		1	1	2	0.002	164	0.0000
170-174		0		0		0	2	2	0.002	164	0.0000
175-179		0		0			1	1	0.001	82	0.0000
Total	45	449	19	513	30	1079	108	1217			
Proportion	0.088	0.875	0.037	1	0.025	0.887	0.089	1			

a We assumed that the length frequency distribution of coho smolt sampled at the weir were representative of all tagged smolt.

b Trap efficiency of the km 31 traps for moose river tagged coho smolt. Defined as the trap catch divided by the estimated total number of smolt tagged at the weir.

	Lev	el	Turb	idity							
-	Reading		Reading		Temp.		~ •	Velocity	· • ·		
Date	(сп.)	(cm)	(cm)	(cm)	(°C)	Trap 1	Trap 2	Trap 3	Trap 4	Trap 5	Trap 6
 17May	3	•	76		7						
18-May		3	76	0	8						
19-May		1	81	5	8	3.1	3.4	3.4	3.5	3.3	3.8
20-May		5	84	3	8						0.0
21-May		9	81	-3	8						
22-May		2	71	-10	10						
23-May	26	4	66	5	8	3.8	3.8	3.9	3.8	3.7	3.8
24-May	30	3	61	-5	8						
25-May		6	61	0	10						
26-May		0	56	5	8	3.2	3.8	3.8	4.0	4.2	3.0
27-May		3	61	5	7						
28-May	43	0	99	38	8						
29-May	43	6	135	36	10						
30-May	49	1	102	-33	10						
31-May	49	5	107	5	11						
01-Jun	55	6	94	-13	7						
02-Jun	61	6	64	-30	9						
03–Jun	67	12	81	18	10			_			
04-Jun	79	12	66	-15	12	3.8	4.1	4.0	3.9	3.8	3.8
05-Jun	91 104	12	89	23	9						
06-Jun	104	-21	84 94	-5	13						
07-Jun	82 S	0 -3	86 107	3	9						
08-Jun 09-Jun	82 79	-3 -3	119	20 13	8 9						
10–Jun	76	-3	132	13	9						
10-Jun 11-Jun	70 79	-3	130	-3	8						
11-Jun 12-Jun	76	-3	130	-3	8						
13–Jun	79	-3	135	-3	9						
13–Jun 14–Jun	76	0	140	5	9						
15–Jun	76	-3	140	-3	8						
16–Jun	73	-3	137	0	8						
17-Jun	70	3	140	3	8						
18-Jun	73	Ō	152	13	9						
19-Jun	73	Ō	157	5	11						
20-Jun	73	3	157	Ō	13						
21–Jun	76	-3	135	-23	12						
22-Jun	73	6	135	0	13						
23-Jun	79	3	147	13	11						
24-Jun	82	-3	91	-56	10						
25-Jun	79	0	102	10	12						
26-Jun	79	0	112	10	13						
27-Jun	79	0	112	0	13						
28–Jun	79	3	91	-20	13						
29–Jun	82	3	107	15	12						
30-Jun	85	0	122	15	12						
01–Jui	85	0	107	-15	12						
02-Jul	85	1	107	0	12						
03-Jui	86 87	1	91	-15	12						
04–Jui	87	2	91 81	0	10						
05-Jui	88 00	2 2	81	-10	10						
06-Jui	90	2	99	18	13						

Table 18.	. River characteristics measured daily at the Kenai Ri	iver km 31 smolt enumeration site, 1993.

Table 19. Sockeye salmon adult escapement and smolt production in the Kenai River, 1986-1993.

	Total		Number of Smol	t Produced		
Brood Year	Spawning Escapement	Age-1.	Age-2.	Age-3.	Total	Smolt per Spawner
1986	422.000	a —	115,000 ^b	16.000		
1987	1,408,000	24,416.000 ^b	5,807,000 ^b	1,000	30,224,000	21.5
1988	910,000	5,249.000 ^b	431,000 ^b	0	5,680,000	6.2
1989	1,379,000	2,776.000 ^b	312,000 ^c	0	3,088,000	2.2
1990	519,000	253,000 °	36,000 °	d	289,000	0.6
1991	431,000	797,000 °	d			
1992	807,000					
1993	697,000					

^a No data collected.

 ^b Includes Hidden Lake migration not thought to be captured by the km 31 inclined plane traps.
 ^c Includes Hidden Lake (Fandrei 1993) and Moose River migration not thought to be captured by the km 31 inclined plane traps.

d Migrate as smolt in 1994.

Table 21. Results of sockeye salmon smolt dye experiments in the Russian River, 1993.

Period(s)	Date(s)	Number of Fish Dyed	Number of Dyed Fish Recovered	Trap Efficiency	Calculated Chi Squar e Valu c	Table Chi Square Value	Reject Hypothesis?
	5/26	89	1				
	5/28	100	10				
	5/29	100	0				
	6/1	95	1				
	6/2	111	10				
	6/3	110	6				
	6/5	61	5				
	6/6	189	5				
	6/8	44	1			•	
	6/10	31	2				
	6/27	201	16				
	7/1	363 397	1 7				
	7/3						
	7/4 7/7	225 250	44				
	7/8	250	24 31				
	7/10	250	24				-
	7/10	258	32				
	7/14	112	23				
	7/15	123	20				
1	5/18-6/2	495	22	0.044			
2	6/3-6/29	636	35	0.055			
3	6/30-7/3	760	8	0.011			
4	7/4 - 7/7	475	68	0.143			
5	7/8 - 7/10	525	55	0.105			
6	7/11-7/15	493	75	0.152			
1-6	5/18-7/15				112.29	11.07	yes
1-2	5/18-6/29				0.59	3.84	no
1-3	5/18-7/3				21.33	5.99	yes
3 - 4	6/30 - 7/3				76.78	3.84	yes
4-6	7/4 - 7/15				4.36	5.99	по
1-2	5/18-6/29	1131	57	0.050			
3	6/30-7/3	760	8	0.011			
4-6	7/4 - 7/15	1 493	198	0.133			

^a Hypothesis: Trap efficiency was independent of dye date; reject at alpha = 0.05.

Figure 1. Location of the Kenai River and other noted rivers and lakes in Upper Cook Inlet, Alaska.

Figure 3. Cross section, Kenai River km 31 sockeye salmon smolt enumeration project site.

APPENDIX B

	_ ·			<u> </u>		Length		- <u>-</u>			Weight			
Year	Time Period	Age	N	Mean	Min.	Max.	Var.	Stand. Dev.	N	Mean	Min.	Max.	Var.	Stand. Dev.
93	6/16 - 23	0	75	51	44	78	25	5	75		0.9	4.2	0.2	
93 93	6/16 - 23 6/24 - 28	0	89	52	44 41	78 64	23 19	5 4	89	1.4 1.4	0.9	4.2	0.2	0.5 0.4
93 93	6/29 - 7/6	Ő	112	54	41	74	27	4 5	112	1.4	0.9	3.9	0.1	0.4
94	5/17 - 21	0	6	45	43	48	3	2	1					
94	5/27 - 31	0	9	49	44	59	18	4	5	1.0	0.9	1.3	0.0	0.1
89	5/16 - 20	1	413	60	46	80	19	4	413	1.9	0.8	4.3	0.18	0.42
89	5/21-25	1	338	61	60	72	22	5	338	2.1	1.2	3.3	0.13	0.38
89	5/26 - 30	1	421	60	53	77	17	4	421	1.9	1.2	3.8	0.15	0.39
89 80	5/31-04 6/06-09	1 1	424 423	59 59	49	70	13	4	424	1.8	1.0	3.4	0.13	0.36
89 89	6/10 - 14	1	425	58	46 49	73 74	15 14	4	424 425	1.8 1.8	0.8 1.1	3.7 3.5	0.15 0.12	0.39 0.35
89	6/15 - 19	1	429	58	46	75	14	4	429	1.8	0.2	4.0	0.12	0.33
89	6/20 - 27	1	679	60	19	85	19	4	679	2.1	1.0	5.4	0.26	0.51
90	5/15 - 23	1	241	65	48	82	30	5	241	2.2	1.0	4.2	0.34	0.59
90	5/24 - 28	1	97	63	52	78	25	5	97	2.0	1.0	3.8	0.27	0.52
90	5/29 - 6/02	1	191	61	47	90	25	5	191	1.9	0.8	5.3	0.28	0.53
90	6/03 - 25	1	1150	70	52	138	53	7	1150	3.1	1.0	23.8	2.17	1.47
91 91	5/23 - 27 5/28 - 6/01	1 1	48 292	73 65	52 52	110 89	92 41	10 6	48 292	3.4 2.3	1.8 1.1	10.4 5.5	2.15 0.55	1.47 0.74
91	6/02 - 06	1	289	67	55	100	44	7	289	2.5	1.1	7.4	0.35	0.74
91	6/07 - 11	1	393	64	50	79	16	4	393	2.4	1.2	4.8	0.22	0.46
91	6/13 - 17	1	410	65	49	84	16	4	410	2.7	1.2	5.9	0.31	0.56
91	6/18-21	1	419	65	50	79	21	5	419	2.8	1.3	5.6	0.40	0.63
91	6/22 - 25	1	340	66	50	84	19	4	340	2.9	1.3	5.6	0.34	0.58
91	6/26 - 30	1	424	65	50	75	11	3	424	2.7	1.2	4.3	0.21	0.46
91	7/01-05	1	425	67	54	80	13	4	425	3.1	1.5	5.9	0.31	0.55
92 92	6/05 - 10 6/11 - 15	1 1	56 35	74 78	60	90 05	54	7	28	3.9	2.5	6.3 10.7	1.21	1.10
92 92	6/16 - 29	1	135	78	66 58	95 130	35 86	6 9	17 97	5.1 4.7	3.2 1.9	22.0	3.03 5.33	1.74 2.31
93	5/17 - 31	1	203	76	59	124	81	9	145	4.4	2.0	19.7	3.5	1.9
93	6/01-15	1	161	76	60	93	46	7	161	4.1	1.8	7.1	1.4	1.2
93	6/16 - 23	1	87	79	65	91	38	6	87	4.5	2.2	7.4	1.2	1.1
93	6/24 - 28	1	219	80	62	90	18	4	219	4.9	2.3	8.2	0.7	0.8
93	6/29 - 7/06	1	191	79	65	90	17	4	191	5.0	2.9	6.6	0.4	0.7
94	5/17 - 21	1	261	63	45	81	36	6	104	2.2	0.7	3.5	0.3	0.5
94 94	5/22 - 26 5/27 - 31	1 1	292 258	61	50 48	75	15	4	144	1.9	1.1 0.8	3.0 5.1	0.1 0.4	0.3 0.6
94 94	6/01-05	1	238	61 64	53	77 96	23 21	5 5	79 96	2.1 2.3	1.5	7.3	0.4	0.6
94	6/06 - 10	1	292	64	50	76	17	4	93	2.3	1.5	3.4	0.2	0.4
94	6/11-15	1	300	65	55	76	12	3	100	2.6	1.8	3.2	0.1	0.4
94	6/16 - 20	1	297	65	50	126	47	7	99	2.7	1.4	19.3	2.9	1.7
94	6/21-25	1	296	66	52	76	12	3	99	2.7	1.6	4.1	0.2	0.5
94	6/26 - 30	1	275	67	54	79	8	3	100	2.8	1.4	3.7	0.1	0.3
90	5/15-23	2	515	74	62	123	21	5	515	3.2	1.9	13.4	0.55	0.74
90	5/24 - 28	2	326	74	61	115	35	6	326	3.2	1.8	8.8	0.68	0.82
90	5/29 - 6/02	2	232	74	62	104	43	7	232	3.2	1.2	8.9	1.12	1.06
90	6/03 - 25	2	665	75	60	102	28	5	665	3.7	1.8	7.8	0.71	0.84
91	5/23 - 27	2	376	80 20	71	108	29	5	376	4.2	2.8	10.7	1.07	1.03
91 01	5/28-6/01	2	133	79 70	70	101	32	6	133	4.1	3.0	8.9	1.01	1.01
91 91	6/02 - 06 6/07 - 11	2 2	136 32	79 78	68 70	110 91	41 25	6 5	136 32	4.2 4.1	2.5 2.4	10.1 6.3	1.30 0.85	1.14 0.92
91 91	6/13 - 17	2	15	76	68	91 86	20	4	15	4.1 4.0	3.3	5.2	0.85	0.92
92	6/05 - 10	2	292	97	71	117	62	8	151	7.7	3.3	11.2	2.73	1.65
92	6/11 - 15	2	284	89	76	110	22	5	156	6.9	4.3	10.4	1.08	1.04
92	6/16 - 29	2	179	89	69	111	20	4	134	6.5	3.2	12.0	1.16	1.08
93	5/17 - 31	2	59	99	86	115	47	7	33	8.5	6.1	14.0	3.60	1.90
94	5/17 - 21	2	56	81	67	90	20	4	24	4.4	2.7	5.6	0.5	0.7
94	5/22 - 26	2	17	79 78	65	87	31	6	7	3.8	2.1	5.5	1.1	1.0
94 94	5/27 - 31 6/01 - 05	2 2	33 20	78 80	67 71	84 99	14 46	4 7	17	4.0	2.7	5.1	0.3	0. 6
		,	70	80	71		46	7	4					

FILENAME: A WLHIST. WK3

Figure . Mean lengths and 95% confidence bounds for age-1. sockeye salmon smolt sampled at the Kenai River km 31 smolt enumeration site, 1989-1994.

B-3

Figure . Mean lengths and 95% confidence bounds for age-2. sockeye salmon smolt sampled at the Kenai River km 31 smolt enumeration site, 1989-1994.

B-4

Sampling Period

Mean weights and 95% confidence bounds for age-1. sockeye salmon smolt sampled at the igure . Kenai River km 31 smolt enumeration site, 1989-1994. wthist1.pre

Figure . Mean weights and 95% confidence bounds for age-2. sockeye salmon smolt sampled at the Kenai River km 31 smolt enumeration site, 1990-1994.

B-6

						Length					Weight			O 1 I
	Time							Stand.						Stand.
Year	Period	Age	Ν	Mean	Min.	Max.	Var.	Dev.	N	Mean	Min.	Max.	Var.	Dev.
94	5/17-21	1	261	63	45	81	36	6	104	2.2	0.7	3.5	0.3	0.5
94	5/22-26	1	292	61	50	75	15	4	144	1.9	1.1	3.0	0.1	0.3
94	5/27-31	1	258	61	48	77	23	5	79	2.1	0.8	5.1	0.4	0.6
94	6/01-05	1	280	64	53	96	21	5	96	2.3	1.5	7.3	0.4	0.6
94	6/06-10	1	292	64	50	76	17	4	93	2.3	1.4	3.4	0.2	0.4
94	6/11-15	1	300	65	55	76	12	3	100	2.6	1.8	3.2	0.1	0.4
94	6/16-20	1	297	65	50	126	47	7	99	2.7	1.4	19.3	2.9	1.7
94	6/21-25	1	296	66	52	76	12	3	99	2.7	1.6	4.1	0.2	0.5
94	6/26-30	1	275	67	54	79	8	3	100	2.8	1.4	3.7	0.1	0.3
94	5/17-21	2	56	81	67	90	20	4	24	4.4	2.7	5.6	0.5	0.7
94	5/22-26	2	17	79	65	87	31	6	7	3.8	2.1	5.5	1.1	1.0
94	5/27-31	2	33	78	67	84	14	4	17	4.0	2.7	5.1	0.3	0.6
94 94	6/01-05	2	20	80	71	99	46	4 7	4	4.0	2.1	5.1	0.0	0.0
94	0/01-00	2	20	80	71	99	40	1	-4					

Table . Sockeye salmon smolt mean length and weight by age class and time strata, 1994. Data collected at river km 31.

B-7

_					mbers of Fish				
	Sockeye	Sockeye	Chinook	Chinook	Coho	Coho	Pink		
Date	Smolt	Fry	Smolt	Fry	Smolt	Fry	Fry	Other	Total
12-May	32	71		101	0	5	0	14	252
12-May 13-May	115	140	19	97	1	5	0	6	383
•		140	13	59	0	8	0	9	220
14 - May 15 - May	22 18	26	35	59 108	0	° 0	0	4	191
•	26	203	16	59	1	2	0	9	316
16 – May 17 – May	33	203 192	10	72	1	2	0	4	320
18 – May	86	84	55	35	0	6	0	6	272
19 – May	45	493	77	261	2	2	Õ	17	897
20 – May	752	420	97	118	1	6	0	13	1407
21 – May	3521	226	130	169	3	28	1	14	4092
22 – May	3147	216	93	121	1	10	0	24	3612
23-May	1951	204	79	109	2	2	3	16	2366
24 – May	3279 3024	114 93	97 37	48 51	3	9 10	0 0	10 13	3560 3229
25 – May 26 – May	2975	191	56	51 86	1 4	10	0	13	3338
20 - May 27 - May	1848	62	50 71	70	4	8	0	19	2082
28-May	727	85	55	70	2	2	0	19	960
29 – May	775	130	50	92	6	5	0	21	1079
30 – May	2050	164	27	92	14	2	5	14	2368
31 – May	3228	278	38	104	20	1	0	27	3696
01 - Jun	3127	643	23	99	18	1	3	23	3937
02 – Jun	1848	600	38	73	59	1	0	26	2645
03-Jun	4223	687	29	74	14	0	0	8	5035
04 – Jun	4593	681	42	109	8	5	0	32	5470
05 – Jun	2701	645	40 26	113	35	8	0	27 38	3569 1834
06-Jun	1011	636	36	87	21	5	0		
07 – Jun	6642	448	74	142	44	5	0	40	7395
08 – Jun	6192	704	91	65	40	7	0	38	7137
09 – Jun	3603	383	92	58	51	3	0	41	4231
10-Jun	2662	499	35	35	27	2	6	45	3311
11-Jun	4544	969	50	31	23	2	0	29	5648
12-Jun	1688	1249	85	130	43	6	0	32	3233
13-Jun	2007	531	100	57	49	9	0	19	2772
14 – Jun	5578	376	47	33	35	2	0	20	6091
15-Jun	5978	331	78	25	57	2	0	28	6499
16 - Jun	8366	608	293	36	73	4	0	36	9416
17 – Jun	6891	895	668	64	72	27	1	21	8639
18 – Jun	4195	774	491	44	53	17	1	12	5587
19-Jun	1624	156	93	8	32	9	0	13	1935
20 – Jun	2104	110	137	14	220	16	0	13	2614
21 – Jun	453	53	492	40	13	13	0	22	1086
22 – Jun	292	29	839	36	14	14	0	15	1239
23-Jun	869	40	476	66	587	16	1	11	2066
24 – Jun	99	36	600	34	6	4	0	22	801
24 - Jun 25 - Jun	99 70	15	206	27	8	-	0	9	336
26 – Jun 26 – Jun	1685	13	208 274	27 44	8 16	0	0	13	2039
								26	581
27 – Jun	442	4	92 255	8	9	0	0		
28 - Jun	44	3	255	16	23	2	0	26	369
29 – Jun	170	6	243	23	10	4	0	29	485
30 – Jun	292	5	198	24	5	3	0	27	554
_									0
Total	111,647	15,624	7,308	3,537	1,731	312	21	1,014	141194

May 12 – trap 6 too shallow to fish. May 13 – trap 3 lost fish when funnel cable failed. May 25 – trap 4 lost fish when livebox flooded.

June 24-trap 6 did not fish due to breakdown.

filename: SPTRPALL.WK3

Total Daily Sockeye Smolt Catch (thousands), km 31, Kenai R.

Date-1994

	Estimated Sockeye Salmon Smolt		Estimated Soc	keye Salmo	on Smolt Mi	gration	<u> </u>		Estimated Sockeye Salmon Smolt	Estimated Sockeye Salmon Smolt Migration							
Date	Trap Catch	Daily	Cumulative	Age-0.0	Age-1.0	Age-2.0	Age-3.0	Date	Trap Catch	Daily	Cumulative	age-0.0	age-1.0	age-2.0	Age-3.0		
6-May	0	0	0	0	0	0	0	10-Jun	606	2,336	1,399,590	0	218	2,095	23		
7-May	Ō	0	0	0	0	0	0	11-Jun	689	2,656	1,402,246	0	248	2,382	27		
8-May	20	53	53	0	0	50	2	12-Jun	455	1,754	1,404,001	0	164	1,573	18		
9-May	41	109	161	0	0	103	5	13-Jun	435	1,677	1,405,678	0	157	1,504	17		
10-May	290	768	929	0	3	729	36	14-Jun	267	1,029	1,406,707	0	96	923	10		
11-May	400	1,059	1,988	0	4	1,006	49	15-Jun	560	2,159	1,408,866	0	580	1,579	0		
12-May	1,226	3,245	5,233	0	11	3,083	151	16-Jun	636	2,452	1,411,318	0	658	1,794	0		
13-May	2,651	7,017	12,251	0	23	6,666	327	17-Jun	756	2,915	1,414,233	0	782	2,132	0		
14-May	13,553	35,876	48,126	0	120	34,082	1,674	18-Jun	598	2,306	1,416,538	0	619	1,687	0		
15-May	2,348	6,215	54,342	Ö	21	5,905	290	19-Jun	514	1,982	1,418,520	0	532	1,450	0		
16-May	2,167	5,736	60,078	0	19	5,449	268	20-Jun	635	2,448	1,420,968	0	657	1,791	0		
17-May	20,037	53,039	113,117	0	530	52,509	0	21-Jun	455	1,754	1,422,723	0	471	1,283	0		
18-May	27,980	74,063	187,180	0	741	73,323	0	22-Jun	585	2,255	1,424,978	0	605	1,650	0		
19-May	22,161	58,661	245,841	0	587	58,074	0	23-Jun	601	2,317	1,427,295	0	1,420	897	D		
20-May	14,636	38,742	284,583	0	387	38,355	0	24-Jun	1,047	4,037	1,431,332	0	2,474	1,563	0		
21-May	44,940	118,957	403,541	0	1,190	117,768	0	25-Jun	1,140	4,395	1,435,727	0	2,693	1,702	0		
22-May	10,775	48,084	451,625	0	484	47,600	0	26-Jun	742	2,861	1,438,588	0	1,753	1,108	0		
23-May	58,227	259,850	711,474	0	2,616	257,234	0	27-Jun	565	2,178	1,440,766	0	1,335	843	0		
24-May	65,371	291,731	1,003,206	0	2,937	288,795	0	28-Jun	1,114	4,295	1,445,061	0	2,632	1,663	0		
25-May	18,157	81,028	1,084,234	0	816	80,212	0	29-Jun	1,518	5,853	1,450,913	0	5,123	729	0		
26-May	24,029	107,236	1,191,470	0	1,080	106,157	0	30-Jun	2,221	8,563	1,459,476	0	7,496	1,067	0		
27-May	20,013	89,311	1,280,781	0	899	88,412	0	1-Jul	2,634	10,155	1,469,632	0	8,890	1,265	0		
28-May	2,479	11,064	1,291,845	0	111	10,953	0	2-Jul	2,974	11,466	1,481,098	0	10,038	1,428	0		
29-May	3,436	15,334	1,307,179	51	615	14,616	51	3-Jul	1,928	7,433	1,488,531	0	6,507	926	0		
30-May	5,770	17,187	1,324,366	57	690	16,382	57	4-Jul	3,209	12,372	1,500,903	0	10,831	1,541	0		
31-May	3,599	10,721	1,335,087	36	430	10,219	36	5-Jul	1,429	5,509	1,506,412	0	4,823	686	0		
1-Jun	3,846	11,456	1,346,543	0	1,115	10,265	77	6-Jul	1,621	6,250	1,512,662	0	5,471	779	0		
2-Jun	3,489	10,393	1,356,936	0	1,011	9,312	70	7-Jul	2,281	8,794	1,521,456	0	7,699	1,096	0		
3-Jun	1,681	5,007	1,361,944	0	487	4,486	34	8-Jul	2,444	9,423	1,530,879	0	8,249	1,174	0		
4-Jun	2,574	9,922	1,371,866	0	966	8,890	67	9-Jul	2,887	11,131	1,542,009	0	9,744	1,387	0		
5-Jun	2,235	8,617	1,380,483	0	699	7,918	0	10-Jul	1,308	5,043	1,547,052	0	4,415	628	0		
6-Jun	1,583	6,103	1,386,586	0	495	5,608	0	11-Jul	1,225	4,723	1,551,775	0	4,135	588	0		
7-Jun	1,146	4,418	1,391,004	0	358	4,060	0	12-Jul	996	3,840	1,555,615	0	3,362	478	0		
8-Jun	1,019	3,929	1,394,933	0	367	3,523	39	13-Jul	816	3,146	1,558,761	0	2,754	392	0		
9-Jun	602	2,321	1,397,254	0	217	2,081	23	14-Jul	289	1,114	1,559,875	0	975	139	0		
								Total	424,660	1,559,875		145	138,632	1,417,747	3,352	1,	

File name: RRDAYEST XLS

Figure Estimated daily sockeye salmon smolt migration from the Russian river, 1994.

dayest.pre

Table . Sockeye salmon smolt mean length and weight by age class and time strata for the Russian River, 1993-1995.

	Time					Length		Stand.			Weight			Stand.
	Period	Age	N	Mean	Min.	Max.	Var	Dev.	N	Mean	Min.	Max.	Var.	Dev.
Year														
1993	May 18-27	1	122	83	57	92	29	5	84	4.7	2.0	6.7	0.7	0.8
1993	May 28-Jun 2	1	157	81	62	95	39	6	133	4.5	2.3	6.8	0.7	0.8
1993	Jun 3-23	1	197	84	65	99	31	6	189	5.5	2.2	8.7	0.9	0.9
1993	June 24-30	i	458	80	65	98	15	4	294	5.8	3.1	10.4	0.7	0.8
1993	Jul 1-15	1	871	80	69	100	14	4	711	5.8	3.8	10.7	0.8	0.8
4004														
1994	May 11-13	1	1						1					
1994	May 18	1	3						3					
1994	May 22 & 28	1	3	82	74	07	40	6	3 12	4.6	3.2	60	1.0	
1994 1994	May 28 & 29	1 1	12 29	82 78	67	97 92	40 59	6 8	29	4.0	3.∠ 2.5	6.9 7.4	1.0 1.6	1.0
1994	June 2-3 June 5-6	1	29	82	69	92 98	59 47	7	29	4.4	2.5	7.4 5.9	0.8	1.3 0.9
1994		1	24	82 89	75	98 97	21	5	24 28	4.7 6.1	3.8	5.9 8.1	0.8	0.9
	June 9, 10,12	1	28 80	86	73	97	21	5	28 80	6.3	3.8 3.9	8.4	0.8	
1994 1994	June 18-19		182	85	74	100	23 16	5 4	182	6.2	3.9 3.9	8.4 9.4	0.8	0.9
	June 25, 26, 28	1	260	85 85	74	122	10	4	260	6.1	3.9 3.5			0.8
1994	July 2-3	1	200	80	13	122	18	4	200	Q. I	3.0	13.7	0.7	0.9
1005														
1995														
1995														
1993	May 18-27	2	253	97	75	117	67	8	193	7.6	3.1	12.9	3.0	1.7
1993	May 28-Jun 2	2	208	91	78	108	36	6	192	6.4	4.2	11.0	1.4	1.2
1993	Jun 3-23	2	132	93	80	130	48	7	123	7.1	3.6	20.1	3.2	1.8
1993	June 24-30	2	14											
1993	Jul 1-15	2	6											
1994	May 11-13	2	285	111	90	125	34	6	285	11.6	6.2	17.0	3.1	1.8
1994	May 18	2	297	103	80	117	47	7	297	9.2	4.5	14.1	3.1	1.7
1994	May 22 & 28	2	295	100	75	115	55	7	295	8.4	3.8	13.4	3.3	1.8
1994	May 28 & 29	2	285	96	71	115	64	8	285	7.5	3.8	12.5	2.8	1.0
1994	June 2-3	2	267	90	71	114	62	8	267	6.6	2.9	12.4	2.4	1.6
1994	June 5-6	2	272	93	77	115	50	7	272	6.9	3.9	12.4	2.5	1.6
1994	June 9, 10,12	2	269	96	79	118	34	6	269	7.4	4.3	14.1	1.7	1.0
1994	June 18-19	2	218	90	79	101	18	4	218	7.1	5.0	10.3	0.8	0.9
1994	June 25, 26, 28	2	115	91	80	102	20	4	115	7.5	5.0	10.3	1.0	1.0
1994	July 2-3	2	37	89	80	97	15	4	37	6.9	5.4	9.3	1.U 0.8	0.9
1004	July 2-5	4	57	05	00	51	15	4	37	U.Ø	5.4	9.J	0.0	0.8

1995

1995

B-12

Table . Morphological information collected from sockeye salmon smolt captured in the Russian River, 1994.

Period Date		1 May 11-13	2 May 18	3 May 22 & 28	4 May 28 & 29	5 June 2 & 3	6 June 5 & 6	7 June 9 10 12	8 June 18-19	9 June 25 26 28	10 July 2 & 3
AGE 0	N=	0	0	0	1	0	0	0	0	0	0
	Percent	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000
AGE 1	N=	1	3	3	12	29	24	28	80	182	260
	Percent	0.003	0.010	0.010	0.040	0.097	0.081	0.093	0.268	0.613	0.875
AGE 2	N=	285	297	295	285	267	272	269	218	115	37
	Percent	0.950	0.990	0.990	0.953	0.896	0.919	0.897	0.732	0.387	0.125
AGE 3	N=	14	0	0	1	2	0	3	0	0	0
	Percent	0.047	0.000	0.000	0.003	0.007	0.000	0.010	0.000	0.000	0.000
		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
total		300	300	298	299	298	296	300	298	297	297

Figure 5. Daily numbers of sockeye salmon smolt, all ages (top) and by age class (bottom), migrating seaward from the Kenai River, 1993.

Figure 7. Mean weights and 95% confidence bounds for age-1. and -2. sockeye salmon sampled at the Kenai River km 31 smolt enumeration site, 1989-1993.

Estimated Numbers of Sockeye Salmon Smolt (thousands)

Figure 9. Length frequency distribution of age-1 (bottom) and -2 (top) sockeye salmon smolt from theKenai River drainage, 1993. Estimated numbers of smolt from weirs (Hidden Creek and Moose River), and dye studies (km 31and Russian River).

48

Figure 11. Daily Kenai River discharge, 1989-1993.

The Alaska Department of Fish and Game conducts all programs and activities free from discrimination on the basis of sex, color, race, religion, national origin, age, marital status, pregnancy, parenthood or disability. For information on alternative formats available for this and other Department publications, please contact the Department ADA Coordinator at (voice) 907-465-4120, (TDD) 1-800-478-3648, or (fax) 907-586-6596. Any personal who believes s/he has been discriminated against should write to: ADF&G, P.O. Box 25526, Juneau, AK 99802-5526; or O.E.O., U.S. Department of the Interior, Washington, DC 20240.

length frequ	ency distr	ibutions-	kenai river	stocks, 199	4							·		_						
		age 1			age2	·		Mile 19	Mile 19	RR	RR	Hidden	Hidden		Mile 19	Mile 19	Moose	Moose	RR	RR
Length	Km 31	RR	Hid. Lk.	Km 31	RR	Hid. Lk.		Age 1	Age 1	Age 1	Age 1	Age 1	Age 1		Age 2	Age 2	Age 2	Age 2	Age 2	Age 2
(mm)																				
								#	рор	#	рор	#	рор		#	рор	#	рор		рор
41-45	0.000	0.000	0.000	0.000	0.000	0.000		1	5482	0	0	0	0		0	0				0
46-50	0.005	0.000	0.000	0.000	0.000	0.000		14	76742	0	0		0		0					
51-55	0.045	0.000	0.000	0.000	0.000	0.000		116	635865	5 O	0		i		0					
56-60	0.165	0.000	0.000	0.000	0.000	0.000		422	2313234	0	0				0		0			
61-65	0.435	0.000	0.000	0.008	0.000	0.000	-	1111	6090055			I			1	3788				
66-70	0.307	0.010	0.000	0.023	0.000	0.000		785	4303054						3					
71-75	0.033	0.026	0.000	0.174	0.003	0.000	1	85	465936						23		0			4489
76-80	0.004	0.119	0.000	0.371	0.025	0.000		10	the second se						49	A				
81-85	0.001	0.404	0.000	0.311	0.072	0.000		2	10963				1		41	155303				108380
86-90	0.000	0.352	0.000	0.091	0.171	0.000		0				0		_	12					255879
91-95	0.000	0.064	0.001	0.008	0.199	0.000	1	1	5482			1	304		1	3788				298846
96-100	0.000	0.021	0.001	0.015	0.191	0.000		1	5482				304		2	7576			1	286020
101-105	0.000	0.003	0.001	0.000	0.148	0.046		0			A		304		0	0	1			222531
106-110	0.001	0.000	0.009	0.000	0.095	0.031		3	16445						0					143010
111-115	0.000	0.000	0.019	0.000	0.068	0.108		0							0					101325
116-120	0.000	0.000	0.074	0.000	0.024	0.323		1	5482				29483		0					
121-125	0.000	0.002	0.185	0.000	0.004	0.235		1	5482		241		74164		0			11731	9	
126-130	0.000	0.000	0.260	0.000	0.000	0.115		1	5482				103951		0	A committee of the second				
131-135	0.000	0.000	0.277	0.000	0.000	0.038		<u> </u>							0			1923		· ·
136-140	0.000	0.000	0.131	0.000		0.027	L	<u> </u>									· · · · · ·	769		· · · · · · · · · · · · · · · · · · ·
141-145	0.000	0.000	0.040	0.000	0.000	0.015		C) (<u> </u>	0	52			<u> </u>					<u> </u>
146-150	1		0.002			0.019					I		912 304			+				<u> </u>
151-155			0.001			0.023		+			┨		4				2			<u> </u>
156-160			0.000			0.008	 					. <u> </u>	<u>' </u>			+	3			
161-165						0.012	1-													
166-170						0.000	1				1	<u> </u>	l	L	L	L	J	<u> </u>	·	<u> </u>

APPENDIX C

An Estimate of Juvenile Fish Desitites in Skilak and Kenai Lakes, Alaska through the Use of Dual-Beam Hydroacoustic Techniques in 1993-1994 by Kenneth E. Tarbox and Linda K. Brannian

AN ESTIMATE OF JUVENILE FISH DENSITIES IN SKILAK AND KENAI LAKES, ALASKA, THROUGH THE USE OF DUAL-BEAM HYDROACOUSTIC TECHNIQUES IN 1993-1994

By

Kenneth E. Tarbox

and

Linda K. Brannian

Regional Information Report¹ No. 2A95-31

Alaska Department of Fish and Game Commercial Fisheries Management and Development Division 333 Raspberry Road Anchorage, Alaska 99518

August 1995

¹The Regional Information Report Series was established in 1987 to provide an information access system for all unpublished divisional reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate timely reporting of recently collected information, reports in this series undergo only limited internal review and may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without prior approval of the author or of the Commercial Fisheries Management and Development Division.

AUTHORS

Kenneth E. Tarbox is the Research Project Leader for the Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Region II, Upper Cook Inlet, 34828 Kalifornsky Beach Road, Suite B, Soldotna, AK 99669.

Linda K. Brannian is the Regional Biometrician for the Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Region II, 333 Raspberry Road, Anchorage, AK 99518.

ACKNOWLEDGMENTS

The authors would like to thank Dave Waltemyer, Morris Lambdin, Randall Davis, Dave Westerman, Dennis Beliveau, Jim Cofske, and Jennifer Brannen for assisting during the field operations. Special thanks go to Sandi Seagren for helping prepare the report. Finally, recognition is due to Joe Sullivan, Steve Fried, and John Hilsinger for supporting the project through budget and scheduling decisions.

TABLE OF CONTENTS

Page
LIST OF TABLES
LIST OF FIGURES
LIST OF APPENDICES vii
ABSTRACT viii
INTRODUCTION 1
METHODS 1
RESULTS
May 1993 Hydroacoustic and Tow Net Surveys
November 1993 Night Hydroacoustic and Day Tow Net Survey
September/October 1994 Night Hydroacoustic and Day Tow Net Survey
DISCUSSION
LITERATURE CITED
TABLES
FIGURES
APPENDIX

LIST OF TABLES

<u>Table</u>	Pa	ge
1.	Estimated number of fish in Skilak Lake, Alaska, on 5 May 1993	13
2.	Areas, volume and fish estimates (%) in Skilak Lake, Alaska, day survey, 5 May 1993	14
3.	Estimated number of fish available to the hydroacoustic techniques in Skilak Lake, Alaska, 8 May 1993	15
4.	Estimated number of fish in Skilak and Kenai Lakes, Alaska, in September 1993	16
5.	Areas, volume and fish estimates (%) in Kenai and Skilak Lakes, Alaska, night survey, September/October 1993	17
6.	Estimated contribution of age-0 and age-1 sockeye salmon to the total fish population in Kenai and Skilak Lakes, Alaska, night survey, September/ October 1993	18
7.	Kenai Peninsula lakes' fall fry sockeye mean fork length and weight data	19
8.	Estimated number of fish in Skilak Lake, Alaska, on 16 November 1993	20
9.	Areas, volume and fish estimates (%) in Skilak Lake, Alaska, night survey, November 1993	21
10.	Estimated contribution of age-0 and age-1 sockeye salmon to the total fish population in Skilak Lake, Alaska, night survey, November 1993	22
11.	Estimated number of fish in Skilak Lake, Alaska, day survey, 25 April 1994	23
12.	Areas, volume and fish estimates (%) in Skilak Lake, Alaska, day survey, 25 April 1994	24

LIST OF TABLES (continued)

<u>Table</u>	<u>Pa</u>	ge
13.	Estimated number of fish in Skilak Lake, Area 1, Alaska, 29 April 1994	25
14.	Estimated contribution of age-1 and age-2 sockeye salmon to the total fish population in Skilak Lake, Area 1, Alaska, night survey, 29 April 1994	26
15.	Estimated number of fish in Skilak and Kenai Lakes, Alaska, September 1994	27
16.	Areas, volume and fish estimates (%) in Kenai and Skilak Lakes, Alaska, night survey, September/ October 1994	28
17.	Estimated contribution of age-0 and age-1 sockeye salmon to the total fish population in Kenai and Skilak Lakes, Alaska, night survey, September/ October 1994	29

•

LIST OF FIGURES

<u>Figu</u>	<u>ire</u>	<u>Page</u>
1.	Map of the Kenai River drainage	. 30
2.	Hydroacoustic transects conducted in Skilak Lake, Alaska, on 5 May 1993	. 31
3.	Hydroacoustic transects conducted in Skilak Lake, Alaska, on 8 May 1993. (Note: a single transect was repeated 16 times)	. 32
4.	Hydroacoustic transects conducted in Skilak Lake, Alaska, on 26 September 1993	. 33
5.	Hydroacoustic transects conducted in Kenai Lake, Alaska, on 4 October 1993	. 34
6.	Hydroacoustic transects conducted in Skilak Lake, Alaska, on 16 & 18 November 1993	. 35
7.	Hydroacoustic transects conducted in Kenai Lake, Alaska, on 7 October 1994	. 36
8.	Hydroacoustic transects conducted in Skilak Lake, Alaska, on 27 September 1994	. 37
9.	Density of fish in Skilak Lake, Area 1, during a day survey on 5 May 1993	. 38
10.	Density of fish in Skilak Lake, Areas 2 and 3, during a day survey on 5 May 1993	. 39
11.	Density of fish in Skilak Lake, Area 1, runs 1-8, during diel studies conducted on 8 May 1993	. 40
12.	Density of fish in Skilak Lake, Area 1, runs 9-16, during diel studies conducted on 8 May 1993	. 41
13.	Fish target strength measured in Skilak Lake, Alaska, in September 1986-1994	. 42

LIST OF FIGURES (continued)

Figu	re	Page
14.	Relative distribution of juvenile sockeye in the Kenai River system, Alaska, 1986-1994	. 43
15.	Relationship between the number of age-0 sockeye salmon fall fry in Kenai and Skilak Lakes and potential egg deposition by mainstem spawners. Values listed indicate brood year of the eggs and fry. Vertical bars are standard errors of estimated fry abundances	. 44

LIST OF APPENDICES

		Page
A.1.	Calibration and processing parameters used in collection and analysis of Kenai and Skilak Lake, Alaska, hydroacoustic data, 1993-1994	. 46
A.2.	Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 5 May 1993	. 47
A.3.	Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 8 May 1993	. 48
A.4.	Average backscattering cross section (sigma) and target strength data by depth strata for Kenai Lake, Alaska, 4 October 1993	. 49
A.5.	Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 26 September 1993	. 50
A.6.	Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 16 November 1993	. 51
A.7.	Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 25 April 1994	. 52
A.8.	Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 29 April 1994	. 53
A.9.	Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 27 September 1994	. 54
A.10	Average backscattering cross section (sigma) and target strength data by depth strata for Kenai Lake, Alaska, 7 October 1994	. 55

ABSTRACT

The number and distribution of sockeye salmon Onchorhynchus nerka rearing in two glacial lakes of the Kenai River drainage was estimated in 1993 and 1994 from hydroacoustic surveys. Using dual-beam acoustic techniques, mean *in situ* target strength ranged from -54.1 dB to -58.4 dB. Densities of fish estimated in May 1993 suggested a significant over-winter mortality of age-0 sockeye salmon. Surviving fish were concentrated at 20-40 m in May and showed indications of moving toward the surface with increasing darkness. In October 1993 the number of age-0 sockeye salmon in Kenai and Skilak Lakes was estimated at 35,687,400. In November 1993, the number of age-0 sockeye salmon in Skilak Lake was estimated at 27,608,400. By April 1994 a minimum of 15,375,800 age-0 sockeye salmon had survived the winter in Skilak Lake. In September/October 1994 a total of 12,441,900 sockeye were estimated at 1,282,500 fish. Age-0 sockeye salmon mean length and weight were measured for all sample periods. A linear relationship between potential egg deposition and fall fry numbers remained during this period though the residual for the 1992 brood year was one of the largest.

KEY WORDS: hydroacoustic survey, sockeye salmon, target strength, glacial lake, Alaska, Onchorhynchus nerka

INTRODUCTION

The Alaska Department of Fish and Game (ADF&G) began investigations in 1972 to assess juvenile sockeye salmon *Onchorhynchus nerka* populations rearing in the major lakes of the Kenai River drainage (Figure 1; Davis et al. 1973). As part of these investigations, juvenile sockeye salmon were collected from Skilak and Kenai Lakes using tow nets to estimate relative abundance, age structure, and growth (Davis et al. 1974; Namtvedt and Friese 1976). However, the inefficiency of tow netting restricted the usefulness of these data for abundance estimates (Waltemyer 1981). Therefore, in 1986 ADF&G began developing new methods to enumerate fry using hydroacoustic equipment (Tarbox and King 1988a, 1988b).

Annual fall hydroacoustic surveys have been conducted in Kenai and Skilak Lakes since 1986 to develop a time series of juvenile sockeye salmon population estimates. Program objectives for the 1993-94 field investigation were to (1) estimate the number and spatial distribution of sockeye salmon juveniles, (2) determine the target strength distributions using dual-beam hydroacoustic techniques, (3) document the condition of juvenile sockeye salmon using length and weight measurements, and (4) estimate the age composition of sockeye salmon in each lake.

Since the initiation of the project in 1986 the standard procedure for estimating juvenile sockeye salmon abundance in Kenai and Skilak Lakes has been to conduct night-time hydroacoustic surveys during September or October. While this procedure was followed in 1993-94, we also conducted hydroacoustic work in Skilak Lake during May and November 1993 and April 1994. The objective of these supplemental studies was to define the depth distribution of rearing sockeye salmon in spring and fall and to assess survival of rearing sockeye salmon during the fall to winter transition period. In addition, we conducted an extensive tow netting program in 1993-94 to assess potential bias in the age composition allocation. This information is reported in a separate document.

METHODS

The equipment used for data acquisition consisted of a Biosonics Inc. Model 105¹ echo sounder with dual-beam receivers, a 420 kHz 6°/15° dual beam transducer mounted in a V-fin for towing, a Model 171 tape recorder interface, a Sony¹ digital audio tape (DAT) player, a chart recorder, and an oscilloscope. The selected pulse width was 0.4 ms and the pulse repetition rate was 5 pulses/s. Additional acoustic parameters used during data collection and processing are presented in Appendix A.1. Biosonics, Inc. calibrated the system before and following the surveys. The entire system was powered by 12-V batteries and carried in a 7.2-m vessel powered by outboard motors. Vessel speed along each transect was estimated at 2.0 to 2.5 m/s. The transducer was

¹ Use of a company name does not constitute endorsement by ADF&G.

towed approximately 1 m below the water surface during surveys. Equipment procedures were outlined in King and Tarbox (1988).

Dual-beam data recorded on DAT were processed through a Biosonics, Inc. Model 281 Echo Signal Processor¹ (ESP). A returning pulse was accepted as a valid target if the amplitude was below the bottom threshold of 7000 mV and above the counting threshold of 200 mV. Single targets were separated from multiple targets if the pulse width was within 20% of the transmitted pulse width at -6 dB and -18 dB. The maximum half-angle selected for data processing was 4°. Data were stratified in 5-m increments for analysis starting 2 m below the transducer, or 3 m below the water surface. Only data collected at range less than 97 m were accepted for processing. Examination of oscilloscope traces and echograms indicated that few fish were present below this depth.

Data generated by the dual beam processor were transferred to computer data files for analysis using the Biosonics, Inc. software "Target Strength Post Processing Program ESPTS." Computations of mean target strength and backscattering cross section were made from individual echoes, and a hard copy of the results was printed for each 5-m depth interval.

Estimates of fish density were made for each transect by echo integration using a Biosonics, Inc. ESP Model 221¹ echo integrator. Correction from the 40 $\log(R)$ setting used during data collection to the 20 $\log(R)$ used for data processing was accomplished by adjusting the B constant value for each depth stratum.

The echo integrator compiled data in 1-min sequences along each transect and sent outputs to computer files for further reduction and analysis using the Biosonics, Inc. software "Echo Integration Post Processing Program ESPCRNCH." Raw integrator outputs were edited to remove data that resulted from false bottom echoes. Where this occurred, fish densities were usually estimated using the average densities of adjacent sequences at the same depth. Overall fish density was obtained by calculating the average edited integrator output value across the transect for each depth stratum. These averages were multiplied by the integrator scaling factor derived from the mean backscattering cross-section value obtained form the ESPTS program. Mean backscattering cross section values were calculated for each depth stratum using data from those transects where false bottom did not occur or did not influence the target strength data.

The total number of fish (N_{ij}) for area stratum *i* based on transect *j* was estimated across depth stratum *k*. It consisted of the number of fish estimated by hydroacoustic gear in the midwater section (M_{ij}) plus an estimate of fish unavailable to the hydroacoustic gear because of their location near the surface (S_{ii}) or bottom (B_{ij}) , or

$$N_{ij} = S_{ij} + M_{ij} + B_{ij} .$$

The midwater component was estimated as

$$M_{ij} = \sum_{k=1}^{K} a_i w_{ijk} m_{ijk} ,$$

where a_i represented the surface area (m^2) of area stratum *i* which was estimated using a planimeter and USGS maps of Skilak and Kenai Lakes, and w_{ijk} was the average depth (5m) of depth stratum *k* measured along transect *j* in area *i*. This depth would be less than the maximum 5 m if the bottom was detected within depth stratum *k* anytime along the transect. The mean fish density in area *i* depth *k* across transect *j* was m_{ijk} in number per m³.

The estimated number of fish near the surface (0-3 m) in area i was

$$S_{ij} = a_{is}m_{ij1} ,$$

where a_{is} was the estimated volume (m³) of the surface area stratum (0-3 m), and m_{ij1} was the mean fish density for the first ensonified depth strata (2-7 m below transducer) of transect *j*.

The estimated number of fish near the bottom was

$$B_{ij} = \sum_{k=1}^{K} b_{ijk} m_{ijk} ,$$

where b_{ijk} was the estimated volume (m³) in area *i* of depth *k* that could not be ensonified due to the proximity of the bottom along transect *j*, and m_{ijk} was the estimated fish density (number per m³) along transect *j* in area *i* depth *k* that was ensonified. In cases where all of depth stratum *k* was along the bottom, the mean density m_{ijk-1} from the next shallower depth strata (*k*-1) was used.

The abundance in area $i(N_i)$ became the mean abundance estimated by each transect j, or

$$N_i = J^{-1} \sum_{j=1}^J N_{ij}$$
,

and its variance was estimated as

$$V(N_i) = \sum_{j=1}^{J} (N_{ij} - N_i)^2 (J - 1)^{-1} J^{-1}$$

•

Total abundance for each lake became the sum of its area estimates. Its variance became the sum of the area variances.

Age-specific estimates of the numbers of juvenile sockeye salmon (N_{ayi}) were estimated

$$N_{ayi} = N_{yi} p_{ayi}$$

where p_{avi} was the proportion of fish caught in area i (n_{yi}) and year y of age a (n_{ayi}) . Samples were pooled across areas not found to have significantly different age compositions (chi-square test). The pooled proportion for age a was then substituted for p_{ayi} for the appropriate areas.

The variance for N_{avi} was estimated as the product of two random variables, p_{avi} and N_{yi} , as

$$V(N_{ayi}) = N_{yi}^2 V(p_{ayi}) + p_{ayi}^2 V(N_{yi}) - V(p_{ayi}) V(N_{yi}).$$

The total estimate for the Kenai and Skilak Lakes system became

$$N_{ay} = \sum_{all \ i} N_{ayi}$$

and its variance was estimated as

$$V(N_{ay}) = \sum_{all \ i} V(N_{ayi})$$

We conducted a hydroacoustic survey during the day on 5 May 1993 to define fish abundance and depth distribution, in Skilak Lake (Figure 2). A second survey was conducted on 8-9 May to define diel vertical behavior of juvenile sockeye salmon. A single transect in Area 1 of Skilak Lake was replicated sixteen times in a 7-h period (1842 to 0203 hours; Figure 3). Because of low densities of fish in the study area, mean target strength data by depth were calculated by pooling results from the two surveys.

We used a stratified random sampling design for 1993 fall night surveys to distribute sampling effort and provide an acceptable way of calculating sampling error. We divided each lake into areas or sub-basins and randomly established survey transects within each of these areas. The number of transects was chosen to reduce the relative error to 0.25 for Skilak Lake and 0.3 for Kenai Lake. Our sample size was based on the average coefficient of variation observed from 1986 to 1989. Because of the configuration of Skilak Lake, a total of 13 transects perpendicular to shore were surveyed within three sub-basins (Figure 4). In Kenai Lake a total of 27 transects were surveyed within five sub-basins (Figure 5). The Kenai Lake survey was conducted on 4 October 1993 and the Skilak Lake survey on 26 September 1993.

Following the regular night hydroacoustic survey of Skilak Lake on 26 September, we returned to Skilak Lake on the nights of 16 and 18 November 1993 to ascertain fish abundance in the late fall/early winter. A total of thirteen transects was completed (Figure 6).

To evaluate overwinter survival we conducted a day survey of Skilak Lake on 25 April 1994. However, during that survey we suspected that we may have missed fish because of nearsurface orientation. Therefore we returned to Skilak Lake on 29 April 1994 to conduct a night survey (the same transects used in November 1993 were resurveyed in April).

We returned in September/October 1994 to survey both Kenai and Skilak Lakes as part of our normal operational plan (Figures 7 and 8). The survey design proceedure was the same as for the 1993 fall survey. However, rough water kept us from completing Area 5 in Kenai Lake. We, therefore, expanded Area 4 surface area to include Area 5 in the density estimate.

To estimate species composition of the targets mid water trawling was conducted in both lakes. The sampling program was designed to collect a minimum of 300 fish from each area of each lake. All captured fish were enumerated, identified, and preserved in 10% formalin. In the laboratory juvenile sockeye salmon were measured to the nearest millimeter (fork length), weighed to the nearest 0.1 g, and an age determined from scale samples using criteria outlined by Mosher (1969). Differences in age and species composition between areas were tested with chi-square analysis. Detailed methods and results of this effort are reported in a separate document (Carlson et. al, in press).

RESULTS

May 1993 Hydroacoustic and Tow Net Surveys

Sixteen thousand five hundred and ninety three echoes were used to estimate target strength distributions in Skilak Lake on 5 May 1993. Mean target strength was -55.04 dB with a standard deviation of 4.76 dB (Appendix A.2). The estimated fish population was only 859,240 (Table 1). No apparent concentration of fish was observed as fish distribution was similar to the relative volume estimates for each area (Table 2). No species apportionment was made since tow netting resulted in insufficient catches. The depth distribution of targets indicated no obvious surface orientation as peak densities were typically in the 20-40 m range (Figures 9 and 10).

On 8 May 1993 population estimates for Area 1, Skilak Lake, ranged from 476,020 to 4,646,700 fish depending on when the transect was conducted. Early evening estimates (1842 to 2004 hrs) typically were the lowest with peak estimates made between 2200 and 2334 hrs (Table 3). Density estimates by depth indicated that fish were distributed at deeper depths during the early evening with higher densities recorded near surface as night advanced (Figures 11 and 12). Target strength measurements were essentially the same as the 5 May 1993 survey (mean value - 54.09 dB, Appendix A.3).

September/October 1993 Night Hydroacoustic and Day Tow Net Surveys

A total of 44,813 echoes in Kenai Lake and 138,697 in Skilak Lake were used to estimate target strength distributions. As in past fall surveys, calculated mean target strengths decreased with depth (Figure 13). Mean target strength for Kenai Lake was -57.6 dB (Appendix A.4). Near-surface measurements were -55.52 dB in contrast to -59.19 dB at a depth of 52-57 m. In Skilak Lake the mean target strength was -56.68 dB. Mean target strength decreased from a near surface value of -54.47 dB to -57.21 dB at 37 m (Appendix A.5).

The total estimated number of fish in both lakes was 38,108,400 (Table 4). Approximately 11%, or 4,355,300 fish, were found in Kenai Lake and the remaining 33,753,100 fish in Skilak Lake. An estimated 55.2% of the fish in Skilak Lake were located in Area 1, which comprised 28.9% of the lake volume. Within Kenai Lake 31.5% of the fish were located in Area 4, which composed 29.3% of the lake volume (Table 5).

The maximum fish density observed in Skilak Lake was 0.089 fish/m³ between 22-27 m along Transect 6 of Area 1. Maximum densities of fish were recorded in the 17-22 m depth range for 6 of the 13 transects. Two transects had maximum densities deeper in the water column and five shallower.

The maximum density of fish observed in Kenai Lake was 0.011 fish/m³ between 17-22 m along Transect 1 of Area 2. Maximum densities of fish at 12 transects was between 22-27 m. Six transects had maximum densities at deeper strata and nine shallower.

Sockeye salmon were the predominant species in catches from both lakes, representing nearly 100% of the total catch for both lakes (Table 6). Age-1 sockeye salmon made up 0.1% and age-0 composed 99.9% of the Kenai Lake juvenile sockeye estimate (N = 2.973; Table 6). Within Skilak Lake, age-0 sockeye salmon comprised 94.8% of the estimate (N = 2.879; Table 6).

After adjusting the total number of targets using species and age composition data from tow net samples, the number of juvenile sockeye salmon in both lakes was estimated at 37,420,000. Of this total, 35,687,400 were age-0 sockeye salmon produced by the 1992 spawning population, and 1,732,700 were age-1 sockeye salmon produced by the 1991 spawning population (Table 6).

Mean length of age-0 sockeye salmon in Skilak Lake was 49 mm and mean weight was 1.2 g. Age-1 sockeye salmon in Skilak Lake had a mean length of 75 mm and weight of 4.5 g. Mean size and weight of age-0 sockeye salmon in Kenai Lake was 45 mm and 1.0 g. They were smaller (N.S.C.) in size than those collected in Skilak Lake (Table 7).

November 1993 Night Hydroacoustic and Day Tow Net Survey

As expected, Skilak Lake mean fish target strength measurements in November 1993 were within 0.14 dB of the September values (mean -56.54 dB). However, in contrast to the September survey no obvious trend of decreasing target strength measurements with depth were observed in the data set (Appendix A.6).

A total of 29,091,000 fish were estimated in Skilak Lake (Table 8). The majority of fish targets (48.6%) were observed in Area 3 which comprised only 23.1% of the lake volume (Table 9). Tow netting indicated that 98.1% of the fish were sockeye salmon. Age-0 sockeye salmon numbered 27,608,400 while age-1 sockeye salmon comprised 1.9% of the sockeye population (527,000 fish; Table 10).

Comparing the mean size of age-0 and age-1 sockeye salmon indicated that no increase in length or weight took place between September and November (N.S.C.). Age-0 sockeye salmon were 48 mm (S.D. = 5mm, N= 1856) and 1.0 g (S.D.= 0.3, N = 1856) in November. Age-1 sockeye salmon were 75 mm (S.D. = 5, N = 43) and 4.1 g (S.D. = 0.8, N = 43).

April 1994 Hydroacoustic and Tow Net Surveys

A daylight survey on 25 April 1994 estimated 7,339,800 fish present in Skilak Lake (Table 11). Fish were concentrated in Area 1, with 80.9% of the population occupying 38.1% of the lake

volume (Table 12). Mean target strength was approximately 2 dB lower (mean -58.41 dB) than the previous November estimate (Appendix A.7).

In contrast, the night survey of Area 1, Skilak Lake, on 29 April 1994 produced an estimate of 18,178,000 fish (Table 13), which was three times the daylight estimate. Mean target strength was -56.63 dB (Appendix A.8), which was within 0.09 dB of the November estimate and 1.78 dB of the April daylight estimate. Based on extensive tow netting, sockeye salmon comprised 98.1% of the fish population. Age-1 sockeye salmon contributed 86.2% (15,375,800 fish) of the total sockeye estimate (Table 14).

Mean size of sockeye salmon were as follows: 1) Age-0 were 28.7 mm (S.D. = 1.0 mm, N = 10) in length and weighted 0.215 g (S.D. = 0.4, N = 10); 2) Age-1 were 53.3 mm (S.D. = 5.7 mm, N = 574) and 1.7 g (S.D. = 0.5 g, N = 574); and 3) Age-2 were 76.9 mm (S.D. = 4.6 mm, N = 65) and 4.5 g (S.D. = 4.6 g, N = 65).

September/October 1994 Night Hydroacoustic and Day Tow Net Survey

Mean fish target strength estimates for Skilak and Kenai Lakes were -54.14 and -54.44 dB, respectively (Appendix A.9 and A.10). Decreasing fish target strengths with depth during the fall surveys was again observed in 1994. However, the magnitude of the decrease was less than previous years (Figure 13). Within Skilak Lake near surface fish target strength was measured at -53.12 dB and decreased to -54.83 dB at 37-42 m. However, below this depth fish target strength increased slightly for a majority of the remaining depth strata (Appendix A.9). In Kenai Lake, except for the 2-7 m depth strata, target strength decreased from -53.71 dB at 7-12 m to - 56.76 dB at 57-62 m (Appendix A.10).

The total number of fish in both Skilak and Kenai Lake was 12,514,000 (Table 15). Skilak Lake contributed 76.4% to the total population estimate (9,567,400 fish) which was the lowest on record (Figure 14). Distribution of fish in Skilak Lake was fairly evenly spread with Area 1 having 43.3% of the fish and 33.8% of the lake volume. Area 3 had slightly lower numbers (Table 16).

Sockeye salmon were the predominant species (99.3%) captured in tow nets. Age-0 sockeye salmon were 87.8% of the Skilak Lake sockeye estimate (8,353,900 fish) while in Kenai Lake they contributed 95.7% (2,805,600 fish, Table 17).

Mean size of Skilak Lake sockeye salmon juveniles were similar to the 1993 measurements (Table 7). However, age-0 fish were 0.2 g heavier that the 1993 fish. In contrast, Kenai Lake fish were almost twice as heavy than the 1993 cohort (Table 7).

DISCUSSION

This is the eighth year of hydroacoustic work on Skilak Lake, and during that time several trends have become evident in the data set. Fish-target strength estimates by depth in 1993 and 1994 were within historical bounds (Figure 13), and the trend of decreasing target strength with depth continued. This phenomenon appears related to the use of 420 kHz in this glacial lake system. Tarbox et al. (1993) found no decrease in target strength with depth using a 120 kHz system in Skilak Lake.

Schmidt et al. (1993) noted a relationship between potential egg deposition (a function of the number of spawners) and fall fry numbers in Skilak and Kenai Lakes over the available time series (Figure 15). The 1992 brood year production was the second highest measured. Schmidt (ADF&G, Soldotna, personal communication) has indicated that zooplankton abundance and behavior was abnormal and optimum for the 1993 rearing year in Skilak Lake. In contrast, the 1993 brood year production was 8 million fish below the regression model prediction.

The distribution of fish between Skilak and Kenai Lakes has also been very consistent: Skilak Lake generally produces between 80% and 90% of the counts (Figure 14). The relative abundance of fish in Skilak Lake in 1994 was the lowest on record and probably reflects reduced survival in Skilak Lake as opposed to increased production in Kenai Lake.

Overwinter survival of juvenile sockeye salmon in Skilak Lake is difficult to estimate since a number of variables are still unknown about juvenile sockeye salmon behavior in the Kenai River drainage. However, if one assumes that no immigration of juvenile sockeye into Skilak Lake took place between September 1993 and April 29, 1994 then the overwinter survival of age-0 juvenile sockeye was 49%. Because only Area 1 was surveyed at night in April the estimate is a minimum. If we assume that the distribution of fish between Areas on April 29th was the same as the day survey on April 25th an adjusted population estimate would increase overwinter survival to 61%.

Age analysis of the tow net data indicated that age specific depth differences in juvenile salmon abundance can significantly influenced the estimates of the number of age-1 or age-2 sockeye salmon (Carlson, ADF&G, Soldotna, personal communication). For example, in September and November 1993 the estimate of age-1 sockeye salmon in Skilak Lake was estimated at 1,726,000 and 527,000 fish respectively. In contrast, the age-2 estimate in April, 1994 was 2,456,600 fish or almost 4.7 times the November estimate. In September 1993 we collected data on age structure of the fish populations at various depths in Skilak Lake to evaluate this potential bias. Previous Skilak Lake investigations were limited to surface tows. In November 1993 we had not completed the analysis of the September data and were limited by time, weather, and gear to surface tows. By April 1994 we had completed the analysis of catch data and designed a program to collect age composition data at all depths as our hypothesis of depth age composition differences was not rejected (Carlson, ADF&G, Soldotna, personal communication). Therefore, the estimates for September 1993 and 1994 and April 1994 are probably more reflective of the true age composition of the juvenile salmon population than the November estimate.

•

LITERATURE CITED

- Davis, A.S., T. Namtvedt, and B.M. Barrett. 1973. Cook Inlet sockeye forecast and optimum escapement studies. Alaska Department of Fish and Game, Annual Technical Report, Anadromous Fish Conservation Act, Project AFC-41-2, Juneau.
- Davis, A.S., B.M. Barrett, and L.H. Barton. 1974. Cook Inlet sockeye forecast and optimum escapement studies. Alaska Department of Fish and Game, Annual Technical Report, Anadromous Fish Conservation Act, Project AFC-41-3. Juneau.
- King, B.E., and K.E. Tarbox. 1988. Outline of instructions for field operation of Biosonics Inc. dual beam hydroacoustic equipment and analysis of collected data. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2588-14, Anchorage.
- Mosher, K.H. 1969. Identification of Pacific salmon and steelhead trout by scale characteristics. U.S. Department of the Interior, Circular 317, Washington, D.C.
- Namtvedt, T.B., and N.V. Friese. 1976. Investigations of Cook Inlet sockeye salmon. Annual Technical Report, Anadromous Fish Conservation Act, Project AFC-53-1, Juneau.
- Schmidt, D., and 12 coauthors. 1993. Status report sockeye salmon overescapement, fish/shellfish study 27. Alaska Department of Fish and Game, State/Federal Natural Resource Damage Assessment studies.
- Tarbox, K.E., and B.E. King. 1988a. An estimate of juvenile sockeye salmon (Oncorhynchus nerka) densities in Skilak and Kenai Lakes, Alaska through the use of dual beam hydroacoustic techniques. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2S88-2, Anchorage.
- Tarbox, K.E., and B.E. King. 1988b. An estimate of juvenile fish densities in Skilak and Kenai Lakes, Alaska through the use of dual beam hydroacoustic techniques in 1987. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2S88-4, Anchorage.
- Tarbox, K.E., B.E. King, and L.K. Brannian. 1993. An estimate of juvenile fish densities in Skilak and Kenai Lakes, Alaska, through the use of dual beam hydroacoustic techniques in 1991. Alaska Department of Fish and Game, Technical Fishery Report 93-01, Juneau.

Waltemyer, D.L. 1981. A summary of tow netting for juvenile sockeye salmon on three Kenai Peninsula Lakes, 1973 to 1979. Alaska Department of Fish and Game, Division of Commercial Fisheries, Cook Inlet Data Report 81-1, Soldotna.

Estimated Number of Fish								
Lake	Агеа	Transect	Surface	Midwater	Bottom	Total	Area Mean	Variance
Skilak	1	1	1.9570E+03	2.4694E+05	3.1609E+04	2.8051E+05		
	•	2	8.4735E+03	2.8523E+05	1.5436E+04	3.0914E+05		
		3	1.9454E+04	2.3779E+05	2.4274E+04	2.8152E+05	2.7675E+05	7.0858E+08
		4	3.0749E+03	3.0480E+05	2.6689E+04	3.3456E+05		
		5	1.2974E+03	1.2890E+05	4.7845E+04	1.7804E+05		
	2	1	0.0000E+00	1.7673E+05	1.3561E+04	1.9029E+05		
		2	6.5056E+03	3.6209E+05	2.2847E+04	3.9144E+05	3.5233E+05	7.1496E+09
		3	0.0000E+00	4.5222E+05	2.3037E+04	4.7526E+05		
	3	1	6.3281E+03	4.2285E+05	4.3468E+04	4.7265E+05		
		2	0.0000E+00	2.0449E+05	3.0577E+04	2.3507E+05	2.3015E+05	7.5193E+0
		3	0.0000E+00	1.1389E+05	1.2535E+04	1.2643E+05		
		4	0.0000E+00	8.0906E+04	5.5644E+03	8.6470E+04		
	TOTAL						8.5924E+05	1.5377E+1

Table 1. Estimated number of fish in Skilak Lake, Alaska, on 5 May 1993.

		Skilak Lake	
Area	Surface Area (m² x 10°)	Volume (m ³ x 10 ⁶)	Number of Fish (%)
1	43.03 (43.5%)	1734.0 (27.8%)	26.8
2	33.46 (33.8%)	2782.0 (44.6%)	41.0
3	22.50 (22.7%)	1725.0 (27.6%)	32.2
Total	98.99 (100.0 %)	6241.0 (100.0%)	100.0

Table 2. Areas, volume and fish estimates (%) in Skilak Lake. Alaska, day survey, 5 May 1993.

Date	Area	Transect	Beginning Time	Estimated Number of Fish
May 8, 1993	1	1	1842	476,020
		2	1908	972,920
		3	1935	684,610
		4	2004	581,980
		2 3 4 5 6 7	2033	1,220,300
		6	2119	1,075,500
		7	2143	1,145,600
		8 9	2207	4,646,700
		9	2232	2,548,200
		10	2311	2,679,400
		11	2334	1,579,800
May 9, 1993	1	12	0005	1,195,100
		13	0035	1,108,200
		14	0105	1,396,300
		15	0136	1,529,300
		16	0203	2,220,200

Table 3. Estimated number of fish available to the hydroacoustic techniques in Skilak Lake, Alaska, 8 May 1993.

File:3tab94.w51

Table 4. Estimated number of fish in Skilak and Kenai Lakes, Alaska in September and October 1993.

Estimated Number of Fish								
		-				Area		TF 1.
Lake	Area	Transect	Surface	Midwater	Bottom	Total	Mean	Variance
Skilak	1	1	1.9286E+06	1.5736E+07	3.6244E+06	2.1289E+07		
OKIIUK	•	2		2.4576E+07		2.9983E+07		
		3		1.5910E+07		1.7935E+07	1.8637E+07	8.9830E+12
		4		1.7345E+07		2.0899E+07	1.000.00	
		5			1.4507E+06			
		6		6.4490E+06		1.2732E+07		
		0	2.10105+00		4.101JL+00	12/3213 1 07		
	2	1			6.2774E+03			0.000/17 + 44
		2			1.4472E+05		7.4378E+06	3.9326E+11
		3	7.3227E+04	8.1650E+06	4.7577E+05	8.7140E+06		
	3	1	4.3268E+05	1.3678E+07	9.3483E+05	1.5046E+07		
		2	4.5779E+05	7.7010E+06	2.9387E+05	8.4527E+06	7.6783E+06	7.3499E+12
		3	1.4101E+05	3.0790E+06	8.6931E+04	3.3069E+06		
		4	8.6670E+04	3,77 30E+06	4.8478E+04	3.9081E+06		
	TOTA	L					3.3753E+07	1.6726E+13
							<u></u>	
Kenai	1	1	1.3593E+02	2.2680E+05	7.4360E+03	2.3437E+05		
		2	3.4694E+02	4.5853E+05	5.8538E+04	5.1741E+05		
		3	3.5805E+03	2.9075E+05	7.3466E+04	3.6780E+05	3.7444E+05	2.6827E+09
		4	0.0000E+00	2.4403E+05	2.5795E+04	2.6983E+05		
		5	0.0000E+00	2.9858E+05	2.1498E+04	3.2008E+05		
		6	6.2995E+02	4.6830E+05	6.8223E+04	5.3715E+05		
	2	1	7 22185+02	1 06705+06	0.0000E+00	1.9677E+06		
	4	2	0.0000E+00			9.6065E+05		
			9.1290E+03			7.1153E+05	1.1073E+06	9 4064E+10
		3 4		7.8897E+05		7.8936E+05	1.10/36+00	8.4704L + 10
		4	3.89106402	1.007/ETW	0.00002700	7.0730ETVJ		
	3	1	5.5683E+03	4.9268E+05	0.0000E+00	4.9825E+05		
		2	0.0000E+00	2.8979E+05	0.0000E+00	2.8979E+05		
		3	0.0000E+00	4.9482E+05	0.0000E+00	4.9482E+05	3.8204E+05	2.6829E+09
		4	0.0000E+00	2.4448E+05	0.0000E+00	2.4448E+05		
		5			0.0000E+00	3.8288E+05		
	4	1	1.1691E+05	9.7567E+05	0.0000E+00	1.0926E+06		
	·	2			0.0000E+00			
		3					1.3704E+06	4.9284E+10
		4			0.0000E+00			
		5			0.0000E+00			
	5	1	5 1570E±04	2 7785E±05	0.00005+00	3.7443E+05		
	J						1.1212E+06	4 1647F+10
		2 3			0.0000E+00		1.121215700	7.107/14 - 10
		3 4			0.0000E+00			
		4 5			0.0000E+00			
					0.0000E+00			
		6 7			0.0000E+00			
		1	1.34418+03	1.0002E700	VINNETU	1.00046700		
	TOTA	Ĺ					4.3553E+06	
			H LAKES				A A4AAM . AM	1.6907E+13

File: 4tab94.w51

		Skilak Lake	
Area	Surface Area (m² x 10°)	Volume (m ³ x 10 ⁶)	Number of Fish (%)
1	43.03 (43.5%)	1808.0 (28.9%)	55.2
2	33.46 (33.8%)	2674.0 (42.8%)	22.0
3	22.50 (22.7%)	1768.0 (28.3%)	22.8
Total	98.99 (100.0%)	6250.0 (100.0%)	100.0

Table 5. Areas, volume and fish estimates (%) in Kenai and Skilak Lakes, Alaska, night survey, September/October 1993.

Kenai Lake

Area	Surface Area (m² x 10 ⁶)	Volume (m³ x 10°)	Number of Fish (%)
1	7.72 (13.9%)	331.1 (8.0%)	8.6
2	11.91 (21.5%)	968.0 (23.5%)	25.4 .
3	10.54 (19.0%)	944.7 (23.0%)	8.8
4	14.37 (25.9%)	1205.0 (29.3%)	31.5
5	10.93 (19.7%)	666.0 (16.2%)	25.7
Total	55.47 (100.0%)	4114.8 (100.0%) 100.0

File: 5tab94.w51

Table 6. Estimated contribution of age-0 and age-1 sockeye salmon to the total fish population in Kenai and Skilak Lakes, Alaska, night survey, September/October 1993.

Location	Total Fish	Estimated Sockeye Salmon	Percent Age-0ª	Total Age-0	Percent Age-1ª	Total Age-1
Skilak Lake	33,753,100	33,073,500	94.8	31,346,700	5.2	1,726,800
Kenai Lake	4,355,300	4,346,500	99.87	4,340,700	0.13	5,900
Total ^b Variance	38,108,400 1.6907E+13			35,687,400 1.4952E+13		1,732,700 2.7397E+11

•

^a Age composition sample size for Skilak Lake = 2,879, for Kenai Lake = 2,979.
^b Rounded to nearest 100 fish. File: 6tab94.w51

•

				Age-0						A 99 1			
Location			Length	Age-0	r	Veight			Length	Age-1		Weight	
Location	Year	_ (n)_	(mm)	S.D.	(n)	(g)	S.D.	(n)_	(mm)_	S.D.	(n)	(g)	S.D.
Skilak	<u>. 1.6</u> ai				<i>uu</i>	<u>(5</u> /							
	1986	15	57	n/a				8	74				
	1988	109	50	5.3	109	0.9	0.4						
	1989	136	50	3.3	136	1.2	0.3	126	64	6.0	126	2.8	0.7
	1990	928	49	4.3	290	1.3	0.3	34	72.8	3.3	20	4.0	0.4
	1991	863	51	4.9	286	1.5	0.5	55	73.8	3.8	14	4.7	0.5
	1992	883	54	6.0	883	1.8	0.6	10		3.6	10	7.0	0.8
	1993	3652	49	5.0	3652	1.2	0.4	55	75	5.0	55	4.5	0.9
	1994	687	50	3.9	687	1.4	0.4	110_	68.3	3.7	110	3.6	0.6
Kenai		_											
	1986	227	52	n/a	227			2	77				
	1989	38	48	4.5	38	1.0	0.2	56	64	4.6	56	2.5	0.6
	1990	1484	52	4.6	1484	1.5	0.4	62	69.4	4.2	22	3.6	0.6
	1991	1364	53.5	6.5	1364	2.0	0.6	40	75.9	4.8	15	5.5	1.0
	1992	1492	56	7.3	1492	2.0	0.8	12	78	10.0	12	5.6	1.7
	1993	2969	45	4.0	2969		0.2	4_	68	1.0	4	3.3	0.5
	1994	861	53.7	4.6	861	1.9	0.5	39	76.8		39	5.2	0.7
Tustumena			50	<i>с</i> 1		• •	~ -				-	6 9	
	1980	222	59	6.1	222	2.3	0.7	20	80	3.5	20	5.7	0.7
	1981	197	55	5.1	197	1.6	0.4	21	73	4.6	21	3.8	0.7
	1982	194	54	5.1	194	1.8	0.5	17	74	3.9	17	4.0	0.9
	1983	562	60	6.1	562	2.5	0.7	55	80	5.0	55	5.8	1.1
	1984	388	61	4.6	388	2.5	0.6	186	79	3.7	186	5.3	0.8
	1985	173	56	5.6	173	2.1	0.6	52	78	5.0	52	5.6	1.2
	1986	156	50	6.4	156	1.3	0.5	92	73	4.5	92	4.1	0.7
	1987	143	53	5.9	143	1.8	0.6	50	71	3.8	50	4.2	0.6
	1988	303	55	5.3	303	1.8	0.5	89	75	3.6	89	4.5	0.6
	1989	47	52	5.7	47	1.9	0.6	18	74	4.6	18	5.1	0.9
	1990	200	57	5.5	200	1.5	0.4	50	75	2.9	50	3.4	0.5
	1991	202	57	5.4	202	2.0	0.5	47	78	6.5	47	5.1	1.2
	1992	323	59	4.4	323	2.0	0.4	21	79	4.1	21	4.52	0.7
	1993	417	63	6.7	417	2.9	0.8	46	81	3.0	46	6.18	0.7
	1994_	318	64	5.0	318	2.6	0.6	. 76	82.7	3.0	76	5.5	0.5

Table 7. Kenai Peninsula lakes' fall fry sockeye mean fork length and weight data.

Missing values indicate no data available. n = sample size; S. D. = 1 standard deviation. File: 7tab94.w51

			Estim	ated Number of	f Fish	A		
Lake	Area	Transect	Surface	Midwater	Bottom	Area Total	Mean	Variance
Skilak	1	1	1 2320E±06	9 5400F+06	2.1745E+06	1.2947E+07		
JKUAK	1	2	2.0409E+06		1.5619E+06	1.7010E+07		
		2			4.3184E+05	7.1072E+06	1.0211E+07	3.4067E+12
		4		1.0831E+07		1.2126E+07	1.02112 . 07	5.0072.12
		5	3.8792E+05		5.4768E+05	5.6076E+06		
		1A		5.6140E+06		6.4692E+06		
		IA	4./90JE+0J	5.01402100	5.75552.105	0.40726100		•
	2	1	7.9611E+03	4.2100E+06	9.7858E+04	4.3158E+06		
		2	1.5077E+05	5.8360E+06	2.7847E+05	6.2652E+06	4.7344E+06	6.2598E+11
		3	1.6191E+05	3.2800E+06	1.8019E+05	3.6221E+06		
	3	1	9.9630E+05	1.5270E+07	3.4416E+06	1.9708E+07		
	-	2			1.7191E+06	2.0532E+07	1.4145E+07	1.4707E+13
		3			2.2750E+05	4.0865E+06		
		4		1.0632E+07		1.2254E+07		
		·						
	TOTA	L					2.9091E+07	1.8740E+13

Table 8. Estimated number of fish in Skilak Lake, Alaska, on 16 November 1993.

File: 8tab94.w51

	Skilak Lake							
Area	Surface Area (m² x 10°)	Volume (m ³ x 10 ⁶)	Number of Fish (%)					
1	43.03 (43.5%)	2217.0 (34.8%)	35.1					
2	33.46 (33.8%)	2678.0 (42.1%)	16.3					
3	22.50 (22.7%)	1470.0 (23.1%)	48.6					
Total	98.99 (100.0%)	6365.0 (100.0%)	100.0					

.

Table 9. Areas, volume and fish estimates (%) in Skilak Lake, Alaska, night survey, November 1993.

File: 9tab94.w51

.

Table 10. Estimated contribution of age-0 and age-1 sockeye salmon to the total fish population in Skilak Lake, Alaska, night survey, November 1993.

Location	Total Fish	Estimated Sockeye Salmon	Percent Age-0ª	Total Age-0	Percent Age-1ª	Total Age-1
Skilak Lake	29,091,000	28,135,400	98.1	27,608,400	1.9	527,000
Variance	1.8740E+13	1.7582E+13		1.6967E+13		4.360E+10

^a Age composition sample size for Skilak Lake = 1,808; species composition sample size = 3,035 ^b Rounded to nearest 100 fish, file 10tab94.w51 Table 11. Estimated number of fish in Skilak Lake, Alaska, day survey, 25 April 1994.

			Estima	ted Number of	Fish			
Lake	Area	Transect	Surface	Midwater	Bottom	Total	Area Mean	Variance
Skilak	1	1 5	.2436E+05	2.5149E+06	0.0000E+00	3.0393E+06		
		2 7	.7196E+05	7.0149E+06	0.0000E+00	7.7869E+06		
		3 1	.9092E+05	5.6623E+06	0.0000E+00	5.8532E+06	5.9415E+06	5.5646E+11
		4 3	.1046E+05	4.5780E+06	0.0000E + 00	4.8885E+06		
		5 1	.4419E+06	6.4150E+06	0.0000E + 00	7.8569E+06		
		1A 8	.2863E+04	6.1415E+06	0.0000E+00	6.2244E+06		
	2	1 2	.5768E+04	4.6104E+05	0.0000E+00	4.8681E+05		
		2 1	.6814E+04	4.3493E+05	0.0000E + 00	4.5174E+05	6.5871E+05	3.5987E+10
		3 4	.9106E+04	9.8847E+05	0.0000E+00	1.0376E+06		
	3	1 3	.7253E+04	6.0719E+05	0.0000E+00	6.4444E+05		
		2 1	.9359E+04	7.8655E+05	0.0000E+00	8.0591E+05	7.3955E+05	7.9936E+09
		3 4	.4665E+04	9.1181E+05	0.0000E+00	9.5648E+05		
		4 9	.4703E+04	4.5665E+05	0.0000E + 00	5.5135E+05		

TOTAL

7.3398E+06 6.0044E+11

No bottom estimate was made; file: 11tab94.w51

		Skilak Lake	
Area	Surface Area (m² x 10°)	Volume (m ³ x 10 ⁶)	Number of Fish (%)
1	43.03 (43.5%)	2631.0 (38.1%)	80.9
2	33.46 (33.8%)	2712.0 (39.3%)	9.0
3	22.50 (22.7%)	1564.0 (22.6%)	10.1
Total	98.99 (100.0%)	6365.0 (100.0%)	100.0

Table 12. Areas, volume and fish estimates (%) in Skilak Lake, Alaska, day survey, 25 April 1994.

File: 12tab94.w51

				Estimated Num	ber of fram		Area	
Lake	Area	Transect	Surface	Midwater	Bottom [®]	Total	Mean	Variance
 Skilak	1	1a	1.1228E+06	9.6880E+06	0.0000E+00	1.0811E+07		
		2	2.4566E+06	1.0733E+07	0.0000E+00	1.3190E+07		
		3	2.7741E+06	1.7090E+07	0.0000E+00	1.9864E+07	1.8178E+07	7.0595E+1
		4	2.6967E+06	1.9756E+07	0.0000E+00	2.2453E+07		
		5	2.4475E+06	2.2127E+07	0.0000E+00	2.4575E+07		

.

Table 13. Estimated number of fish in Skilak Lake, Area 1, Alaska, on 29 April 1994.

* No estimate was made for fish near the bottom; file: 13tab94.w51

Table 14. Estimated contribution of age-1 and age-2 sockeye salmon to the total fish population in Skilak Lake, Area 1, Alaska, night survey, 29 April, 1994.

Location	Total Fish	Estimated Sockeye Salmon	Percent Age-1ª	Total Age-1	Percent Age-2ª	Total Age-2
Skilak Lake	18,178,000	17,832,400	86.2	15,375,800	13.8	2,456,600
Variance	7.0596E+12	6.7966E+12		5.1752E+12		2.5123E+11

,

^a Age composition sample size for Skilak Lake = 306; species composition sample size = 1,736 ^b Rounded to nearest 100 fish, file 14tab94.w51

				Estimated Nu	mber of Fish			
Lake	Агеа	Transect	Surface	Midwater	Bottom	Total	Area Mean	Variance
Skila	k 1	1	3.1885E+05	5.4550E+06	4.7069E+05	6.2445E+06		
		2	9.8354E+04	2.8210E+06	1.3733E+05	3.0567E+06		
		3	7.2536E+04	3.3389E+06	1.8145E+05	3.5929E+06	4.1387E+06	2.9813E+11
		4	1.8602E+05	2.6739E+06	1.7032E+05	3.0302E+06		
		5	3.0194E+05	2.9170E+06	3.3674E+05	3.5557E+06		
		6	6.5604E+05	4.2440E+06	4.5197E+05	5.3520E+06		
	2	1	5.5430E+04	1.2753E+06	1.8853E+04	1.3496E+06		
		2	1.2517E+05	2.1545E+06	1.0430E+04	2.2901E+06	3.8348E+06	3.5614E+12
		3	4.4237E+04	2.1655E+06	3.0680E+04	2.2404E+06		
		4	1.1694E+05	8.8981E+06	4.4405E+05	9.4591E+06		
3	1	3.1334E+05	7.1764E+05	8.2635E+04	1.1136E+06	4 50705-0/	3 40/05 44	
		2	5.0659E+05	2.4572E+06	5.5101E+03	2.9693E+06	1.5939E+06	2.1068E+11
	3 4	1.1414E+05 4.1776E+04	1.0592E+06 1.0023E+06	2.3922E+04 5.1406E+04	1.1973E+06 1.0955E+06			
	TOTAL						9.5674E+06	4.0702E+12
			/ 5//05.00					
Kenai	1	1	4.5440E+02 0.0000E+00	6.8480E+05	5.1831E+04	7.3709E+05		
		2 3	1.9554E+03	5.7118E+05 5.7934E+05	8.7262E+04	6.5844E+05	9.6855E+05	6.8088E+10
		5	3.1173E+05	1.6255E+06	6.1039E+04 2.9041E+05	6.4233E+05 2.2276E+06	9.00336403	0.0000000000000000000000000000000000000
		5	0.0000E+00	4.6916E+05	5.4113E+04	5.2327E+05		
		6	1.8602E+03	9.3909E+05	8.1590E+04	1.0225E+06		
	2	1	3.5873E+03	2.2141E+05	0.0000E+00	2.2500E+05		
	_	2	7.9642E+03	5.5516E+05	0.0000E+00	5.6312E+05		
		3	0.0000E+00	1.3950E+06	0.0000E+00	1.3950E+06	7.7715E+05	6.2868E+10
		. 4	0.0000E+00	9.2546E+05	0.0000E+00	9.2546E+05		
	3	1	2.0151E+04	5.1343E+05	0.0000E+00	5.3358E+05		
		2 3	4.3667E+02	6.3860E+05	0.0000E+00	6.3904E+05		
		3	1.5718E+04	7.8709E+05	0.0000E+00	8.0281E+05	5.5970E+05	7.4753E+09
		4	0.0000E+00	5.5212E+05	0.0000E+00	5.5212E+05		
		5	1.4090E+04	2.5687E+05	0.0000E+00	2.7096E+05		
	4	1	6.4158E+02	6.3374E+05	0.0000E+00	6.3438E+05		
		2	9.2598E+01 4.7005E+04	5.2835E+05 6.7096E+05	0.0000E+00	5.2844E+05	6.4088E+05	1.4365E+09
		3 4	4.7005E+04 0.0000E+00	5.9387E+05	0.0000E+00 0.0000E+00	7.1797E+05 5.9387E+05	0.40002703	1.43032709
		5	6.6306E+03	7.2310E+05	0.0000E+00	7.2973E+05		
								1 7007- 11
	TOTAL						2.9463E+06	1.3987E+11
	TOTAL	FOR BOTI	I LAKES				1.2514E+07	4.2101E+12

Table 15. Estimated number of fish in Skilak and Kenai Lakes, Alaska, September 1994.

File 15tab94.w51

		Skilak Lake	
Area	Surface Area (m² x 10°)	Volume (m ³ x 10 ⁶)	Number of Fish (%)
1	43.03 (43.5%)	2120.0 (33.8%)	43.3
2	33.46 (33.8%)	2666.0 (42.5%)	40.1
3	22.50 (22.7%)	1491.0 (23.7%)	16.6
Total	98.99 (10 0.0%)	6277.0 (100.0%)	100.0

Table 16. Areas. volume and fish estimates (%) in Kenai and Skilak Lakes, Alaska, night survey, September/October 1994.

Kenai Lake

Area	Surface Area (m² x 10°)	Volume (m ³ × 10°)	Number of Fish (%)						
1	7.72 (13.9%)	316.0 (7.3%)	32.9						
2	11.91 (21.5%)	951.0 (22.1%)	26.4 .						
3	10.54 (19.0%)	888.0 (20.6%)	19.0						
4	25.30 (25.9%)	2150.0 (50.0%)	21.7						
Total	55.47 (100.0%)	4305.0 (100.0%)	100.0						
<u></u>		··· · · · · · · · · · · · · · · · · ·							

File: 16tab94.w51

Table 17.	Estimated contribution of	age-0 and age-1 sockeye salmon to the total fish population in Kena	i
	and Skilak Lakes, Alaska,	night survey, September/October 1994.	

Location	E Total Fish	Stimated Sockeye Salmon	Percent Age-0ª	Total Age-0	Percent Age-1ª	Total Age-1
Skilak Lake	9,567,400	9,510,300	87.8	8,353,900	12.2	1,156,500
Kenai Lake	2,946,300	2,931,600	95.7	2,805,600	4.3	126,000
Total ^b Variance	12,513,700 4.2101E+12	12,441,900 4.1604E+12	89.7	11,159,500 3.2452E+12	10.3	1,282,500 7.4078E+10

^a Age composition sample size for Skilak Lake = 797; for Kenai Lake = 900. Species composition sample size for Skilak Lake = 2020
 ^b Rounded to nearest 100 fish. File 17tab94.w51

Figure 1. Map of the Kenai River drainage

File: 1fig94.pre

File: 2fig94.pre

Figure 2. Hydroacoustic transects conducted in Skilak Lake, Alaska on 5 May 1993.

File: 3fig94.pre

Figure 3. Hydroacoustic transects conducted in Skilak Lake, Alaska on 8 May 1993. (Note : a single transect was repeated 16 times)

File: 4fig94.pre

Figure 4. Hydroacoustic transects conducted in Skilak Lake, Alaska on 26 September 1993.

File: 5fig94.pre

Figure 5. Hydroacoustic transects conducted in Kenai Lake, Alaska on 4 October 1993.

File: 6fig94.pre

Figure 6. Hydroacoustic transects conducted in Skilak Lake, Alaska on 16 & 18 November 1993.

File: 7fig94.pre

Figure 7. Hydrometer the transects conducted in Kenai Lake, Alaska on 7 October 1994.

File: 8fig94.pre

Figure 8. Hydroacoustic transects conducted in Skilak Lake, Alaska on 27 September 1994.

Figure 9. Density of fish in Skilak Lake, Area 1 during a day survey on 5 May 1993.

Figure 10. Density of fish in Skilak Lake, Areas 2 and 3, during a day survey on 5 May 1993.

Figure 11. Density of fish in Skilak Lake, Area 1, runs 1 - 8, during diel studies conducted on 8 May 1993.

Figure 12. Density of fish in Skilak Lake, Area 1, runs 9-16, during diel studies conducted on 8 May 1993.

Target Strength in dB

Figure 13. Fish target strength measured in Skilak Lake, Alaska in September, 1986-1994.

Figure 14. Relative distribution of juvenile sockeye in the Kenai River system, Alaska 1986-1994.

File: 14fig94

Figure 15. Relationship between the number of age-O sockeye salmon fall fry in Kenai and Skilak Lakes and potential egg deposition by mainstem spawners. Values listed indicate brood year of the eggs and fry. Vertical bars are standard errors of estimated fry abundances.

APPENDIX

Appendix A.1. Calibration and processing parameters used in collection and analysis of Kenai and Skilak Lake, Alaska hydroacoustic data, 1993-1994.

Date	Source Level (dB)	Receiving Sensitivity 1 (dB)	Receiving Sensitivity 2 (dB)	Gain (dB)	Thr esh old (nıv)	Wide Beam Dropoff (dB)	Narrow Beam Pattern Factor	A Coefficient	B Coefficient	Bottom Threshold (mv)
fay 1993	217.66	-165.77	-165.67	0	200	1.346	.1052e-02	1.289	.610	9000
ept 1993- lov. 1993	216.74	-165.75	-165.39	6	200	1.310	.1093e-02	1.883	.467	9000
April 1994	216.74	-165.75	-165.39	6	200	1.310	.1093e-02	1.883	.467	7000
ept. 1994	21.7	-166.86	-167.12	6	300	1.180	.1010e-02	1.919	.424	9000

.

File: 1aptab94.w51

45

.

n

٠

Depth Stratum (m)	Number of Targets	Sigma Mean	Sigma Standard Deviation	Target ^a Strength Mean (dB)	Target Strength Standard Deviation (dB)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8 26 21 89 379 2500 3475 2389 1298 1261 2120 1849 893 197 42 41 23 0	.1672E-03 .1331E-03 .1317E-03 .5326E-04 .2058E-04 .2058E-04 .1249E-04 .6944E-05 .7069E-05 .1546E-04 .4741E-05 .3206E-05 .3569E-05 .5643E-05 .5159E-05 .5159E-05 .5159E-05 .5239E-05 .1197E-05 .2477E-05 .0000E-00	.1928E-03 .3469E-03 .3027E-03 .1248E-03 .5907E-04 .8160E-04 .2007E-04 .6088E-04 .1241E-03 .2143E-04 .3563E-05 .4285E-05 .6651E-05 .8129E-05 .4050E-05 .5331E-05 .8813E-05 .1283E-05 .0000E-00	-42.69 -48.92 -48.93 -48.96 -51.90 -53.65 -55.26 -55.21 -56.17 -56.60 -56.37 -54.64 -53.83 -55.08 -55.08 -59.90 -56.42 -00.00	8.90 10.21 10.36 7.82 6.27 5.29 4.71 4.36 4.86 3.93 3.72 3.98 4.40 4.57 3.89 4.88 3.54 2.09 0.00
Total	16593	.8556E-05	.5848E-04	-55.04	4.76

Appendix A.2. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 5 May 1993.

^a Target strength determined from dual-beam data collected in situ. File: 2aptab94.w51

Depth Stratum (m)	Number of Targets	Sigma Mean	Sigma Standard Deviation	Target ^a Strength Mean (dB)	Target Strength Standard Deviation (dB)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	301 1183 845 1480 2263 1528 703 645 712 1088 600 161 81 33 10 2 0 0	.2332E - 04 .1868E - 04 .2067E - 04 .1060E - 04 .6761E - 05 .5628E - 05 .4540E - 05 .3925E - 05 .3367E - 05 .4214E - 05 .6920E - 05 .5323E - 05 .4046E - 05 .4046E - 05 .2660E - 05 .2660E - 00 .0000E - 00	.3785E-04 .5008E-04 .9690E-04 .3701E-04 .1002E-04 .8322E-05 .5427E-05 .4617E-05 .6865E-05 .2986E-05 .4396E-05 .205E-05 .2856E-05 .2205E-05 .2585E-05 .0000E-00 .0000E-00	-49.45 -50.71 -52.13 -53.38 -54.19 -54.98 -55.30 -55.36 -56.32 -56.18 -55.69 -53.96 -54.35 -55.14 -57.14 -00.00 -00.00 -00.00	5.75 5.33 5.70 5.17 4.81 4.65 4.25 4.31 4.24 3.66 4.19 4.79 4.01 3.56 2.47 5.18 0.00 0.00 0.00
Total	11635	.8858E-05	.3493E-04	-54.09	5.09

Appendix A.3. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 8 May 1993.

~

* Target strength determined from dual-beam data collected in situ. File: 3aptab94.w51

Depth Stratum (m)	Number of Targets	Sigma Mean	Sigma Standard Deviation	Target° Strength Mean (dB)	Target Strength Standard Deviation (dB)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	198 541 2233 5501 9171 9963 7885 4362 2104 1184 707 465 250 137 56 28 21 56 28 21 56 28	.1122E -04 .7691E -05 .5728E -05 .4197E -05 .3710E -05 .3710E -05 .2917E -05 .2631E -05 .2518E -05 .2163E -05 .1798E -05 .1798E -05 .1511E -05 .1666E -05 .1598E -05 .1414E -05 .6158E -04 .1831E -05	.4837E-04 .1892E-04 .1919E-04 .6045E-05 .3610E-05 .3935E-05 .2526E-05 .2551E-05 .1927E-05 .1532E-05 .1532E-05 .1565E-05 .1226E-05 .1226E-05 .1151E-05 .1971E-05 .9034E-04 .8386E-06	-55.52 -56.54 -57.16 -57.13 -57.32 -57.92 -57.92 -58.09 -58.09 -58.44 -59.19 -59.39 -59.45 -59.22 -59.23 -60.45 -52.55 -57.61	7.32 7.24 6.48 5.93 5.61 5.38 4.78 4.65 4.28 4.28 4.28 4.28 4.28 4.02 3.45 3.75 13.29 2.06
Total	44813	.3476E-05	.7090E-05	-57.60	5.41

Appendix A.4. Average backscattering cross section (sigma) and target strength data by depth strata for Kenai Lake, Alaska, 4 October 1993.

* Target strength determined from dual-beam data collected in situ. File: 4aptab94.w51

Depth Stratum (m)	Number of Targets	Sigma Mean	Sigma Standard Deviation	Target ^a Strength Mean (dB)	Target Strength Standard Deviation (dB)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1438 5619 13195 25486 30573 26860 17410 8279 3645 2817 1523 774 464 290 134 77 59	.9673E-05 .7465E-05 .5427E-05 .4469E-05 .3846E-05 .3846E-05 .3301E-05 .3993E-05 .3992E-05 .3992E-05 .3994E-05 .4057E-05 .4547E-05 .3985E-05 .4141E-05 .2517E-05	.2355E-04 .1159E-04 .8170E-05 .5374E-05 .5255E-05 .4472E-05 .4083E-05 .4583E-05 .1239E-04 .5015E-05 .5051E-05 .4392E-05 .4542E-05 .4542E-05 .3621E-05 .3621E-05 .2263E-05	-54.47 -55.46 -56.25 -56.69 -56.68 -56.80 -57.11 -57.21 -56.85 -56.89 -56.47 -56.27 -56.49 -55.63 -55.59 -56.11 -57.74	6.67 6.61 5.83 5.29 5.07 4.95 5.04 4.69 5.04 4.69 5.04 4.69 4.77 3.99 4.77 4.33

-57.74

-56.65

-62.14

-56.68

.

4.33 5.01

5.11

5.56

.2263E-05 .4112E-05 .5658E-06

.6501E-05

Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 26 September 1993. Appendix A.5.

* Target strength determined from dual-beam data collected in situ. File: 5aptab94.w51

.2517E-05

.3679E-05

.8688E-06

.4309E-05

 57.0
 62.0

 62.0
 67.0

 67.0
 72.0

 72.0
 77.0

 77.0
 82.0

 82.0
 87.0

 92.0
 97.0

Total

59

39

138697

5

Depth Stratum (m)	Number of Targets	Sigma Mean	Sigma Standard Deviation	Target [®] Strength Mean (dB)	Target Strength Standard Deviation (dB)
2.0 - 7.0 7.0 - 12.0 12.0 - 17.0 17.0 - 22.0 22.0 - 27.0 27.0 - 32.0 32.0 - 37.0 37.0 - 42.0 42.0 - 47.0 47.0 - 52.0 52.0 - 57.0 57.0 - 62.0 62.0 - 67.0 67.0 - 72.0 72.0 - 77.0 72.0 - 77.0 77.0 - 82.0 82.0 - 87.0 87.0 - 92.0 92.0 - 97.0 Total	547 2870 5770 12136 14149 13272 11717 8548 4430 2946 1687 1080 718 396 289 130 35 289 130 35 289 130 35 289	.7928E - 05 .6346E - 05 .5229E - 05 .4474E - 05 .4474E - 05 .4247E - 05 .4063E - 05 .3810E - 05 .3606E - 05 .3738E - 05 .3751E - 05 .3647E - 05 .3841E - 05 .3841E - 05 .5121E - 05 .2782E - 05 .2038E - 05 .0000E - 00 .4316E - 05	.1173E-04 .9945E-05 .7589E-05 .5433E-05 .5270E-05 .4717E-05 .4345E-05 .3842E-05 .3536E-05 .3536E-05 .3590E-05 .3601E-05 .3739E-05 .3760E-05 .4613E-05 .2499E-05 .1617E-05 .0000E-00	-55.29 -56.28 -57.01 -56.87 -56.41 -56.41 -56.41 -56.49 -56.49 -56.48 -56.49 -56.45 -56.38 -56.47 -56.04 -55.73 -57.16 -58.44 -00.00 -56.54	6.44 6.49 6.32 5.97 5.74 5.40 5.19 4.88 4.70 4.60 4.53 4.53 4.53 4.25 4.36 4.22 4.40 3.60 4.09 0.00 5.48

Appendix A.6. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 16 November 1993.

* Target strength determined from dual-beam data collected in situ. File: 6aptab94.w51

Appendix A.7. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 25 April 1994.

Depth Stratum (m)	Number of Targets	Sigma Mean	Sigma Standard Deviation	Target ^a Strength Mean (dB)	Target Strength Standard Deviation (dB)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	91 502 2575 4177 6136 5995 2195 1151 865 665 853 418 287 117 59 21 6 2 2	.2145e-04 .1290E-04 .7448E-05 .4823E-05 .2475E-05 .2165E-05 .2128E-05 .2128E-05 .2804E-05 .2754E-05 .3142E-05 .3615E-05 .3615E-05 .3571E-05 .2364E-05 .8569E-06 .6369E-06	.4911E-04 .2616E-04 .1779E-04 .1448E-04 .3310E-05 .3267E-05 .4221E-05 .4043E-05 .4043E-05 .4100E-05 .4344E-05 .3935E-05 .4148E-05 .5866E-05 .2516E-05 .1804E-05 .5824E-06 .4249E-06 .5678E-06	-53.26 -54.41 -55.94 -57.04 -59.20 -59.69 -60.15 -59.19 -58.87 -58.44 -56.60 -56.92 -56.46 -56.03 -55.68 -57.78 -62.51 -62.72	8.13 7.36 6.41 5.80 5.36 5.36 5.56 5.83 5.65 5.83 5.65 5.83 5.65 5.83 5.65 5.37 4.71 5.30 94.73 3.69 3.15 4.26
Total	26117	.3645E-05	.1002E-04	-58.41	5.85

* Target strength determined from dual-beam data collected in situ. File 7aptab94.w51

Depth Stratum (m)	Number of Targets	Sigma Mean	Sigma Standard Deviation	Target ^a Strength Mean (dB)	Target Strength Standard Deviation (dB)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	876 4799 9188 9488 7011 3142 945 319 175 151 66 48 36 34 23 2 0 7 0	.1075E-04 .8236E-05 .5776E-05 .4493E-05 .3677E-05 .2787E-05 .2495E-05 .2132E-05 .2053E-05 .2238E-05 .2238E-05 .2801E-05 .2801E-05 .2692E-05 .2692E-05 .5672E-05 .0000E-00 .2156E-05 .0000E-00	.1487E-04 .1757E-04 .8783E-05 .8667E-05 .3299E-05 .2819E-05 .2521E-05 .2686E-05 .2164E-05 .2164E-05 .7229E-05 .1511E-05 .2291E-05 .5891E-05 .0000E-00 .1249E-05 .0000E-00	- 53.85 - 54.83 - 55.81 - 56.78 - 57.56 - 58.61 - 58.94 - 60.18 - 59.80 - 59.41 - 58.74 - 57.28 - 53.89 - 57.71 - 57.88 - 54.15 - 00.00 - 57.49 - 00.00	6.76 6.22 5.93 5.63 5.54 5.41 5.44 5.38 4.90 4.51 5.83 5.72 5.23 5.76 0.00 3.14 5.00
Total	36310	.5056E-05	.9911E-05	-56.63	5.98

Appendix A.8. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 29 April 1994.

* Target strength determined from dual-beam data collected in situ. File 8aptab94.w51

Appendix A.9.	Average backscattering cross secti	on (sigma)
	and target strength data by depth	
	Skilak Lake, Alaska, 27 September	1994.

Depth Stratum (m)	Number of Targets	Sigma Mean	- Sigma Standard Deviation	Target ^a Strength Mean (dB)	Target Strength Standard Deviation (dB)
2.0 - 7.0 7.0 - 12.0 12.0 - 17.0 17.0 - 22.0 22.0 - 27.0 27.0 - 32.0 32.0 - 37.0 37.0 - 42.0 42.0 - 47.0 47.0 - 52.0 52.0 - 57.0 57.0 - 62.0 62.0 - 67.0 67.0 - 72.0 72.0 - 77.0 77.0 - 82.0 82.0 - 87.0 87.0 - 92.0 92.0 - 97.0 Total	423 3096 8346 13057 13804 10873 5256 1701 445 397 449 481 317 190 160 83 30 29 12 59149	.1543E-04 .1216E-04 .9831E-05 .8209E-05 .6953E-05 .6953E-05 .5938E-05 .5764E-05 .5643E-05 .8674E-05 .8123E-05 .8123E-05 .6776E-05 .7359E-05 .7359E-05 .7359E-05 .7997E-05 .2928E-05	. 4321E - 04 .1979E - 04 .1262E - 04 .1005E - 04 .1122E - 04 .6162E - 05 .5980E - 05 .1885E - 04 .6458E - 05 .3072E - 05 .3072E - 05 .5952E - 05 .5952E - 05 .5286E - 05 .6670E - 05 .4295E - 05 .4147E - 05 .1183E - 04	-53.12 -53.53 -54.02 -54.47 -54.50 -54.48 -54.83 -54.83 -54.78 -53.72 -53.17 -53.31 -53.25 -52.79 -53.39 -52.61 -60.55 -54.14	6.98 6.61 6.21 5.98 5.62 5.31 5.01 4.91 4.94 5.39 5.60 5.11 4.31 4.11 4.35 5.69 7.41 3.98 7.70 5.73

* Target strength determined from dual-beam data collected in situ. File 9aptab94.w51

1

Depth Stratum (m)	Number of Targets	Sigma Mean	Sigma Standard Deviation	Target ^a Strength Mean (dB)	Target Strength Standard Deviation (dB)
2.0 - 7.0 7.0 - 12.0 12.0 - 17.0 17.0 - 22.0 22.0 - 27.0 27.0 - 32.0 32.0 - 37.0 37.0 - 42.0 42.0 - 47.0 47.0 - 52.0 52.0 - 57.0 57.0 - 62.0 62.0 - 67.0 67.0 - 72.0 72.0 - 77.0 77.0 - 82.0 82.0 - 87.0 87.0 - 92.0 92.0 - 97.0 Total	40 312 1570 4462 6734 6729 3818 998 140 65 24 4 1 3 3 0 0 2 2 2 24907	.9215E-05 .1235E-04 .1033E-04 .8254E-05 .7578E-05 .6439E-05 .5857E-05 .5339E-05 .5274E-05 .3200E-05 .2422E-05 .5676E-05 .1723E-05 .5876E-06 .0000E-00 .8069E-06 .1918E-06	.2490E-04 .1707E-04 .1418E-04 .9306E-05 .8410E-05 .6675E-05 .6062E-05 .5200E-05 .5200E-05 .3155E-05 .1173E-05 .0000E-00 .1880E-05 .5324E-06 .0000E-00 .7969E-06 .1481E-06	-58.70 -53.71 -53.97 -54.25 -54.15 -54.66 -54.75 -55.14 -55.04 -55.82 -56.75 -56.76 -52.46 -59.40 -63.42 -00.00 -63.42 -00.00 -62.38 -67.94 -54.44	8.32 7.39 6.82 6.27 5.78 5.54 5.24 5.18 5.01 4.69 4.07 2.96 0.00 4.70 3.66 0.00 0.00 5.31 3.76 5.81

Appendix A.10. Average backscattering cross section (sigma) and target strength data by depth strata for Kenai Lake, Alaska, 7 October 1994.

* Target strength determined from dual-beam data collected in situ. File 10apt94.w51 The Alaska Department of Fish and Game conducts all programs and activities free from discrimination on the basis of sex, color, race, religion, national origin, age, marital status, pregnancy, parenthood or disability. For information on alternative formats available for this and other Department publications, please contact the Department ADA Coordinator at (voice) 907-465-4120, (TDD) 1-800-478-3648, or (fax) 907-586-6596. Any personal who believes s/he has been discriminated against should write to: ADF&G, P.O. Box 25526, Juneau, AK 99802-5526; or O.E.O., U.S. Department of the Interior, Washington, DC 20240.

APPENDIX D

Figure 2. Prior to dusk

E SIMRAD EPS-500 HP PaintJet print utility (Lda)

Figure 3. At dusk

D-3

Date : 28.)7/83	Survey area : SKILPK LAKE
Time : 00:50:54 to 00:59:52	Transect : HORIZ TEST
MinTS: -62 dB	Trs file name: TS120 (Split) Angle=4.5 deg
Pines: 1305	Sy threshold : -70 dB (-100 to 0 dB)
Size : 467269 bytes	TS threshold : -65 dB (-100 to 0 dB)
Telegrams used: Q1 - E1 - D1 - A1 - H1 - LL	Sy color min : -70 dB (-100 to 0 dB)

Figure 4. Refine - dank.

APPENDIX E

SKILAK LAKE FEED STUDY							
Date	Time	Daylight Factor	Age	Fish Length (mm)	Fish Weight (g)	Dried Gut Wt (mg)	Sample Size
8-Aug	18:14 - 18:44	Daylight	0	46.3	1.0	1.26280	43
3-Aug	21:40 - 22:10	Dusk	0	43.7	0.9	2.47364	23
	22:25 - 22:55	Dusk	0	43.7	0.8	1.64215	41
4-Aug	20:54 - 21:24	Dusk	0	47.6	1.1	2.40000	7
	21:38 - 22:08	Dusk	0	47.7	1.1	2.68333	6
	22:21 - 22:51	Dusk	0	43.1	0.8	1.18248	38
4-Aug	00:20 - 00:50	Dark	0	43.2	0.8	2.06742	139
	01:09 - 01:39	Dark	0	42.3	0.8	1.70036	66
	01:56 - 02:26	Dark	0	43.1	0.8	2.00546	84
	02:47 - 03:17	Dark	0	44.7	1.0	2.01810	30
5-Aug	00:16 - 00:46 01:01 - 01:31 01:47 - 02:17 02:29 - 02:59	Dark Dark Dark Dark	0 0 0	44.8 43.7 44.9 43.7	0.9 0.8 0.9 0.8	1.67580 1.42157 1.69808 1.30417	60 51 52 48
30-Aug	09:50 - 10:20	Daylight	0	47.8	1.1	1.26320	38
31-Aug	19:38 - 20:08	Dusk	0	50.5	1.3	2.61014	148
	20:24 - 20:54	Dusk	0	49.2	1.3	2.85723	159
31-Aug	22:45 - 23:15	Dark	0	48.8	1.2	3.08942	189
	23:29 - 23:59	Dark	0	48.5	1.2	3.24000	45

APPENDIX F

-

MEMORANDUM

Limnology Section Soldotna

TO: Ken Tarbox Area Biologist

> Bruce King Research Biologist

STATE OF ALASKA

Department of Fish & Game CFMAD Division

DATE: 3/8/94

FROM: Stan Carlson AC Biometrician

file: SKTOW93.MEM

SUBJECT: 1993 Skilak Lake Townet Analyses

This memo is a brief summary of results of statistical analyses that I conducted to evaluate sockeye salmon fry sampling techniques in Skilak Lake. The overall goal was to develop recommendations that would help improve the sampling design of the fry townetting program. Throughout the 1993 field season a variety of towing methods were undertaken. These included tows at various depths (surface tows, 10 m, etc.), by area (strata), at different times (day versus night), and using two types of gear (2-boat versus boom-boat). We identified the following objectives: (1) compare sockeye age composition between the different towing methods; (2) compare length and weight of age-0 and (where possible) age-1 fry between methods; (3) compare the proportion of sockeye fry captured between methods; and (4) summarize catch rates (CPUE) for each sampling period and towing method.

Sockeye age composition, species composition, size data (length and weight), and catch rates were obtained for each of the following sets of tows. Note that some depths are rounded and/or pooled together and date is the start date.

File	Date	Area	Depths (m)	Time	Gear
SK200	July 19	1-3	surface	day	2-boat
SK228	Aug. 16	1 1 2 3	0, 10, 20 0, 10, 15 0, 15, 25, 35 0, 15	day night day day	boom boom boom boom
SK257	Sept. 13	1-3	surface	day .	both
SK265	Sept. 22	1 2 3	10, 20, 30 10, 15 10, 20	day day day	boom boom boom
SK319	Nov. 15	1 2 3	0, 12, 20 0, 20 0, 20	day day day	boom boom boom

Additionally, all species composition and CPUE information was stored in the file SK93SPP.

Statistical analyses were generally conducted by date, except for September data which was combined in one analysis. In the case of the discrete data (age classes and species composition), I took the approach of analyzing sets of contingency tables, stratified by area or depth where appropriate. Species composition data were simplified to sockeye and 'other' since non-sockeye species were very rare. Three test statistics were calculated: the standard Chi-Square, G² (likelihood ratio chi-square), and Fisher's Exact Test (after relaxing the assumption of fixed marginal totals). I used the three

NOTE: BACKUP duta available on veguest.

statistics in conjunction since there is some controversy over appropriate testing for sparse tables with small expected values (the case here since age-0 sockeye dominate the samples). Disparate results were obtained in only 1 out of 52 tests (when the nominal P=.05 level of significance was applied). In the case of the continuous data (length and weight), I used standard ANOVA procedures for completely random designs followed by pair-wise contrasts of significant factors. Tests were conducted at the Ps.05 significance level and observed P-values are given in appendices. The critical assumption in all of the analyses is that each group of fry collected provide a random and representative sample.

RESULTS

Differences in age and species composition and fry size (by age) were detected among depths and areas, although this depended somewhat on the time period sampled. Detail is given below for each set of analyses. Contingency tables are provided in appendix A. Summary tables are provided for significant (P<.05) ANOVA results in appendix B. Appendix C is the CPUE summary. All or part of the output from the statistical analyses is available upon request.

July (SK200)

Data collected in July were used to make areal (among strata) comparisons of daytime surface tows using the 2-boat method. No differences in sockeye age composition were detected and age-0 fry exceeded 99% in all three areas (A.1). Similarly, no difference among areas in species composition was detected and only two non-sockeye species were netted, both in area 2 (A.2). However, mean length and weight of age-0 fry differed significantly and substantially among the areas, with the largest fry occurring in area 1 and the smallest in area 3 (B.1). The sample size of age-1 fry was too small to be analyzed (n=5).

August (SK228)

Data collected in August consisted of a complex set of boom-boat tows that included day and night tows of two matching depths conducted in area 1 and various depth tows in all sampling areas conducted during the day. Sockeye age and species composition and size of age-0 fry collected in area 1 were compared between day and night tows stratified by depths of 0 and 10 m. Age composition did not depend on timing as only two age-1 fry were obtained in these tows (A.3-4). However, there is some evidence that the proportion of sockeye differed between day and night tows at the 10 m depth (0% versus 28.6%; A.6) but not at the surface (A.5). It is worth pointing out, however, that only a few fish were obtained in the surface-day tows (n=38) and 10 mnight tows (n=14); further studies may be needed to fully address the timing issue. Mean length and weight of age-0 fry did not differ between day and night tows sampled at 10 m. However, age-0 fry collected at the surface during the day were significantly larger than fry obtained in night-surface and day-10 m tows (B.2).

Areal comparisons were made for the surface (all areas) and 15 m (areas 2 & 3) depth tows conducted during the day. No differences among areas in age composition were detected in the surface tows (A.7). However, the proportion of age-1 fry netted at 15 m was significantly higher in area 3 than in area 2 (15% and .5%, respectively; A.8). There is some indication that age composition differs among areas at the surface but sample sizes were small in areas 1 & 2 (38 and 10, respectively; A.9) and only two non-sockeye species were captured. In the 10 m tows, a significantly higher proportion of non-sockeye species were captured in area 3 than in area 2 (16.2% and 1.4%, respectively; A.10). Age-0 fry collected in surface tows were significantly larger in area 1 than in areas 2 or 3 (B.3). No differences in fry size were detected between areas 2 & 3 at 15 m.

Comparisons among depth increments were made for each area and for night tows in area 1. For the daytime tows, age composition differed significantly among depths in all three areas (A.11-13). Higher proportions of age-1 fry occurred in the 15-25 m depths (e.g., in area 3, 14.6% at 15 m versus .3% at 0 m). Note, however, that very small samples were obtained in some of these tows. Species composition also depended upon depth in areas 2 and 3 with generally higher occurrence rates of non-sockeye species in the deeper zones (A.14-16; e.g., in area 3, 16.1% at 15 m versus 0% at 0 m). Size of age-0 fry also differed among depths (B.4). In area 1 significantly larger fry were netted near the surface. On the other hand, the larger fry in area 2 were collected at 25 m (B.5). In area 3 slightly heavier fry were collected at 15 m compared to the surface (B.6).

For the night tows, a significantly higher proportion of age-1 fry were netted at 15 m (9%) than at the surface (.4%) or at 10 m (0%) (A.17); however, note that only 11 sockeye were captured at 10 m. Species composition also varied significantly between depths with the highest proportion of non-sockeye species occurring at 10 m (29%), compared to 3.1% at the surface and 1.6% at 15 m (A.18). Again, this result is based on a sample size of only 14 fish at 10 m. Age-0 fry captured at 10 m were also significantly larger than those captured at the surface or at 15 m (B.7).

September (SK257-265)

Data from tows conducted on Sept. 13-15 (SK257) were used to compare gear types (2-boat versus boom-boat). These surface tows were conducted during the day in each of the three areas. No difference in fry age composition between gear types was detected (A.19-21). Also, no differences in species composition were detected in areas 1 and 2 (A.22-23). However, in area 3 the 2-boat method captured a significantly higher proportion of non-sockeye species than the boom-boat (2.3* versus .1*; A.24). Note that this data was comprised entirely of stickleback (n=26) captured in a single tow. Overall, gear type did not have a significant effect on the size (length or weight) of fry captured (age-0 or age-1).

Differences in age composition among areas were not detected for the 2-boat method (A.25). However, the boom-boat captured a significantly lower proportion of age-1 fry in area 1 than in areas 2 and 3 (.3%, 1.8%, and 2.3%, respectively; A.26). Similarly, no differences in species composition were detected among areas for the 2-boat method and about 1-2% non-sockeye species were netted (A.27). Boom-boat tows, however, captured a significantly higher proportion of non-sockeye species in areas 1 and 2 compared to area 3 (1.3%, 1.0%, and .1%, respectively; A.28). Areal differences in the size of age-0 fry were detected, with significantly and slightly smaller fry captured in area 3 (B.8). Size of age-1 fry did not differ significantly among areas.

The boom-boat was used to conduct daytime tows on Sept. 22-24 (SK265). These data were used to make comparisons among areas (10 m data) and depths; surface tows were not conducted. Age composition of sockeye fry collected at 10 m differed significantly among the areas with the highest proportion of age-1 fry occurring in area 3 (10.6%), followed by area 2 (6.7%), then area 1 (1.2%) (A.29). Species composition in 10 m tows also differed significantly among the areas, with the highest incidence of 'other' species occurring in area 1 (5.5%), followed by area 2 (.8%) (A.30). Size of age-0 and age-1 fry sampled at 10 m did not differ significantly among the areas.

A significant difference in age composition among depths ≥ 10 m was detected in area 1, with the highest proportion of age-1 fry obtained at 30 m (8.8% versus 0-2% at 10-20 m; A.31). No depth differences in age composition were found in areas 2 and 3 and the proportion of age-1 fry ranged from about 5-12% (A.32-33). Similarly, no differences in species composition among depths were detected in any of the areas (A.34-36). However, a significant size difference in age-0 fry was detected among depths in area 1, with the largest fry occurring at 30 m (B.9). In area 2, age-1 fry were significantly larger at 15 m than at 10 m (B.10). No other size differences among depths were detected.

All boom-boat data collected in September were combined so that surface tows could be included in the depth analyses. In all 3 areas, a significantly higher proportion of age-1 fry occurred at depths of 10-30 m (8-12%)m compared to surface tows (<3%; A.37-39). Similarly, non-sockeye species occurred at higher rates in the 10-30 m tows compared to surface tows (e.g., in area 1, 5-13% versus 1.3% at the surface; A.40-42). Size of age-0 fry differed among depths with the largest fry occurring in surface tows and at 20-30 m (B.11-13); the smaller fry occurred at 10-15 m. Size of age-1 fry differed significantly among depths in area 2 only, where larger fry were collected at 15 m (B.14); area 3 showed a similar, but non-significant trend.

November (SK319)

In November the boom-boat was used to make depth and areal comparisons of daytime tows. Age composition differed significantly among depths in all 3 areas with higher proportions of age-1 fry (about 5%) occurring at depths of 20 m compared to the surface (<1%; A.43-45). Species composition also differed significantly among depth: with the highest proportions of non-sockeye species occurring in the 13-20 m tows (7-11% versus <.4% at the surface; A.46-48). Larger age-0 fry were collected at 20 m than at the surface or at 12 m (B.15 & B.17). No differences among depths in the size of age-1 fry were detected.

Fry age composition and species composition did not differ significantly among areas at the surface or at 20 m (A.49-52). A significant difference in the size of age-0 fry was detected among areas, with area 2 fry being slightly larger than fry collected in areas 1 and 3 (B.15-16). No differences in the size of age-1 fry were detected.

CPUE

Catch rates were calculated for sockeye, non-sockeye, and all species by defining 30 minutes of towing as one unit of effort. Data for each set of tows was pooled (by date, area, depth, time, and gear) and then total counts converted to CPUE (C.1-3). As expected, variability in CPUE among (comparable) tows was high, which may indicate a generally clumped dispersion pattern of fish.

RECOMMENDATIONS

There is substantial evidence of differences among sampling areas and between depth increments in sockeye fry age structure, size of age-0 fry, and species composition. In cases of relatively small sample sizes, however, the representativeness of the tow(s) may be questionable (especially considering that the fish are probably patchily dispersed). The two types of gear used gave reasonably similar results, although there is some indication that the boom-boat captures a lower proportion of age-1 fry than the 2-boat method. More studies are needed to fully address differences between day and night towing.

Results of the statistical analyses indicate that, for estimation purposes, stratification of daytime tows by area and depth should be undertaken. The desired number of depth strata is still in question, but 2 or 3 (including surface tows) should be adequate. The major problem lies in apportioning depth strata (within areas) to the hydroacoustic estimates (Ken has indicated that this would be very difficult). One possible way around this problem would be to sample in proportion to fish abundance within each depth increment. The data could then be pooled and treated as a random sample of the area. If certain assumptions are met, equivalent length (time) tows at each depth may accomplish this. One critical assumption is that CPUE be linearly or proportionally related to fish abundance or density, which may not be the case. Capture efficiency studies could be undertaken in the upcoming field season to address this problem.

appendices

cc: Dana Schmidt Linda Brannian

SKRAKLAKE TOWNET EFFORT 1864	MEFFORTWK				
AREASTATIC AVDED THYDATE AREA S			REASTATIONIAL DEPTHOATE	AREANIL BIAIKINALL DEPHIDATE AREA 1	WHOLE LAKE/ALL STAT
BTATION A DEPTN 8-18	STATION A DEPTH 10-30	RTATION A DEPTH >36	STATION Á DEPTH ALL	STATION ALL DEPTH ALL	STATION ALL DEPTH ALL
DATE PSOCK POTHER TOW DUR BEISA	UN POLICE POTHER TOW DUR & FISMIN	ASOCK POTIER TOW DUR & FISAMIN	SOLX BOTHER TOW DUR & FISMIN 93 4 90 1 03	DATEBOTHER_TOW DUR_EFESHIM 115 1703 33 456 378	DATE #SOCK #01/1ER 115 2058 42
	40 36 2 60 869	136 5 60 2.27	e16 6 106 500 301 4 90 423	143 1500 19 540 294 164 1202 15 456 207	143 5365 54 164 2014 60
103 35 0 30 f	20 73 0 30 243 17 904 0 30 347	12 8 30 840	151 0 80 148	101 172 15 150 707 103 233 6 300 660 220 108 3 276 70	103 778 20 720 573 16
234 0 0 30 0	10 5 0 30 0 17 00 0 6 30 0 00	3 1 30 0 10 8 0 30 0 27	8 6 90 0.00	234 207 3 450 0.64	234 H052 20 262 2007 13
203 13 0 30 8	31 38 8 39 130 43 85 8 39 243	20 0 30 087 	248 1 10 2 17 231 1 00 2 57	202 420 2 270 156	203 873 9
	62 400 2 276 146	130 12 270 1.25	2046 17 816 2.52		TOTALS 15410 244
AREA 1			STATION S	AREA 2 Station all	
STATION B DEPTH 0-10	STATION B DEPTH 10-30	BTATION B DEPTH >30	BTATION B DEPTH ALL	BTATION ALL DEPTH ALL	
DATE ISOLA POTHER TOW DUR STISA	MIN ASOCK POTHER TOW DUR & FISAMIN	ISOLK POTHER TOW DUR & FISAIN	ASULCK MOTHER TOW DUR & FISAMM	DATE SUCK POTIER TOW DUR BEISMIN	
112 264 8 60 4	10 60 2 30 2 30 10 58 2 60 6 97	132 3 60 2 20 16 1 20 8 60 2	454 8 190 2.52 236 1 90 2.62	143 2244 13 546 4 16 164 813 14 369 2 26	
103 6 1 30 0	52 52 0 30 173 17 17 0 30 057 13 10 0 30 033	e 3 50 e 60 1 e 30 e 63	22 4 00 024 15 0 00 017	103 544 8 276 1 25 270 215 5 270 8 80	
234 14 4 30 4	47 5 0 30 017	1 1 30 003	20 5 50 # 22 804 1 60 8 93	234 300 13 450 000 262 501 3 270 100	
263 23 0 30 0	1 0 20 001		<u></u>	203 212 2 210 0 10 TOTALS 6004 61 2546 1.64	
TOTALI 1485 2 270 8	56 755 4 276 2.06	111 12 110 000		AREA 3	
STATION G	STATION G	STATION C	STATION G	STATION ALL DEPTH ALL	
DEPTH 0-16	DEPTH 10-30	DEPTH >30	DEPTH ALL		
DATE RECOX POILS IN TWO DUT & FILM		- RECEX POTER TOW DUR & FIMALINE 20 0 007	HOCK POTISH TOW DUR & FIRMIN 108 8 80 1 20	DATE #SOCK #OTIER TOW DUR & FIRAIN 115 84 8 218 8 41	
143 N/A 0 144 29 8 30 0	997 26 9 30 997 313 <i>0</i> 9 30 997	N/A 6 1 0 30 0 03	N/A 54 0 00 0.52	143 1531 22 640 2.84 164 808 38 368 2.25 183 181 8 368 8.58	
220 N/A Ø	N/A D	2 0 30 007 WA 0	8 5 66 6 67 NA	220 170 10 279 0.03	
762 NVA 0	150 5 0 30 0 17 N/A 0	0 1 30 690 NA 8	50 1 80 \$58 N/A	234 367 13 368 1.02 202 197 6 308 0.55	
203 NA 0 TOTALI 07 1 120 0	N/A 8 0 81 01 0 120 8 76	<u>NVA</u> 0 32 0 120 0.27	<u>NVA</u> 220 10 300 0.81	203 211 5 270 0 80 TOTALS 2502 07 2730 131	
AREA 1					
STATION D	STATION D	BTATION D DEPTH >34	STATION D Depth All		
DEPTH 0-10 DATE #SOCK #OTHER TOW DUR 6 FISA	DEPTH 10 30 MIN ISOCK INTHER TOW DUR & DSMIN	ISOCK FOTHER TOW DUR & FISMIN			
115 100 0 30 3		37 1 30 123 1 3 40 402	<u>#SOCK #OTHER TOW DUR & FIEMIN</u> 143 2 66 154 226 0 100 122		
164 338 0 30 11	20 147 0 30 400 00 47 6 30 167	126 4 20 4 20 2 1 30 0 07	806 4 96 6.77 40 1 86 8.54		
220 154 0 30 5	20 8 0 30 020 43 5 0 30 017	0 2 30 000 1 1 30 001	182 2 80 190 19 1 80 821		
212 233 1 30 7	1 77 56 0 30 053	7 2 30 023 40 1 30 133	250 3 80 2.04 111 1 80 173		
	37 <u>30 8 30 100</u> 3 44 307 4 270 1.14	214 15 210 0.70	1546 22 616 1.64		
AREA 1					
BTATION E DEPTH 0-10	STATION E DEPTH 18-30	BTATION E DEPTH >30	STATION E '		
DATE ASCNOX AUTHER TOW DAR BEISA	MIN SOCK POTHER TOW DUR SEISMEN	BOCK NOTHER TOW DUR & FISMIN	SOCK OTHER TOW DUR & FRAMEN		
115 485 0 30 16 143 N/A 0	17 37 8 30 4,23 NA 0	8 13 30 8,30 N/A 8	631 13 80 5 80 NVA		
	013 3 0 30 010 017 NVA 0	3 4 30 0.16 N/A #	10 8 90 011 .5 9 30 0.17		
220 H/A D 234 303 D 30 3	N/A 0 137 0 0 30 030	NVA 8 20 6 30 306	NVA 200 8 89 2.22		
262 HVA 0 203 HVA 0	HVA 0 HVA 0	NVA 8 NVA 9	N/A N/A		
AREAALL STATE WORPTIVDATE	187 49 8 120 841	102 10 120 0 45	746 18 300 248		
AREA 1 STATK N ALL	AREA 1 STATION ALL	AREA 1 STATION ALL			
DLPTH 010	DLPTH 10 30	DEPTIA >30			
UNIE <u>EN EX BUILER HAR BER</u> A 115 EM 0 H.O D	AND BOAK MATTER IN TOW DUR STISMIN 0.12 210 1 10 10 10 10 10	ISCHX ROTHER TOW DUR BEISAM			

F-7

		KEYE PE REA 1	ERCENTAGE	•										AREA/STATI	onvall dei	THUDATE			AREA 1					AREA	ALL
		ATION EPTH	A 6-10			BTATION DEPTH	A 10-30			BTATION DEPTH	A ⊳30			STATION DEPTH	AL AL				BTATION DEPTH	A L A L				RTATION DEPTH	ALL ALL
		SOCK	POTHER	INW ININ	% SOCK	#SOCK	ROTHER	TOW DUR	*SOCK	#SOCK	POTHER	TOW DUR	% SOCK	ISOCK	POTIER	TOW DUR	%SOCK	DATE			TOW DUR	NSOCK	DATE		
<u></u>		11	POINT D	30	100.0%	58	0	30	100.0%	24	4	30	85.7%	#3		90	85 9%	115	1703	33	450 540	98 1% 98 8%	115	2054 5365	
		744	i	60	99 9%	36	2	60	84.7%	136	3	\$0	97 9%	918 301		180	89 3%. 89 0%	143	1202	15	450	98.8%	184	2014	58
16		306	1	30	00.7%	73	0	30 30	100 0%	2	3	30 30	40 0% 100 0%	161		80	100 0%	193	533		390	87.5%	183	778	20
19		36 3		30 30	100 0%	104	ŏ	30	100.0%	5	ī	30	75 0%	11	i .	80	817%	220	188	3	270	M 4%	220 234	573 1052	18 29
23		ő		30	0.0%	ō	ō	30	0.0%		6	50	100 0%		•	90 90	100.0%	234 282	297	2	450 270	99 6%. 99 6%	242	2007	13
24		190	- i	30	99.5%	59	•	30	100.0%	20 133		30 30	100 0%	240 231		90	P9 6%	203	420	2	270	89 5%	203	873	
- 71			<u> </u>	270	100 0%	400		2/0	100 0%			270		2040		810	89 2%	TOTAS	7032		3090	98.8%	TOTALS	15818	244
101/	-	1302	,	2/0		400	•												AREA 2						
					1		-			BTATION	9			STATION					STATION	ALL					
		ATION EPTH	9-10			STATION DEPTH	8 10-30			DEPTH	>30			DEPTH	AL				DEPTH						
DAT	E n	SOCK	OTHER 1	OW DUR	*SOCK		DINER	TOW DUR	*SOCK	ISOCK	NOTHER	TOW DUR	*SOCK		POTHER		\$50CK	DATE 115	<u>#SOCX</u> 267	POTIER	10W DUR 150	SOCK			
		753	0	30	100 0%	- 60 58	2	30 60	97 2% 96 7%	102		30 60	80.0% 97.9%	828 454		90	94.6%	143	2244	13	540	99 4 X			
14		264 156		60 30	100 0%	52	í.	30	100 0%	18	1	30	84 1%	234	ī	80		164	813	14	360	99.3%			
19		5	1	30	63.3%	17	ŏ	30	100 0%	0	j.	30	0.0%	22	4	90	84 6%	193	364		210 270	07 8%			
22		i.	ė	30	100 0%	10	0	20	100 0%	1	0	30	100.0%	15		90 90	100 0% 95 2%	220 234	215	5	450	87 7% 96 8%			
2:		14	•	30	100 0%	5	0	30 30	100 0%		1	30 30	50 0%	20 804		90	99 9%	262	501		210	99.4%			
7 7		258 23	1	30 30	99 6% 100 0%	543	ő	30	100 0%	54	ŏ	50	100 0%	71	ò	90	100 0%	293	212	2	210	99 1%			
tot		1485		210	99 9%	155	4	270	99.5%	217	12	210	84.8%	2457	18	610	99 3%	TOTALS	5004	61	2580	94 8%			
		REA 1	-																AREA 3						
		ATION	C			STATION	c	:		STATION	C			STATION	C				STATION						
) EPTH	0-18			DEPTH	18-30			DEPTH	>30			DEPTH	ALL				DEPTH	ALL					
DA	76 .	ISOCK		TOW DUR	N.SOCK	ISOCK	POTHER	TOW DUR	%.SOCK	ISOCK	POTHER	TOW DUR	%.SOCK	ISOCK	POTHER	TOW DUR	N.SOCK	DATE			TOW DUR				
	15	10	0	30	100.0%	60	0	30	100.0%	29	•	30	78.4%	108		90	93.1%	115		4 22	210 540	03 5%. 98 6%			
	13	NVA.		0		N/A		0		NVA 1	0	0 30	100 0%	N/A 54		90	100 0%	143	809	30	360	96 4%			
	H	29	0	30	100 0%	24	0	30 30	100.0%		ŏ	30	100.0%		ĭ	90	85.7%	193	101		360	95 8%			
	83 20	4 NVA	1	30	10.0%	N/A		ĩ		NA.	•	Ö		NA	•			220	170	10	270	94.4%			
	й	45		30	100 0%	5	0	30	100.0%	0	1	30	0.0%	50	1	, P O	98.0%	234	567	13	360 360	06 6% 97 5%			
	52	NVA.		0		NA		0		NVA.				N/A N/A				262 293	197 241		270	98.0%			
	2)	NVA.		0	99 0%	N/A 91	- 0	120	100.0%	<u> </u>		120	78.0%	220	10	360	65.7%	TOTAS	3582	97	2730	97 4%			
TOT	A.:	87	1	120	W U N		•	120	100.0 #		•														
	٨	REA 1																							
		ATION	Đ			STATION	0			STATION	0			STATION											
	0)EPTH	0-10			DEPTH	10-30)		DEPTH	>30			DEPTH	ALL										
												10W DUR	% SOCK	Merry W	I OTHER		% SOCK								
	16 -	RC YOM	MOTINE 1		- KCIYY	EV(X 	- #O11# P		SOX X		- F OIDER														
1	<u>16</u>	100 ISOCIX	#OTHER 0	TOW DUR 30	\$LSOCK 100.0%	ISOX K	POTHER 1	I TOW DUR 30	BS 7%	<u>31</u>	1 1	30	87.4%	143	2	90	98 6%								
,			#OTHER 0 0			<u>#SOCK</u> 6 50 147	#01116.8 1 5 0			37	1 1 1				2										

F-8

	197 220 234 262 293 TOTAL 1	0 156 13 233 41 1040	0 0 1 1	30 30 30 30 30 270	0 0% 100 0% 100 0% 90 6% 100 0%	47 6 5 16 30 307	0 0 0 0 6	30 30 30 30 30 270	100 0% 100 0% 100 0% 100 0% 100 0% 00 1%	2 0 1 7 40 214	1 2 1 15	30 30 30 30 <u>30</u> 270	68 7% 0 0% 50 0% 77 8% 97 6% 93 4%	49 167 19 254 <u>111</u> 1569	1 1 3 	90 90 90 80 810	98 0% 98 8% 95 0% 96 8% 99 1% 98 6%					
		AREA 1 STATION DEPTH	E 6-19			STATION DEPTH	E 10-30			BTATION DEPTH	E >30			BTATION DEPTH	E ALL							
	115 143	485 NVA	ROTINER) 0	10W DHIR 30 0	100 0%	ISOCK 37 NA	DILER T	<u>OW DUR</u> 30 0	<u>8.5073</u> 100.0%	N NA	10111ER 13		40 9%	531 N/A	13	60	\$500X 87 6%					
	164 193 220	4 S N/A	0	30 30 0	100 0% 100 0%	1 NA NA	0	90 0 0	100.0%	3 NVA NVA	•	30 0 0	33 3% 100.0%	10 5 N/A 200	0	90 30 90	62 5% 100 0%					
	234 262 293	101 N/A N/A		30 0 0	100 0%	9 NA NA 49		30 0 	100 0%	90 NVA NVA 102	0 18	30 0 120	84 3%	NA NA 746			07.5%					
		596 L STATION AREA 1 STATION	DEPTIVDAT ALL	150 E	100 0%	AREA 1 STATION	ALL	120		AREA 1 STATION	ALL											
	DATE	DEPTH #SUCK	0-10 #OTHER	TOW DUR	%SOCK	DEPTH #SOCK	10-30 <u>#OTHER 1</u> 3	150	%.500X	DEPTH #SOCK 105	>30 #OTHER 30	TOW DUR	11 8%									
	115 143 164 193	1364 1177 841 40	0 1 1 2	150 190 150 150	100.0% 99.9% 99.9% 98.1%	230 144 301 168	9 0 0	180 150 120	94 1% 100.0% 100.0%	269 150 16	9 14 4	190 150 120	96 8% 91 5% 80 0%									
	220 234 282	143 173 679	0	90 150 90	100 0% 100 0% 99 8%	21 24 698	0	90 150 90 90	100.0% 100.0% 100.0% 100.0%	4 100 32 221	3 2 2	90 150 90 90	57 1% 97.1% 94 1% 99.1%									
	793 TOTALI	4521	;	1050	100 0%	110		1020	90 3%	903	67	1020	0 3 i%									
_		AREA 2 STATION	۸							STATION	۸ ۵۰۵۵			AREA/STAT	IONVALL DEF A ALL	THUDATE			AREA 2 STATION DEPTH	AL		
F-9	DATE	DEPTH REOCK	0-10 POTHER	TOM DUR	NSOCK	DEPTH #SOCK NA	10-30 #0111ER	TOW DUA	%50CX	DEPTH RSOCX NA		TOW DUR	NSOCK	#SOOK	POTHER	IOW DUR	NSOCK	DA1	E ISOCX	#OTHER	TOW DUR 150	178
	115 143 164 103	- NVA NVA 4 NVA	۱	0 30 0	80.0%	NVA	0	0 30 0	100.0%	N/A 30 N/A	1	0 30 0	96,8%	NA 17 NA	2	90	97.5%	f4 16 10	6 813 3 364	13	540 360 270 270	4 16 2 26 1 35 0 90
	220 234 262	NVA 57 NVA	•	0 30 0	100.0%	I NA	1	0 30 0	0.0%	NVA 0 NVA NVA	1	0 30 0	0.0%	NVA 57 NVA NVA	2	90	96 6 %.	27 23 26 79	4 388 2 501	5 13 3 2	450 270 270	0 86 1 86 0 79
	203 10141		1	- 60	98.4%	49 43			01.1%	30	2	60	93 8%.	134	4	180	97.1%	TOTALS	5004	- 61	2580	1H
		STATION DEPTH	9 0-10			BTATION DEPTH	B 10-30			STATION DEPTH	B > 30			STATION DEPTH	B All							
	 115	205	POTHER 0	<u>10W DUR</u> 30 60	%SOCK 100.0% 100.0%	29	POTIER	10W DUR 30 60	%.SOCK 96 7% 100 0%	0	POTHER	<u>TOW DUR</u> 30 60	%.SOCK 0 0% 63 0%	#SOCK 214 653	POTHER 2	TOW DUR 90 190	%SOCK 99.2% 99.4%					
	143 164 193 220	421 13 90 10	0	30 30 30	100 0% 100 0% 100 0%	50 11 14	0	30 30 30	100 0% 100 0% 100 0%	1 1	1 2 3	30 30 30 30	87 9% 50 0% 25 0%	76 93 25 23	2	90 90 90	08.7% 87.6% 99.3% 98.5%					
	234 262 293	5 19 23	0 8 0	30 30 270	100 0% 100 0% 100 0% 100 0%	10	2 0 0 3	30 30 <u>30</u> 270	90 0% 100 0% 100 0% 98 9%	4	0 0 17	30 30 <u>30</u> 270	6 0% 100 0% 100 0% 96.7%	33 #2		80 90 810	100 0% 100 0% 94.3%					
	TOTALI	716 AREA 2	U	210	100.0		•								_							
		BTATION DEPTH	8-10			BTATION DEPTH	C 10-30			BTATION DEPTH	C >30		%SOCK	BETATION DEPTH	C ALL POTHER		5977					
	DATE 115 143 164	<u>ASOCX</u> 33 N/A N/A	POTHER 0	10W DUR 30 0	100 0%	NVA NVA	<u>RJIJ&H</u>	1047 (04) 0 0	<u> </u>	NVA NVA	1	<u>TOW DUR</u> 30 9 9	0.0%	33 NVA NVA	1	60	97.1%					
	103 220 234	28A 28A 28A 28A 28A	0	0 0 30	100 0%	NVA NVA . 4	1	0 0 30	80 0%	NVA NVA D	۱	0 0 30	0.0%	N/A N/A 194	2	90	P0 9%					
	262 293 TOTAT	NVA HVA	0	0 0 60	100 0%	NVA TVA		0 	80 0%	NVA NVA 0	2	0 00 60	0.0%	10 10 219	3	150	00 6%					
		AREA 2												1								

0 89

Ы Ť 10

143 164 193 220 234	1177 841 49 163 173	1 1 2 0 0	190 150 150 90 150	6 54 5 6 f 0 33 1 81 1 15	144 301 168 21 24	9 0 0	180 150 120 90 150	0 80 2 01 1 40 0 23 6 16	269 150 16 4 100	9 14 4 3 3	190 150 120 90 150	149 100 013 004 067					
267	679	3	90	7 54 0 86	508 118	0	90 90	6 64 1 79	32 221	2	90 90	0 36 2 52					
203 101A.1	4521		1050	451	1602	12	1020	1 57	£09	67	1020	0 80					
	AREA 2												AREA/STATE	ONVALL DE	PTHOATE	<u> </u>	
	STATION DEPTH	A 0-10			STATION DEPTH	A 10-30			STATION DEPTH	A >30			BTATION DEPTH	A ALL			8
DATE	#SOCK	POTINER	TOW DUR	S FISAMIN	ISOCK	POTHER	TOW DUR	& FISAMIN	ISOCK	POTHER	TOW DUR	S FISMIN		FORER	TOW DUR	S FISANIN	DATE
115	NA NA		0		NVA NVA		0		NVA NVA		0		NVA NVA				115
164 193	4 N/A	1	30 0	0 13	43 NVA	0	0C 0	1.43	30 N/A	1	0C 0	1 00	NVA	2	90	0 86	364 193
220 234	N/A 57	0	0 30	1 90	NVA 0	1	а 30	0 00	N/A 0	1	0 30	0.00	NVA 57	2	90	0 63	220 734
262 293	NVA NVA	•	0	•	NVA NVA		0		NVA NVA		0		N/A P#A				262 293
TOTAL	61	1	60	1 02	43	1	60	0 7 1666 7	30	2	60	0 50	134		190	0.74	TOTALS
	AREA 2				[1				
	STATION DEPTH	8 9-10			STATION DEPTH	B 10-30			BTATION DEPTH	8 >30			STATION DEPTH	ALL			
DATE 115	#SOCK 205	POTHER	TOW DUR	S FISMIN	<u>800X</u>	BOHER	TOW DUA 30	S FISAM	ASOCX	NOTHER	TOW DUR 30	6 FISAN		POTHER 2	TOW DUR 90	\$ FISANIN 2 60	
143	421	0	60 30	7 02 0 43	98 50	0 a	60 30	147	44	8	60 30	073 043			180 90	3 07 0 84	
193	80		30	2 87	11	ů o	30 30	0 37	2	2	30 30	0 07 0 03		2	90 90	103 028	
220 734	10 5	0	30 30	0 33 0 17	1 19	2	30	0 60		1	30 30	0 00 0 13	23	3	90 90	0 26 0 37	
262 263	10 23		30 30	0 63	10	0	30 30	0 33 [] 0 [] 0	41_	. Ö	\$0	1 57	02		80	102	
TOTAL	116		270	2 87	242	3	270	0 90	- 111	17	2/0	- 041	1120	20	\$10	1.34	
	AREA 2				1								1				
	STATION DEPTH	C 0-10			STATION	C			STATION DEPTH	C >30			STATION	C			
		•			DEPTH	10-30							DEPTH	ALL			
DATE	#SUCK	POTHER	TOW DUA 30		JISUCK		TOW DUR	8 FISMIN	ISOCK		TOW DUR 30	S FISMI	#SOCK		TOW DUR	S FISMIN 0 55	
115	33 N/A	• ···	30 0	B FISAMIN 1 10	ISUCK NVA NVA		0	<u>s fismin</u>	BSOCK 0 NVA		30 0	S FISMIN Ø 00	#SOCK 33 N#A				
115 143 164 193	33 NVA NVA NVA	POTHER	30 0 0 0		ISUCK NVA NVA NVA NVA		0 0 0	8 FISMIN	BOCK 0 NVA NVA NVA		00 0 0	S FISMI 0 00	#SOCK 33 NVA NVA NVA				
115 143 164 193 220 234	33 NVA NVA NVA NVA 182	POTHER	30 0 0 0 0 20		BSOCK NA NA NA NA NA A		0 0 0 0 0 0	<u>8 FISMIN</u> 0.13	BSOCK 0 NVA NVA NVA 0		30 0 0 0 30	5 FISMIN 8 00 0 00	4 #SOCK 33 N/A N/A N/A N/A 196				
115 143 164 193 220 234 262 293	33 NVA NVA NVA 182 NVA NVA	<u>војуки</u> 0	30 0 0 0 0 30 0 0	1 19 6 07	ISOCK NA NA NA NA A NA	<u>BOTHER</u> F	0 0 0 0 0 0 0 0	0.13	BSOCK 0 NVA NVA 0 NVA 0 NVA	<u>POTIER</u> 1	30 0 0 30 0 0	0 00 0 00	#SOCK 33 NVA NVA NVA 196 NVA	<u>BOTHER</u> 1	90	0 55 2 07	
115 143 164 193 220 234 282	33 NVA NVA NVA 182 NVA	BOTHEH 0	30 0 0 0 0 30 0	1 10	BSOCK NVA NVA NVA NVA 4 NVA	POTHER	0 0 0 0 0 0		BSOCK 0 NVA NVA NVA 0 NVA	<u>POTIER</u> 1	0 0 0 0 30 0	0.00	#SOCK 33 NVA NVA NVA 196 NVA	POTIER	60	0 55	
115 143 164 193 220 234 262 293	33 N/A N/A N/A N/A 182 N/A Z15 AREA 2 STATION	0 0 0 0	30 0 0 0 0 30 0 0	1 19 6 07	8500X NA NA NA NA A NA 4 NA 4 NA 4 ETATION	POTHER r f	0 0 0 0 0 0 0 0	0.13	850CK 0 N/A N/A N/A 0 N/A 0 N/A 0 8TATION	<u>POTHER</u> 1 1 2	30 0 0 30 0 0	0 00 0 00	8500X 33 NA NA NA NA 186 NA 219 8TATION	<u>2</u>	\$0 90 150	0 55 2 07	
115 143 164 193 220 234 262 293 TOTALI	33 N/A N/A N/A N/A N/A 215 AREA 2 STATION OEPTH	<u>војји н</u> 0 0 0 0 0 0	00 0 0 0 0 0 0 0	1 10 6 07 3 58	BSOCK NA NA NA NA A A A A BTATION DEPTH	<u>POTHER</u> F 1 10-30	0 0 0 0 0 0 0 30	0.13 0.13	850CK 0 NA NA NA 0 NA 0 NA 0 NA 0 8TATION DEPTH	<u>#0114 R</u> 1 1 	30 0 0 30 0 20 50	0 00 0 00	4 #SOCK 33 NA NA NA NA 196 NA NA 219 STATION DEPTH	POTIKER 1 2 3 ALL	\$0 \$0 150	0.55	
115 143 164 183 220 234 262 293 TOTALI	33 NVA NVA NVA NVA 215 AREA 2 STATION DEPTH ES/XX	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 0 0 0 0 0 50 50	1 10 6 07 3 58 5 FISMIN	BSOCK NAA NAA NAA NAA NAA NAA NAA HAA BETATION DEPTH BEATION DEPTH	<u>POTHER</u> F 1 10-30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.13 0.13 <u>8 fismir</u>	BSOCK 0 NA NA NA NA NA NA STATION DEPTH DEPTH SOCK	<u>#0114 R</u> 1 1 	30 0 0 30 0 30 0 50 50	6 00 0 00 6 00 8 fisaar	#SOCX 33 NA NA NA NA NA NA NA NA 219 8TATION DEPTH # SOCK N/A	POTIKR	60 90 150 <u>TOW DUR</u>	0 55 2.07 1.46 5 FISMIN	
115 143 164 193 220 234 262 293 707AL1 107AL1 115 143 164	33 NA NA NA NA 215 AREA 2 STATION DEPTH ESIXCK NA 1212 401	<u>#07386 H</u> 0 0 0 <u>0</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 10 6 07 3 58 5 FISAMIN 20 20 13 57	ISUCK N/A N/A N/A N/A	#OTHER 1 10-30 #OTHER 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.13 0.13 <u>6 FISAMIN</u> 0 25 4 23	ISOCK. 0 NVA NVA NVA 0 STATION 0 STATION 0 STATION 0 STATION 0 STATION 0 NA 4 0 0	#OŢIER 1 1 2 0 30 #OŢIER 2	30 0 0 0 0 0 0 0 60 1 0 0 60 30 0 0 60 30	6 00 0 00 <u>6 FISAM</u> 6 01 0 01	и #SOCX NA NA NA NA NA NA NA NA NA NA	1 1 2 3 ALL <u>#OTH&R</u> 2 3	60 90 150 <u>TOW DIR</u> 190 90	0 55 2 07 1 46 <u>\$ FISMIN</u> 6 84 6 03	
115 143 164 183 220 234 262 203 1014£1 1014£1 115 115 115 164 193 220	33 NA NA NA NA NA NA NA 215 AREA 2 8TATION DEPTH ES/XX N/A 1212 401 154 37	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 10 6 07 3 58 5 FISAMIN 20 70 13 57 5 60 1 23	#SUCX N/A	<u>POTHER</u> T 10-30 <u>POTHER</u> 1 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.13 0.13 <u>5 FISMIR</u> 0 75 4 73 9 70 1 73	#SOCK 0 N/A N/A N/A 0 SOCK 0 SOCK 0 3 2	#OTHER 1 2 50 #OTHER 1 2 1 0	30 0 0 0 30 0 0 0 60 1 0 60 1 0 60 30 30 30 30	6 00 6 00 <u>6 60</u> <u>6 615</u> 6 00 0 00 0 10 0 00	4 #SO(X, 33 NVA NVA NVA NVA NVA NVA NVA 216 #STATION DEPTH DEPTH DEPTH 216 ***********************************	 1 2 3 0 0 0 1 1 6 0 1 1 6 1 1 6 1 7 2	60 90 150 150 190 90 90 90	0 55 2 07 1 46 5 FISMIN 6 84 6 03 2 30 1 01	
115 115 164 193 220 234 262 293 101441 101441 101441 101441 103 220 234	33 NA NA NA NA NA NA NA NA NA 215 AREA 2 STATION DEPTH ESACK NA 1212 401 154 37 93	0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 0 0 0 0 0 0 0 0 0 0 60 50 10 30 30	1 10 6 07 3 56 5 FISAMIN 20 20 13 57 5 60 1 23 3 10	BEATKON N/A	F F 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.13 0.13 <u>5 FISMIR</u> 0 25 4 23 1 20	#SOCK 0 NVA NVA NVA NVA 0 NVA 0 BTATION BEFTH	00114ER 1 2 00114ER 1 2 1	30 0 0 0 0 0 0 0 0 60 60 60 60 60 60 60 6	6 00 0 00 <u>6 fishte</u> 6 07 0 30 0 10	4 #SO(X, 33 NVA NVA NVA NVA NVA NVA NVA 216 8TATION DEPTH 4 #SO(X, 1231 207 61 103		60 90 150 150 190 90 90	0 55 2 07 1 46 <u>5 FISMIN</u> 6 84 6 03 2 30	
115 115 164 193 220 234 262 293 101441 115 115 115 115 113 164 193 270 234 262 201	33 NA NA NA NA NA NA NA NA NA 215 AREA 2 8TATION DEPTH AREA 2 8TATION DEPTH AREA 2 8TATION DEPTH 151 154 154 154 155 155 155 155 155 155	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 0 0 0 0 0 0 0 0 0 60 60 30 30 30 30 30 30	1 10 6 07 3 58 5 FISAMIN 20 70 13 57 5 60 1 23	#SUCK N/A		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.13 0.13 <u>5 FISMIR</u> 0 75 4 73 1 70 1 73 0 77	#SOCK 0 NVA NVA NVA	#OTHER 1 2 D >50 #OTHER 1 2 1 0 1	30 0 0 0 0 30 0 0 0 60 60 60 30 30 30 30 30	6 00 6 00	4 #SO(X, 33 NVA NVA NVA NVA 106 NVA 216 8TATION DEPTH 4 #SO(X, 10 10 10 201 91 10 201 201 201 201 201 201 201 201 201	1 2 3 3 	60 90 150 <u>100 (XIR</u> 190 90 90 90 90 90	0 55 2 07 1 46 5 FISTMIN 6 84 6 03 2 30 1 01 1 14	
115 115 164 193 220 234 262 293 1014(1 115 115 164 193 270 224 254 261	33 NA NA NA NA NA NA NA NA NA NA NA NA NA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 0 0 0 0 0 0 0 0 0 0 0 0 0	1 10 6 07 3 50 5 FISAMIN 20 20 13 57 5 60 1 23 3 10 8 33 0 50	#SUCK N/A	#Q11€R 1 10-30 #Q11€B 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.13 0.13 0.13 0.75 4.23 1.20 1.73 0.77 0.70 0.51	#SOCK 0 NVA	CTHER 1 1 2 COHER COHER 1 1 1 1 1 1 0 2	30 0 0 0 0 30 0 60 60 60 60 60 50 30 30 30 30 30 30 30 30 30 30 30 30 30	6 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00	4 #SO(X, 33 NVA NVA NVA NVA 106 NVA 216 8TATION DEPTH 4 #SO(X, 10 10 10 201 91 10 201 201 201 201 201 201 201 201 201	2 2 3 0 0 0 0 0 1 0 1 0 1 0 1 1 2 2 3 3 0 0 1 1 1 2 2 3 3 1 0 0 1 1 1 5 7 1 1 5 7 1 1 5 7 1 1 5 7 7 1 1 5 7 7 1 1 5 7 7 7 7	60 90 150 150 100 (XIR 190 90 90 90 90 90	0 55 2 07 1 46 5 FISTAIN 6 84 6 84 1 14 1 14 3 23 0 57	
115 115 164 193 220 234 262 293 101441 115 115 115 115 113 164 193 270 234 262 201	33 NA NA NA NA NA NA NA NA 215 AREA 2 STATION DEPTH SXXX NA 1212 401 154 37 93 250 15 2182 AREA 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 0 0 0 0 0 0 0 0 0 0 0 0 0	1 10 6 07 3 50 5 FISAMIN 20 20 13 57 5 60 1 23 3 10 8 33 0 50	#SUCK N/A	#Q11€R 1 10-30 #Q11€B 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.13 0.13 0.13 0.75 4.23 1.20 1.73 0.77 0.70 0.51	ISOCK 0 N/A N/A N/A N/A N/A N/A Image: state st	CTHER 1 1 2 COHER COHER 1 1 1 1 1 1 0 2	30 0 0 0 0 30 0 60 60 60 60 60 50 30 30 30 30 30 30 30 30 30 30 30 30 30	6 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00	4 #SO(X, 33 NVA NVA NVA NVA 106 NVA 216 8TATION DEPTH 4 #SO(X, 10 10 10 201 91 10 201 201 201 201 201 201 201 201 201	2 2 3 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	60 90 150 150 150 90 90 90 90 90 90	0 55 2 07 1 46 5 FISTAIN 6 84 6 84 1 14 1 14 3 23 0 57	
115 115 164 193 220 234 262 293 101441 115 115 115 115 113 164 193 270 234 262 201	33 NA NA NA NA NA NA NA NA NA NA NA NA NA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 0 0 0 0 0 0 0 0 0 0 0 0 0	1 10 6 07 3 50 5 FISAMIN 20 20 13 57 5 60 1 23 3 10 8 33 0 50	#SUCK N/A	#OTHER f 10-30 #OTHER 1 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.13 0.13 0.13 0.75 4.23 1.20 1.73 0.77 0.70 0.51	#SOCK 0 NVA	<u> <u> </u> <u></u></u>	30 0 0 0 0 30 0 60 60 60 60 60 50 30 30 30 30 30 30 30 30 30 30 30 30 30	6 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00	4 #SO(X, 33 NVA NVA NVA NVA NVA NVA NVA 216 #TATION DEPTH DEPTH DEPTH NVA 1231 543 207 01 103 2517	2 2 3 0 0 0 0 0 1 0 1 0 1 0 1 1 2 2 3 3 0 0 1 1 1 2 2 3 3 1 0 0 1 1 1 5 7 1 1 5 7 1 1 5 7 1 1 5 7 7 1 1 5 7 7 1 1 5 7 7 7 7	60 90 150 150 150 90 90 90 90 90 90 90 90 90 9	0 55 2 07 1 46 5 FISTAIN 6 84 6 84 1 14 1 14 3 23 0 57	
115 115 164 193 220 234 262 293 10141 115 115 164 193 270 270 270 270 270 270 270 270 270 270	33 NA NA NA NA NA NA NA NA NA NA NA NA NA	00176 H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 0 0 0 0 0 0 0 0 0 0 0 0 0	1 10 6 07 3 54 5 FISAMIN 20 20 10 35 3 50 1 23 3 10 8 31 0 50 9 00	#SUCX N/A	PQ11€R 1 10-30 PO11€R 1 0 0 0 0 1 1 10 30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.13 0.13 6 FISMIN 0 25 4 23 1 20 1 73 0 27 0 70 0 57 1.15	#SOCK 0 N/A N/A N/A 0 STATION DEPTH -SOCX 10 20 10 59 STATION STATION DEPTH FD(B.K.K	00116ER 1 2 500 500 1 2 1 0 1 0 1 0 2 7 7 7 7 7 8 500 1 1 8 7 7 7 7 7 8 8 8 9 8 9 8 9 8 9 8 9 8 9	30 0 0 0 0 30 0 60 60 60 60 60 50 30 30 30 30 30 30 30 30 30 30 30 30 30	0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0	4 #SOCK 33 NVA NVA NVA NVA NVA NVA NVA NVA	POILER POILER	60 90 150 150 150 90 90 90 90 90 90 90 90 90 9	0 55 2 07 1 46 5 FISTAIN 6 84 6 03 2 30 1 01 1 14 3 23 3 50	
115 115 164 193 220 234 262 293 10141 115 115 164 270 270 270 270 270 270 270 270 270 270	33 NA NA NA NA NA NA NA NA NA NA		200 0 0 0 0 0 0 0 0 0 0 0 0	1 10 6 07 3 58 5 FISAMIN 20 20 20 13 57 5 60 1 23 3 10 9 09 8 09 8 09 8 09 8 09 8 09 8 09 8 0	#SUCX N/A N/A <	<u>POTHER</u> r T 10-30 <u>POTHER</u> 1 10-30 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.13 0.13 0.13 0.13 0.13 0.25 0.25 0.25 0.25 1.15 0.27 0.27	ISOCK 0 N/A N/A STATION DEPTH STATION DEPTH STATION DEPTH STATION DEPTH		30 0 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0	0 00 0 00	4 #SO(2K 33 NVA NVA NVA NVA NVA NVA 108 RTATION DEPTH 4 #SO(2K) 8TATION 01 01 01 01 01 01 01 01 01 01	2 3 3 ALL 2 3 1 0 1 1 2 3 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 1 8 1	60 90 150 150 150 190 90 90 90 720	0 55 2 07 1 46 5 FISAMIN 6 84 6 03 2 30 1 01 1 14 3 23 3 50 5 FISAMIN 2 56	
DATE 115 164 193 220 234 242 203 10141 10141 10141 10141 10141 10141 10141 10141 10141 10141 10141 10141 10141 1014	33 NA NA NA NA NA NA NA NA NA NA NA NA NA		200 0 0 0 0 0 0 0 0 0 0 0 0	1 10 6 07 3 58 5 FISAMIN 20 20 13 57 5 60 1 23 3 10 0 31 0 50 9 00 6 HISAMIN 5 78 1 20 0 007	#SUCX N/A N/A <	<u>PQTH€R</u> t t T D 10-30 <u>PQTH€R</u> 1 10-30 <u>PQTH€R</u> 1 10-30 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.13 0.13 0.13 0.75 0.75 0.75 0.70 0.77 0.70 0.57 1.15 5.615AMR 0.37 1.53 1.63	ISOCK 0 N/A N/A STATION DEPTH SOCK 3 2 20 10 SOCK STATION DEPTH STATION DEPTH STATION SOCK N/A N/A STATION SOCK	#OTHER 1 2 D >30 #OTHER 1 2 2 *50 *50 *50 *50 *50 *50 *50 *50 *50 *50	30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 00 0 00	4 #SO(2K 33 NVA NVA NVA NVA NVA NVA 108 RTATION 0EPTH 4 #SO(2K) 103 201 51 51 51 51 51 51 51 51 51 5	POILER POILER	60 90 150 150 150 100 90 90 90 90 100 90 90 100 90 90 90 90 90 90 90 90 90	0 55 2 07 1 46 5 FISMIN 6 84 6 84 6 84 6 03 2 30 1 01 1 14 3 23 3 59 5 FISMIN 2 56 1 301 0 11	
DATE DATE	33 NA NA NA NA NA NA NA NA NA NA NA NA NA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	1 10 6 07 3 59 5 FISAMIN 20 20 13 57 5 60 9 09 6 HISAMIN 5 78 1 20 0 07 7 260 0 7	#SUCX N/A	<u>PQTH€R</u> t t T D 10-30 <u>PQTH€R</u> 1 10-30 <u>PQTH€R</u> 1 10-30 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.13 0.13 0.13 0.13 0.13 0.13 0.25 1.15 0.57 0.57 1.15 0.17 0.57 0.75	ISOCK 0 N/A N/A STATION DEPTH S0(K) S0 S0(K) S0 S10 S1 13 1 1 1	COINER I I COINER I I COINER I I COINER I COINER I COINER I COINER I COINER I I I I I I I	30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 00 0 00	4 #SO(X 33 NVA NVA NVA NVA NVA NVA 186 NVA 219 8TATION 0EPTH 4 #SOCK 103 201 01 103 201 8TATION 0EPTH 4 #SOCK NVA 103 201 103 103 201 103 103 201 103 103 103 201 103 103 201 103 103 201 103 103 103 201 103 103 103 103 103 103 103 1	POILER POILER	60 90 150 150 150 150 150 150 150 15	0 55 2 07 1 46 5 FISMIN 6 84 6 84 6 03 2 30 1 01 1 01 1 14 3 23 0 51 3 55 5 FISMIN 2 56 1 07 1 0 1 07 1 07 1 07 1 07 1 07	
DATE DATE DATE DATE DATE 115 143 164 103 270 270 271 101AL 101AL 101 101AL 10	33 NA NA NA NA NA NA NA NA NA NA	0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 0 0 0 0 0 0 0 0 0 0 0 0 0	1 10 6 07 3 50 5 FISAMIN 20 20 13 57 5 60 1 23 3 10 0 0 9 00 9 00 9 00 9 00 9 00 9 00 9	#SUCX N/A 15 127 127 34 52 0 11 17 18 N/A 17 18 8 N/A 17 17 17 18 17 17 18 17 17 18 17 17 17 17 18	<u>PQTH€R</u> t t T D 10-30 <u>PQTH€R</u> 1 10-30 <u>PQTH€R</u> 1 10-30 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.13 0.13 0.13 0.25 0.25 0.25 0.27 1.73 0.27 1.15 0.27 1.15 0.27 1.15 0.27 1.13 0.27 1.13 0.27	ISOCK 0 N/A N/A STATION DEPTH SOCK 3 2 20 10 SOCK STATION DEPTH STATION DEPTH STATION SOCK N/A N/A STATION SOCK	COTHER I COTHER COTHER	30 0 0 0 0 0 0 0 0 0 0 0 0 0	0 00 0 00	4 #SO(X 33 NVA NVA NVA NVA NVA NVA 186 NVA 219 8TATION 0EPTH 4 #SOCK 103 201 01 103 201 8TATION 0EPTH 4 #SOCK NVA 103 201 8TATION 103 201 103 103 201 103 103 201 103 103 201 103 103 201 103 103 103 201 103 103 103 201 103 103 103 103 103 103 103 1	2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60 90 150 150 150 150 100 90 90 90 90 90 90 90 90 90	0 55 2 07 1.46 5 FISTAIN 6 84 6 03 2 30 1 01 1 14 3 50 5 FISTAIN 7 3 50 5 FISTAIN 7 3 50 5 FISTAIN 7 3 50 5 71 1 10	

AREA 2 STATION DEPTH

AL AL

 Insocx
 POTHER TOW DUR
 S FISAMIN

 267
 3
 150
 1 f 8

 2244
 13
 540
 4 f 6

 2813
 14
 360
 2 2 8

 364
 8
 770
 1 35

 364
 8
 770
 0 80

 388
 13
 450
 0 86

 501
 3
 270
 1 86

 212
 2
 270
 1 86

 5004
 61
 2580
 1 84

	STATION DEPTH	D 0-10		l	STATION DEPTH	D 10 30			STATION DEPTH	0 • 30			STATION DEPTH	D ALL								
DATE	ISOCK	NOTHER TO	WINNE	KSOCK	ISOCK		TOW DUR	KSOCK	ASOCK	ROTHER	TOW DUR	% SOCK	ISOCK		TOW DUR	%SOCK						
115	NVA		60	100 0%	N/A 15	- Northan	0 60	83 BX	NA		0 60	80.0%	N/A 1231		190	99 8%						
143 164	1212	1	30	99 8%	127	ò	30	100 0%		2	30	81 8%	543	5	80	89 5%						
193 220	168 37	0	30 30	100 0%	34 52	0	30 30	100.0%	3	1	36 30	75 0% 100 0%	207	0	90 90	99.5% 100.0%						
234 262	83 250	0	30 30	100 0% 99 5%	21	•	30 30	100 0% 100 0%	20	1	30 30	66 7% 100 0%	103 291	1	00 90	99 0%. 99 7%						
293	15	<u>.</u>	30	100 0%	17		30	100 0%	18		30	80 S%	51		90	96 2%						
TOTAL	2182	2	240	99 PK	276	1	240	99 6%	50	,	240	60 4%	2517	10	120	8 9 6%						
	AREA 2									_				_								
	STATION DEPTH	E 0-10			GTATION DEPTH	E 10-30			STATION DEPTH	E ۵۵			BTATION DEPTH	E ALL								
DATE	ISOCK	POTHER TO	w Dura	N-SOCK	ISOCK	POTHER	TOW DUR	%.SOCK	ISOCK	OTHER	TOW DUR	%.SOCK	#SOCK	POTHER	TOW DUR	KSOCK						
115	N/A 347		60	100.0%	N/A 72		0 60	95.7%	N/A 91	1	0 60	94 9%	NVA 460	2	180	20 6%						
164 193	34	3	30 30	92.3%	46	3	30 30	93 9%. 96 1%	35 13	2	30 30	94 6%. 84 7%	117 64	Ĩ	90 90	83 6%. 82 8%						
220	78	ò	30	100 0%	17	1	30	94.4%		i	30	80.0%	99	2	90	98 0%						
234 262	147	0	30 30	100 0%	21		30 30	91 7% 100 0%		1	30 30	20 0%. 00 0%	10	2	80 90	70 2%. 90 9%						
101A			30 240	100 0%	199		240	100 0%			240	100 D%	1005		720	87.7%						
AREAVA	AREA 2	VOEPTIVDATE			AREA 2				AREA 2													
	BTATION DEPTH	ALL 0-10			STATION DEPTH	ALL 10-30			STATION DEPTH	ALL ⊁30												
DATE	ASOCX	POTHER TO		%.50CX	ISOCK		TOW DUR	%500 K	#SOCK		TOW DUR	%.50CX										
115	236	0	60	100 0%	29	1	30 100	96.7% 96.4%	0	2	60 180	0 0% 92.7%										
164	1980 450	5	190 120	100 0% 98 8%	125	5	120	98 FX	87		120	90 6 %.										
193 220	250 125	1	50 80	96 6%. 100 0%	N 13	2	90 90	88 0%. 98 8%	18 7	-	90 90	78 3% 63 6%										
234 282	344 418	;	150 90	100 0%	41	5	150 90	89.1% 100.0%	t 12	•	150 90	27.3% 97.1%										
293	40	i	90	100 0%	12		00	100 0%	100	<u> i </u>	90	98.0%										
TOTAL			878	00 840 3																		
TOTAL	3853	•	878	90 BX	764	- 14	849	88.2%	347	59	\$70	00 8%.										
TOTAL	AREA 3	•	670	90 BX			849	•			670	90 8%	AREA/STAT	KONVALL DE	PTHOATE				AREA J			
TOTAT		▲ ●-10	676	90 B%	764 STATION DEPTH	14 A 10-30	8 49	W A	STATION DEPTH	30 ^ >30	•/5	B0 8%	AREA/STAT STATION DEPTH	KONVALL DE A ALL	PTIVDATE				AREA 3 STATION DEPTH	ALL ALL		
	AREA 3 STATION DEPTH ASOCK			99 PX	STATION DEPTH #SOCK	A 10-30	LOW DUR	N.SOCK	BTATION DEPTH ISOCK	A >30		80 8%	STATION DEPTH #SOCK	ALL A	PTHOATE	NSOCK		DATE	STATION	ALL	TOW DUR	<u>sock</u>
DATE 115 143	AREA 3 STATION DEPTH ISOCK N/A 19	0 -10	W DUR 9 60	100 0%	STATION DEPTH ISOCK NA 232	A 10-30 #O[)/ER 1	<u>PUQ WOJ</u> 0 0a	11.50CX	BTATION DEPTH ISOCK N/A 21	A >30 #OTHER 4	Tow Dur 9 50	<u>%500X</u> 87.1%	STATION DEPTH MSOCX N/A 278	A AL POTIER	TOW DUR	98.2%		\$15 143	ATATION DEPTH ASOCK BB 1531	ALL <u>POTHER</u> 8 22	210 540	041
DATE 115 143 164	AREA 3 STATION DEPTH ASOCK NA	0 -10	W Dint 60 20	- NISOOK	STATION DEPTH #SOCK N/A	A 10-30	<u>PUQ WOT</u> 0 03 00 00	5000x 59 6% 100 0% 100 0%	BTATION DEPTH NOCKN/A	A >30	<u>Tow pur</u> 60 50	% <u>80</u>0X	STATION DEPTH #SOCX NA	ALL A	TOW DUR			115	87ATION DEPTH 850CK 96 1531	ALL <u>#OTHER</u> 8 22 30	210 540 360	0 41 2 84 2 25
DATE 115 143 164 193 720	AREA 3 STATION DEPTH ISOCK NA 10 27	0 -10	W DUR 9 60 30 30 30	100 0% 100 0% 0 0% 94 7%	8TATION DEPTH #SOCK N/A 232 97	A 19-30 #O[]HER 1 0	<u>PUQ WOJ</u> 0 06 00 00 00 00	N-SOCK 99 8%	ВТАТЮМ DEPTH ISOCK NA 27 101	A >30 #OTHER 4 10	T <u>OW PUR</u> 9 60 30 30	\$1.1% 91.0% 91.8% 51.9% 33.3%	8TATION DEPTH #SOCX NVA 278 225 55 22	A ALL POTHER 5	1000 DUR 180 80 80 80	98.2% 85.7% 84.9% 78.8%		115 143 164 193 220	8TATION DEPTH 850CK 1531 009 181 170	ALL <u>#OTHER</u> 8 22 30 6 10	210 540 360 360 270	0 41 2 84 2 25 0 50 9 63
DATE 115 143 164 193 270 273 273	AREA 3 STATION DEPTH ISOCK IVA 10 27 0 18 19 39	0 -10	WY DUR 6 60 30 30 30 30 30	100 0% 100 0% 9 0% 94 7% 100 0%	8TATION DEPTH 850CX N/A 232 07 48 3 1 5	A 10-30 #O[]HER 1 0 0	PUG WOI 0 04 05 05 05 05 06 06	50 0% 50 0% 50 0% 50 0%	ВТАТЮН DEPTH 	A >30 #OTHER 4 10 2 2	T <u>ow pur</u> 6 50 30 30 30 30 30	\$500X 87.1% 91.0% 81.8% 33.3% 100.0%	8TATION DEPTH #SOCK N/A 278 225 55 52 22 10 47	A ALL POTHER 5	<u>IOW DUR</u> 180 90 90 90 90 90	98.2% 85.7% 84.8% 78.8% 90.8% 95.8%		115 143 164 103 220 234 262	8TATION DEPTH 8SOCK 86 1531 609 181 170 367 197	ALL <u>#OTHER</u> 8 22 30 6	210 540 360 270 360 360	0 41 2 84 2 25 0 50 0 63 1 02 0 55
DATE 115 143 164 193 779	AREA 3 STATION DEPTH #SOCK N/A 10 27 9 18 18 8	0 -10	W DUR 6 60 30 30 30 30	100 0% 100 0% 9 0% 94 7% 100 0%	8TATION DEPTH #SOCK N/A 232 97 40 3 3	A 10-30 #O[]HER 1 0 0	<u>PUQ WOT</u> 0 50 30 30 30 30	N-SOCX 99 8% 100 0% 100 0% 50 0%	ВТАТЮМ DEPTH ISOCK NA 27 101	A >30 #OTHER 4 10 2 2	T <u>ow pur</u> 9 60 30 30 30 30	\$500X \$7.1% \$1.0% \$1.9% 33.3% 100.0%	8TATION DEPTH #SOCK N/A 278 225 55 22 10	A ALL <u>#OTHER</u> 5 10 3 8 1	TOW DUR 180 90 90 90 90	98.2% 85.7% 84.9% 78.8% 90.9%	10	115 143 164 193 220 234	87ATION DEPTH 8500K 96 1531 609 181 170 367	ALL #OTHER 8 22 30 6 10 13	210 540 360 270 360	0 41 2 84 2 25 0 50 0 63 1 02
DATE 115 115 143 164 164 2720 274 262 263	AREA 3 STATION DEPTH SSOCK NVA 10 27 8 13 18 39 18	0 -10	W DIR 6 30 30 30 30 30 30 30	NSOCK 100 0% 9 0% 94 7% 100 0% 95 1% 95 1%	STATION DEPTH #SOCK NVA 232 97 40 3 1 55	A 10-30 #O[]HER 1 0 0	10W DUR 0 50 30 30 30 30 30	50 0% 50 0% 50 0% 50 0% 50 0% 50 0%	BTATION DEPTH INSOCK NA 27 101 0 1 1 1 3 11	A >30 #OTHER 4 10 2 2 2 0 0 0 0	TOW DUR 9 50 30 30 30 30 30	\$7.1% \$1.0% \$1.8% \$1.0%	8TATION DEPTH 	A ALL <u>#OTHER</u> 5 10 3 6 1 2 2 7	100 purt 190 90 90 90 90 90 90	98.2% 85.7% 94.8% 78.8% 90.8% 85.9% 87.7%	TO	115 143 164 103 220 234 262 203	87ATION DEPTH 850CK 1531 609 181 170 367 197 241	ALL #OTHER 8 22 30 6 10 13 5 5	210 540 360 270 360 360 360 270	0 41 2 84 2 25 0 50 0 63 1 02 0 55 0 99
DATE 115 115 143 164 164 2720 274 262 263	AREA 3 STATION DEPTH <u>BSOCK</u> 10 27 0 18 0 30 18 19 19	0 -10	W DIR 6 30 30 30 30 30 30 30	NSOCK 100 0% 9 0% 94 7% 100 0% 95 1% 95 1%	STATION DEPTH #SOCK NVA 232 97 40 3 1 55	A 10-30 #O[]HER 1 0 0	10W DUR 0 50 30 30 30 30 30	50 0% 50 0% 50 0% 50 0% 50 0% 50 0%	BTATION DEPTH INSOCK NA 27 101 0 1 1 1 3 11	A >30 #OTHER 4 10 2 2 2 0 0 0 0	TOW DUR 9 50 30 30 30 30 30	\$7.1% \$1.0% \$1.8% \$1.0%	8TATION DEPTH 	A ALL <u>#OTHER</u> 5 10 3 6 1 2 2 7	100 purt 190 90 90 90 90 90 90	98.2% 85.7% 94.8% 78.8% 90.8% 85.9% 87.7%	10	115 143 164 103 220 234 262 203	87ATION DEPTH 850CK 1531 609 181 170 367 197 241	ALL #OTHER 8 22 30 6 10 13 5 5	210 540 360 270 360 360 360 270	0 41 2 84 2 25 0 50 0 63 1 02 0 55 0 99
DATE 115 115 143 164 169 724 729 703 101AL	AREA 3 STATION DEPTH PSOCK N/A 19 19 19 19 19 19 19 19 19 19 19 19 19	€-10 <u>#OTHER TO</u> 0 1 1 0 2 <u>1</u> 5 8	W DUR	100 0% 100 0% 0 0% 100 0% 100 0% 86 1% 94 7% 94 3%	87ATION DEPTH #SCXX NVA 272 97 97 97 97 97 97 97 97 97 97 97 97 97	A 10-30 #OTHER 0 0 3 3 1 0 0 1 	TOW DUR 60 30 30 30 30 240	50 0% 50 0% 50 0% 50 0% 50 0% 50 0%		A >30 #OTHER 4 10 2 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOW DUR 9 50 30 30 30 30 30	\$7.1% \$1.0% \$1.8% \$1.0%	STATION DEPTH ISOCK 276 275 55 55 272 10 47 41 47 47 47 41 271 8TATION DEPTH SOCK	A ALL 5 10 3 6 1 2 20 8 ALL	TOW DUR 100 00 00 00 00 120 120 120	98 2% 95 7% 94 8% 78 8% 90 8% 95 7% 96 1% 96 1%	10	115 143 164 103 220 234 262 203	87ATION DEPTH 850CK 1531 609 181 170 367 197 241	ALL #OTHER 8 22 30 6 10 13 5 5	210 540 360 270 360 360 360 270	0 41 2 84 2 25 0 50 0 63 1 02 0 55 0 99
DATE DATE 115 105 105 105 107 107 107 107 107 105 105 105 105 105 105 105 105	AREA 3 STATION DEPTH SQCK NA 19 21 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6-10 <u>#OTHER TO</u> 6 1 1 0 2 <u>1</u> 8 6 -10	W DUR 60 30 30 30 30 30 240 240	100 0% 100 0%	8TATION DEPTH #SCXX 97 40 3 1 5 55 55 439 8TATION DEPTH #SOCX NVA	A 19-30 #O[]!ER 1 0 3 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0	TOW DUR 60 30 30 30 30 240 TOW DUR 0 0	\$\$000 69 8% 100 0% 50 0% 50 0% 50 0% 50 0% 50 0% 50 0% 50 0% 50 0%	ВТАТЮ DEPTH <u>ISOCK</u> N/A 101 1 1 1 1 1 1 1 1 1 1 1 1 1	A >30 #OTHER 4 10 2 2 2 0 0 0 0 19 19 B >30 #OTHER	T <u>OW DUR</u> 6 30 30 30 30 240 10W DUR 0 0	\$ SOCK 87.1% 91.0% 31.9% 100.0% 100.0% 100.0% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5	STATION DEPTH <i>ISOCX</i> N/A 2/8 2/2 2/2 2/2 10 47 47 47 47 721 8 721 8 7 721 8 7 721 8 7	A ALL 5 10 3 6 1 2 20 8 ALL	10W DUR 80 90 90 720 720	98 2% 85 7% 94 9% 78 8% 90 9% 95 9% 97 7% 96 1%	10	115 143 164 103 220 234 262 203	87ATION DEPTH 850CK 1531 609 181 170 367 197 241	ALL #OTHER 8 22 30 6 10 13 5 5	210 540 360 270 360 360 360 270	0 41 2 84 2 25 0 50 0 63 1 02 0 55 0 99
DAIE 115 143 164 164 164 164 175 101AL1 DAIE 115	AREA 3 STATION DEPTH SOCK N/A 19 27 9 18 17 17 30 18 129 AREA 3 STATION DEPTH 71	6-10 <u>#OTHER TO</u> 6 1 1 0 2 <u>1</u> 8 6 -10	W DUR 0 60 30 30 30 20 210 210 W DUR 30 0 210	100 0% 100 0% 0 0% 94 7% 100 0% 85 1% 96 3% 96 3% 96 7% 97 2%	8TATION DEPTH <u>PSCYX</u> WA 272 07 49 3 1 5 55 439 8TATION DEPTH <u>PSCYX</u> WA N/A N/A 1 7 3	A 10-30 #OTHER 0 0 3 3 1 0 0 1 	IOW DUR 0 50 30 30 30 30 30 30 240 240 1OW DUR 0 0 30	\$\$500x \$9 8% 100 9% 50 9% 50 9% 50 9% 98 2% 98 7% \$\$500x 100 0%	ВТАТЮМ DEPTH <u>ISOCK</u> 27 101 1 1 1 1 1 1 1 1 1 1 1 1 1	A >30 #OTHER 4 10 2 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>IOW DUR</u> 60 30 30 30 30 246 <u>1OW DUR</u> 0 30	\$\$000 87.1% 91.0% 91.0% 91.0% 91.0% 91.00.0% 100.0% \$\$000% \$\$000% \$\$000% 100.0%	ETATION DEPTH #SOCX NVA 275 55 22 10 47 41 721 #TATION DEPTH 47 721 #SOCX 77 NVA 47 771 #SOCX 77 NVA 771 #SOCX 771 NVA *SOCX 771 NVA *SOCX 771 *SOCX	A ALL 5 10 3 6 1 2 20 8 ALL	10W DuR 180 80 80 80 80 80 728	90 7% 65 7% 64 8% 78 8% 65 8% 65 8% 67 7% 96 1% 96 1% 98 7% 98 7%	To	115 143 164 103 220 234 262 203	8TATION DEPTH 8SOCK 1531 609 181 170 367 197 241	ALL #OTHER 8 22 30 6 10 13 5 5	210 540 360 270 360 360 360 270	0 41 2 84 2 25 0 50 0 63 1 02 0 55 0 99
DATE DATE 115 143 144 193 270 734 272 793 TOTALT 115 115 115 115 115 115 115 11	AREA 3 STATION DEPTIN SOCK 9 19 19 19 19 19 19 AREA 3 STATION DEPTIN PSOCK 11 N/A 35 2 N/A	6-10 MOTHER TO 6 7 1 0 2 1 5 8 0-10 F 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	WY DUR 6 50 30 30 30 240 240 240 0 0 0 0 0 0 0 0 0	100 0% 100 0% 94 7% 95 1% 96 7% 96 7% 97 7% 100 0%	8TATION DEPTH <u>PSCYX</u> N/A 272 97 48 3 1 5 5 -55 -439 8TATION DEPTH <u>PSCYX</u> N/A N/A N/A N/A N/A N/A N/A 21 21 N/A 25 21 1 1 1 1 1 1 1 1 1 1 1 1 1	A 10-30 #OIIIER 1 0 0 3 1 0 0 1 0 0 10-30 #OIIER 0 0	<u>IOW DUR</u> 0 50 30 30 30 30 	\$50Cx 99 8% 100 0% 50 0% 50 0% 98 7% 98 7% \$50Cx \$50Cx 100 0% 100 0%	ВТАТЮМ DEPTH 	A >30 #01HER 4 10 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>TOW DUR</u> 60 30 30 30 240 <u>10W DUR</u> 8 5 30 30 30	* SOCK 97.1% 91.0% 91.0% 91.0% 91.0% 91.0% 91.0% 90.0% 90.0%		A AL <u>POTIER</u> 5 6 1 2 2 20 8 AL <u>POTIER</u> 1 1	10W DUR 100 80 80 80 80 80 720 720 720 720 720 720 720 720 720 72	98 7% 65 7% 64 9% 78 5% 69 9% 65 9% 66 1% 98 7% 98 7% 98 7%	TO	115 143 164 103 220 234 262 203	8TATION DEPTH 8SOCK 1531 609 181 170 367 197 241	ALL #OTHER 8 22 30 6 10 13 5 5	210 540 360 270 360 360 360 270	0 41 2 84 2 25 0 50 0 63 1 02 0 55 0 99
DATE DATE 115 143 144 199 720 734 722 703 107ALT 115 115 115 115 107ALT 127 107ALT 115 127 127 127 127 127 127 127 127	AREA 3 STATION DEPTIN SOCK 19 19 19 10 10 10 10 10 10 10 10 10 10	6-10 	W DirR 0 30 30 30 30 30 246 W DUR 30 30 30 30 30 30 30 30 30 30	100 0% 100 0% 0 0% 94 7% 100 0% 85 1% 96 3% 96 3% 96 7% 97 2%	8TATION DEPTH <u>ISCIXX</u> N/A 272 97 48 3 1 5 5 5 5 5 439 8TATION DEPTH <i>ISCIX</i> 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	A 10-30 #O[]iER 1 0 5 1 0 1 0 1 6 8 10-30 8 10-30 8 0] IER	TOW DUR 50 50 30 30 30 30 30 30 240 10W DUR 0 0 30 30 30 30 30 30	\$\$500x \$9 8% 100 9% 50 9% 50 9% 50 9% 98 2% 98 7% \$\$500x 100 0%	BTATION DEPTH PSOCK NVA 11 13 11 153 BTATION DEPTH PSOCK NVA NVA 37 3 NVA NVA 0	A >30 POTHER 4 10 2 2 2 0 0 0 18 B >30 	TOW DUR 60 30 30 30 20 240 10W DUR 0 0 30 30 30 30 30 30	\$\$000 87.1% 91.0% 91.0% 91.0% 91.0% 91.00.0% 100.0% \$\$000%\$\$000% \$\$000% \$\$000%\$\$000% \$\$000% \$\$000%\$\$000% \$\$000% \$\$000%\$\$000% \$\$000%\$\$000%	ETATION DEPTH #SOCX NVA 276 275 55 22 10 47 - 14 721 ETATION DEPTH #SOCX 77 NVA 145 28 NVA 145 57	A ALL 5 10 3 6 1 2 20 8 ALL	10W DuR 180 80 80 80 80 80 728	90 7% 65 7% 64 8% 78 8% 65 8% 65 8% 67 7% 96 1% 96 1% 98 7% 98 7%	To	115 143 164 103 220 234 262 203	8TATION DEPTH 8SOCK 1531 609 181 170 367 197 241	ALL #OTHER 8 22 30 6 10 13 5 5	210 540 360 270 360 360 360 270	0 41 2 84 2 25 0 50 0 63 1 02 0 55 0 99
DATE DATE 115 115 105 105 105 105 105 105	AREA 3 STATION DEPTIH SOCK NA 10 12 12 12 120 AREA 3 STATION DEPTIH SOCK 120 AREA 3 STATION DEPTIH SOCK 120 AREA 3 STATION 120 120 120 120 120 120 120 120	€-10 _#OTHER_TO 0 1 1 0 2 1 5 8 0 10 F 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	W DUR 0 50 30 30 30 30 30 30 30 30 30 3	100 0% 100 0% 9 0% 94 7% 95 1% 94 7% 94 7% 94 7% 94 7% 94 7% 94 7% 94 7% 94 7% 94 7% 95 7% 97 7% 97 7% 90 7% 90 7%	8TATION DEPTH <u>PSCYX</u> 97 40 3 1 5 55 55 439 8TATION DEPTH <u>PSCYX</u> WA 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5	A 19-30 #0] #ER 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0	Iow DUR 60 300 300 300 300 240 240 10w DUR 0 300 300 300 300 300 300	\$500x 99 8% 100 0% 50 0% 50 0% 98 7% 98 7% 100 0% \$500x 98 9%	ВТАТЮМ DEPTH <u>ISOCK</u> <u>V</u> A 27 101 1 1 1 1 1 1 1 1 1 1 1 1 1	A >30 #OTHER 4 10 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOW DUR 60 30 30 30 30 30 240 240 10W DUR 0 30 30 30 30 30 30 30 30	\$ 5000 87.1% 91.0% 91.9% 33.3% 100.0% 100.0% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5	STATION DEPTH ISOCX NVA 276 555 55 57 ITATION DEPTH ITATION DEPTH ITATION DEPTH ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATION ITATIO	A AL <u>BOTHER</u> 5 3 3 6 1 2 2 7 2 8 AL <u>BOTHER</u> 1 1 0 4 0	TOW DUR 100 00 00 00 00 120 120 100 DUR 30 00 00 00 00 00 00 00 00 00	98 2% 65 7% 64 9% 78 8% 60 9% 60 9% 69 7% 98 7% 98 7% 99 3% 100 9%	To	115 143 164 103 220 234 262 203	8TATION DEPTH 8SOCK 1531 609 181 170 367 197 241	ALL #OTHER 8 22 30 6 10 13 5 5	210 540 360 270 360 360 360 270	0 41 2 84 2 25 0 50 0 63 1 02 0 55 0 99
DATE DATE 115 115 114 104 105 105 105 105 105 105 105 105	AREA 3 STATION DEPTIN SOCK 10 17 10 10 17 30 170 AREA 3 STATION DEPTIN PSOCK N/A 35 5 2 N/A 17 30 N/A	6-10 	W DUR 9 60 30 30 30 30 240 W DUR 30 30 30 30 30 30 30 30 30 30	100 0% 100 0% 9 0% 94 7% 100 0% 85 1% 94 7% 94 7% 95 7% 95 7% 97 7%	8TATION DEPTH <u>PSOXX</u> 97 40 3 1 5 55 439 8TATION DEPTH <u>PSOXX</u> N/A N/A 1 1 N/A 8 1 1 N/A 8 1 1 N/A	A 19-30 #0] #ER 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0	Iow DUR 50 30 30 30 30 30 240 240 10w DUR 0 30 30 30 30 30 30	\$\$50CK 99 8% 100 0% 50 0% 50 0% 90 7% 90 7% 90 7% 100 0%	ВТАТЮМ DEPTH SOCK 950 27 101 0 1 1 1 1 1 1 1 1 1 1 1 1 1	A >30 #OTHER 4 10 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #OTHER 0 0 0 2 0	TOW DUR 60 30 30 30 20 240 10W DUR 0 0 30 30 30 30 30 30	\$ 5000 87.1% 91.0% 91.0% 91.0% 91.0% 91.0% 90.0% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5	ETATION DEPTH #SOCX NVA 276 275 55 22 10 47 - 14 721 ETATION DEPTH #SOCX 77 NVA 145 28 NVA 145 57	A AL <u>BOTHER</u> 5 6 10 3 6 1 2 2 7 2 8 AL B ALL <u>BOTHER</u> 1 1 0	TOW DUR 180 80 80 90 90 90 90 129	94 7% 65 7% 64 9% 79 9% 60 9% 65 9% 67 7% 94 1% 94 1% 94 7% 96 7% 96 7%	TO	115 143 164 103 220 234 262 203	8TATION DEPTH 8SOCK 1531 609 181 170 367 197 241	ALL #OTHER 8 22 30 6 10 13 5 5	210 540 360 270 360 360 360 270	0 41 2 84 2 25 0 50 0 63 1 02 0 55 0 99
DATE DATE 115 115 114 104 105 105 105 105 105 105 105 105	AREA 3 STATION DEPTIN #SOCK NA 12 13 120 AREA 3 STATION DEPTIN 120 AREA 3 STATION DEPTIN #SOCK 177 171 171 NA 35 NA 35 NA 137 NA 137 NA 137 NA 137 NA 137 NA 137 NA 290 AREA 3 ETATION	€-10 _#OTHER TO 0 1 1 0 2 1 0 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 0 1 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0	W DUR 9 60 30 30 30 30 240 W DUR 30 30 30 30 30 30 30 30 30 30	100 0% 100 0% 9 0% 94 7% 100 0% 85 1% 94 7% 94 7% 95 7% 95 7% 97 7%	ВТАТЮМ DEPTH <u>PSCYX</u> 97 40 3 1 5 55 55 55 439 ВТАТЮМ ВТАТЮМ 13 N/A 8 13 N/A 8 13 N/A 8 15 8 14 15 15 15 15 15 15 15 15 15 15	A 19-30 #O[]#ER 1 0 3 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 5 0 1 1 8 0 0 1 9 1 1 1 9 1 1 1 1	Iow DUR 50 30 30 30 30 30 240 240 10w DUR 0 30 30 30 30 30 30	\$\$50CK 99 8% 100 0% 50 0% 50 0% 90 7% 90 7% 90 7% 100 0%	BTATION DEPTH ISOCK NVA 27 101 1 1 1 1 153 STATION DEPTH SOCK #SOCK NVA 37 37 NVA 0 5 NVA 45 STATION	A >30 #OTHER 4 10 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOW DUR 60 30 30 30 30 30 240 240 10W DUR 0 30 30 30 30 30 30 30 30	\$ 5000 87.1% 91.0% 91.9% 33.3% 100.0% 100.0% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5	BTATION DEPTH #SOCX NVA 276 55 52 272 90 91 927 91 927 91 92 93 94 721 850×10 950×11 105 30 NVA 145 30 145 31 145 32 145 31 145 32 145 32 145 31 145 32 450 8TATION	A AL 5 10 3 3 6 1 2 2 7 7 6 AL 8 AL 9 0 1 6 6 6 6 6	TOW DUR 100 00 00 00 00 120 120 100 DUR 30 00 00 00 00 00 00 00 00 00	98 2% 65 7% 64 9% 78 8% 60 9% 60 9% 69 7% 98 7% 98 7% 99 3% 100 9%	10	115 143 164 103 220 234 262 203	8TATION DEPTH 8SOCK 1531 609 181 170 367 197 241	ALL #OTHER 8 22 30 6 10 13 5 5	210 540 360 270 360 360 360 270	0 41 2 84 2 25 0 50 0 63 1 02 0 55 0 99
DATE 115 115 115 1270 274 272 773 10741 10741	AREA 3 STATION DEPTIH #SOCK 10 12 13 120 AREA 3 STATION 120 AREA 3 STATION DEPTH #SOCK #SOCK	€-10 _#OTHER TO 0 1 1 0 2 1 0 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 2 1 1 0 0 2 1 0 0 1 1 0 0 2 1 0 0 2 1 0 0 0 1 1 0 0 2 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	W DUR 0 50 30 30 30 30 30 30 240 240 240 30 30 30 30 30 30 30 30 30 30 30 30 30	100 0% 100 0% 9 0% 94 7% 94 7% 95 7% 97 7% 99 7%	STATION DEPTH INCOME 07 40 3 1 5 55 439 BTATION DEPTH Income 1 5 53 439 Income BTATION DEPTH Income Income Income Income	A 19-30 POTIER 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Iow DUR 60 300 300 300 300 300 240 10W DUR 0 300 300 300 120	\$500x 99 8% 100 0% 50 0% 50 0% 90 7% 90 7% \$500% \$500%	BTATION DEPTH IDEPTH ISOCK NVA 27 101 1 1 153 BTATION DEPTH ISOCK INVA NVA 37 S NVA VA 45 BTATION DEPTH	A >30 <u>POTHER</u> 4 10 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	TOW DUR 60 30 30 30 30 30 240 240 0 0 30 0 30 0 3	\$ 5000 87.1% 91.0% 91.0% 91.0% 91.0% 91.0% 90.0% 90.0% 90.0% 90.0% 100.0%	STATION DEPTH #SOCX NVA 216 55 55 223 224 225 227 10 47 47 57 NVA 145 28 NVA 145 38 NVA 450 STATION DEPTH	A AL 5 10 3 3 6 1 2 2 7 7 8 AL POTIER 1 1 1 6 6 6	TOW DUR 100 00 00 00 00 00 00 00 00 0	04 7% 65 7% 77 85 78 85 80 9% 67 7% 96 1% 96 1% 96 1% 96 7% 96 7%	to	115 143 164 103 220 234 262 203	8TATION DEPTH 8SOCK 1531 609 181 170 367 197 241	ALL #OTHER 8 22 30 6 10 13 5 5	210 540 360 270 360 360 360 270	0 41 2 84 2 25 0 50 0 63 1 02 0 55 0 99
DATE DATE 115 115 115 114 114 115 120 270 703 101AI 101AI 101AI 101AI 101AI 101AI	AREA 3 STATION DEPTIN SOCK 10 11 120 120 AREA 3 STATION 120 AREA 3 STATION DEPTH #SOCK #SOCK	6-10 MOTHER TO 0 1 1 0 2 1 5 8 0-10 FOTHER TO 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	W DIA 6 30 30 30 30 30 240 240 240 240 30 30 30 30 30 30 30 30 30 30 30 30 30	100 0% 100 0% 9 0% 9 0% 94 7% 94 7% 94 7% 100 0% 94 7% 94 7% 94 7% 94 7% 94 7% 94 7% 94 7% 94 7% 94 7% 95 7% 96 7% 97 7% 98 7% 100 0% 98 7% 100 0% 94 7% 100 0% 95 7% 96 7% 100 0% 96 7% 97 7% 100 0% 96 7% 97 7% 100 0% 97 7% 100 0% 97 7% 100 0% 97 7% 100 0% 100 0% 97 7% 100 0% 100 0	ВТАТЮМ DEPTH <u>PSOXX</u> 97 40 97 41 5 55 55 439 ВТАТЮМ DEPTH <u>PSOXX</u> N/A 11 5 8 13 N/A 15 8 13 N/A 14 15 15 13 14 15 15 15 15 15 15 15 15 15 15	A 10-30 FOILER 1 0 3 1 0 1 0 1 0 0 FOILER 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	IOW DUR 50 30 30 30 30 30 30 240 240 10W DUR 10W DUR 120 120	\$\$500x 99 8% 100 0% 50 0% 50 0% 90 7% 98 7% 98 7% 100 0% 100 0% 99 8% 100 0%	ВТАТЮМ DEPTH SOCK 97 101 101 101 101 101 101 101 10	A >30 #OTHER 4 10 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOW DUR 60 30 30 30 30 30 30 30 246 10W DUR 0 30 30 30 30 30 30 30 30 30	\$ 5000 87.1% 91.0% 91.9% 91.9% 91.9% 100.0% 100.0% 99.5% 5% 5% 5% 5% 5% 5% 5% 5% 5%	STATION DEPTH #SOCX NVA 216 55 55 52 10 910 17 18 721 19 11 11 125 11 11 11 11 11 12 12 13 145	A AL 5 10 3 3 6 1 2 2 7 2 8 AL 8 0 1 1 1 0 4 0 0 6 C AL 8 0 1 6 C AL 8 0 1 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	TOW DUR 100 00 00 00 00 00 120 10W DUR 10W DUR 10W DUR	60 7% 65 7% 64 7% 78 8% 60 6% 67 7% 66 1% 60 7% 60 7% 60 7%	to	115 143 164 103 220 234 262 203	8TATION DEPTH 8SOCK 1531 609 181 170 367 197 241	ALL #OTHER 8 22 30 6 10 13 5 5	210 540 360 270 360 360 360 270	0 41 2 84 2 25 0 50 0 63 1 02 0 55 0 99
DATE DATE 115 115 115 115 115 115 120 270 270 270 101 115 101 101 101 101 101 10	AREA 3 STATION DEPTIN SOCK 10 10 10 10 10 10 10 10 10 10	6-10 MOTHER TO 0 1 1 0 2 1 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	W DIAR 0 30 30 30 30 30 30 30 240 W DIA 150 W DIA 150 0 60 30 30 30 30 30 30 30 30 30 3	100 0% 100 0% 9 0% 9 0% 9 0% 9 0% 100 0% 9 0% 100 0%	STATION DEPTH #SOCXX 07 1 5 53 439 #TATION DEPTH #SOCXX 07 40 3 1 55 439 #TATION DEPTH #SOCKAK NVA 13 NVA 145 #TATION DEPTH #SOCKAK NVA 204 105	A 10-30 FOILER 1 0 3 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	ICW DUR 50 30 30 30 30 30 30 30 240 1CW DUR 0 30 30 30 240 1CW DUR 120 120 120 120 120 120 120 120	\$\$500x 99 8% 50 0% 50 0% 50 0% 90 7% 98 7% 98 7% 100 0% 100 0% 99 1% 99 1% 99 1%	BTATION DEPTH PSOCK N/A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 153 BTATION DEPTH SOCX NVA N/A 0 5 NVA 0 5 N/A 0 5 STATION DEPTH #SOCK SOCK	A >30 POTHER 4 10 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	TOW DUR 60 30 30 30 30 30 30 30 246 10W DUR 0 30 30 30 30 30 30 30 30 30	\$ 5000 87.1% 91.0% 91.0% 91.0% 91.0% 91.0% 90.0% 90.0% 90.0% 90.0% 100.0%	STATION DEPTH #SOCX NVA 275 55 52 10 47 10 47 10 11 121 STATION DEPTH #SOCK \$15 145 145 15 145 15 145 15 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 157 140 157 141 142 143 144	A AL 5 10 3 3 6 1 2 2 7 7 8 AL POTIER 1 1 1 6 6 6	TOW DUR 100 00 00 00 00 120 100 DUR 100 DUR 100 DUR 100 DUR 100 DUR 100 DUR	04 7% 65 7% 77 85 78 85 80 9% 67 7% 96 1% 96 1% 96 1% 96 7% 96 7%	to	115 143 164 103 220 234 262 203	87ATION DEPTH 850CK 1531 609 181 170 367 197 241	ALL #OTHER 8 22 30 6 10 13 5 5	210 540 360 270 360 360 360 270	0 41 2 84 2 25 0 50 0 63 1 02 0 55 0 99
DATE DATE 115 115 115 120 220 223 223 203 101AI 115 115 115 115 115 115 115 11	AREA 3 STATION DEPTIN SOCK 19 19 19 10 10 10 10 10 10 10 10 10 10	6-10 MOTHER TO 0 1 1 0 2 1 5 8 0-10 FOTHER TO 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	W DIR 0 60 30 30 30 30 30 30 30 30 30 3	100 0% 100 0%	STATION DEPTH INVA NVA 272 97 97 41 5 439 STATION DEFTMINA 15 SOCXX NVA NVA 13 NVA 13 NVA 13 NVA 15 STATION DEPTH SCXX NVA NVA	A 10-30 <u>FOIIIER</u> 1 0 0 3 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	IOW DUR 60 50 30 30 30 30 30 30 240 1 0 30 30 30 30 30 30 30 30 30 30 30 30 3	\$\$50CK \$99 8% 100 9% 50 9% 50 9% 50 9% 100 9% 96 7% 100 9% 100 9% 10	BTATION DEPTH PSOCK N/A 11 13 13 11 153 STATION DEPTH SOCX STATION DEPTH SSOCX N/A VA VA STATION DEPTH SSOCX N/A VA VA VA SOCX BTATION DEPTH SSOCX N/A VA N/A	A >30 POTHER 4 10 2 2 0 0 19 19 19 19 19 19 20 0 0 0 0 0 0 0 0 0 0 0 0 0	IOW DUR 60 30 30 30 30 240 IOW DUR 0 30 30 30 30 30 30 30 30 30 30 30 30 3	\$ 5000x 91 0 x 91 0 x 91 0 x 100 0 x 100 0 x 90 5 x 100 0 x	ETATION DEPTH #SOCX NVA 276 56 22 10 17 11 ETATION DEPTH #SOCX 17 NVA 145 15	A AL 5 10 3 3 6 1 2 7 7 6 AL 8 0 1 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1	TOW DUR 100 00 00 00 00 00 00 00 100 100 100 100	00 7% 05 7% 04 9% 70 8% 09 9% 05 9% 05 9% 06 1% 06 1% 00 7% 07 3% 100 0% 08 7% 08 7% 08 7% 09 7% 00 7% 00 7% 00 7% 00 7% 00 5% 00 5% 0	10	115 143 164 103 220 234 262 203	87ATION DEPTH 850CK 1531 609 181 170 367 197 241	ALL #OTHER 8 22 30 6 10 13 5 5	210 540 360 270 360 360 360 270	0 41 2 84 2 25 0 50 0 63 1 02 0 55 0 99

F-13

APPENDIX G

SKILAK

WATER QUALITY SUMMARY General Tests and Metals

LAKE	DATE	STA	DEPTH	Sp. Cond.	Ph	Alkalinity	Turbidity	Color	Calcium	Magnesium	Iron
			(M)	(umhos/cm)	(Units)	(mg/l)	(NTU)	(Pt)	(mg/l)	(mg/l)	(ug/l)
SKILAK	04/25/94	A	1	61	6.7	18.0	7.4	3	10.0	<0.3	413
SKILAK	04/25/94		2	NA	NA	NA	NA	NA	NA	NA	NA
SKILAK	04/25/94		50	61	6.6	19.0	8.5	4	10.0	<0.3	406
SKILAK	04/25/94	В	1	62	6.6	20.0	11.2	5	11.0	<0.3	588
SKILAK	04/25/94	С	1	61	6.6	21.0	6.5	5	10.0	0.7	391
SKILAK	05/25/94	A	1	59	6.9	21.0	8.3	4	9.5	<0.3	462
SKILAK	05/25/94	8	50	60	6.8	21.0	10.3	5	9.5	0.8	485
SKILAK	05/25/94	В	1	60	6.7	19.0	5.0	5	9.5	0.8	426
SKILAK	05/25/94	8	50	61	6.6	18.5	3.9	6	9.5	0.8	302
SKILAK	05/25/94	С	1	61	6.6	18.5	4.2	4	9.5	0.8	330
SKILAK	05/25/94	С	50	61	6.6	19.0	8.8	3	9.5	0.8	456
SKILAK	06/23/94	Α	1	64	7.3	21.0	8.6	6	10.4	<0.3	383
SKILAK	06/23/94	A	2	NA	NA	NA	NA	NA	NA	NA	NA
SKILAK	06/23/94	A	70	63	7.2	21.0	10.0	4	10.4	0.7	432
SKILAK	06/23/94		1	63	7.3	20.0	5.3	9	10.4	0.7	205
SKILAK	06/23/94		2	NA	NA	NA	NA	NA	NA	NA	NA
SKILAK	06/23/94		50	63	7.3	20.0	12.4	4	10.4	0.7	578
SKILAK	06/23/94		1	64	7.3	21.0	8.7	3	9.6	0.7	410
SKILAK	06/23/94		2	NA	NA	NA	NA	NA	NA	NA	NA
SKILAK	06/23/94		50	65	7.2	21.0	10.2	4	9.6	0.7	408
SKILAK	07/13/94		1	69	7.0	23.0	7.8	4	10.0	<0.3	292
SKILAK	07/13/94		50	68	6.7	23.0	7.5	4	10.0	0.5	310
SKILAK	07/13/94		1	69	6.8	24.0	7.2	4	10.0	0.5	366
SKILAK	07/13/94		50	68	6.8	24.0	9.0	12	10.0	<0.3	156
SKILAK	07/13/94		1	69	6.8	24.0	7.2	5	10.0	<0.3	318
SKIL AK	07/13/94		50	68	7.0	23.0	12.9	5	10.0	0.7	566
SKILAK	08/10/94		1	68	6.8	21.0	1.7	5	9.5	0.6	104
SKILAK	08/10/94		50	67	6.8	25.0	7.7	8	9.5	0.6	319
SKILAK	08/10/94		1	73	6.9	21.0	5.4	9	9.5	<0.3	529
SKILAK	08/10/94		50	64	6.8	22.0	21.0	12	9.5	0.6	791
SKILAK	08/10/94		1	71	6.8	25.0	2.2	12	9.5	0.6	183
SKILAK	08/10/94		50	66	6.9	27.0	13.2	10	9.5	0.6	602
SKILAK	09/27/94		1	66	7.5	22.5	7.4	6	9.9	0.6	388
SKILAK	09/27/94		50	65	7.4	22.0	12.2	5	9.9	0.6	528
SKILAK	09/27/94		1	68 (7	7.4	22.5	9.2	6	9.9	0.6	442
SKILAK	09/27/94		50 1	62 65	7.4	20.5	25.2	6	9.9	0.6 0.6	1584 393
SKILAK SKILAK	09/27/94 09/27/94		50	64	7.4 7.4	21.5 21.5	8.4 11.1	9 10	9.9 9.9	0.6	842
SKILAK	10/19/94		1	64	6.7	20.0	9.8	10 8	10.0	0.6	360
SKILAK	10/19/94		50	64	6.8	20.0	9.8 10.9	8 9	10.0	0.6	516
SKILAK	10/19/94		1	64	6.8	20.5	13.6	9 9	10.0	0.6	672
SKILAK	10/19/94		50	64	6.8	20.0	13.8	6	10.0	0.6	658
SKILAK	10/19/94		1	64	6.8	20.5	12.0	8	10.0	0.6	590
SKILAK	10/19/94		50	64	6.8	20.5	10.7	5	10.0	0.6	288
SKILAK	10/17/94	L	50	<u> </u>	0.0	20.7	10.7	2	.0.0	0.0	200

SKILAK

WATER QUALITY SUMMARY Nutrients and Primary Production

LAKE	DATE	STA	DEPTH	TP	TFP	FRP	TKN		N03+N02		Carbon		Chl a	
			(M)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
SKILAK	04/25/94	A	1	5.5	2.7	1.0	34.7	<1.7	202.7	1511	61	NA	0.24	0.16
SKILAK	04/25/94	A	2	KA	NA	NA	NA	NA	NA	NA	NA	NA	0.23	0.20
SKILAK	04/25/94	A	50	9.1	2.7	1.5	33.1	<1.7	208.5	1463	38	NA	0.18	0.06
SKILAK	04/25/94	B	1	11.7	2.5	1.9	24.2	<1.7	220.9	1475	30	NA	0.32	0.28
SKILAK	04/25/94	C	1	16.7	2.7	2.2	40.3	<1.7	221.8	1457	38	NA	0.32	0.26
SKILAK	05/25/94	A	1	5.9	1.5	1.3	23.4	<1.7	217.6	1336	55	NA	0.29	0.11
SKILAK	05/25/94	A	50	4.5	2.0	1.7	28.2	<1.7	217.6	1336	33	NA	0.19	D.11
SKILAK	05/25/94	B	1	3.9	1.5	1.3	27.4	<1.7	240.0	1360	30	NA	0.12	0.12
SKILAK	05/25/94	6	50	4.8	4.6	4.0	27.4	<1.7	235.8	1383	33	NA	0.08	0.07-
SKILAK	05/25/94	C	1	5.5	1.0	1.2	25.0	<1.7	224.2	1360	33	NA	0.18	0.16
SKILAK	05/25/94		50	6.3	0.9	1.4	26.6	2.1	211.8	1360	33	NA	0.13	0.07
SKILAK	06/23/94	A	1	10.6	2.2	2.3	44.1	2.7	198.5	1420	94	NA	0.43	0.25
SKILAK	06/23/94	A	2	NA	NA	HA	NA	NA	NA	NA	NA	NA	0.56	0.27
SKILAK	06/23/94	A	70	8.4	0.9	1.1	24.6	<1.7	216.8	1369	41	NA	0.12	0.10
SKILAK	06/23/94	В	1	7.4	3.2	4.1	31.4	<1.7	207.6	1375	74	NA	0.47	0.21
SKILAK	06/23/94	B	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.40	0.25
SKILAK	06/23/94	B	50	9.8	0.9	1.2	26.9	<1.7	223.4	1429	52	NA	0.09	0.09
SKILAK	06/23/94	C	1	4.0	1.1	0.9	32.1	2.1	215.1	1405	80	NA	0.58	0.20
SKILAK	06/23/94	С	z	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.47	0.18
SKILAK	06/23/94	С	50	10.3	0.8	1.1	29.1	z.†	223.4	1429	33	NA	0.09	0.08
SKILAK	07/13/94	A	1	5.3	0.7	0.9	30.6	2.1	296.0	1298	66	NA	0.22	0.11
SKILAK	07/13/94	A	50	7.6	0.8	1.4	28.4	2.1	223.4	1298	55	NA	0.10	0.08
SKILAK	07/13/94	B	1	8.8	0.8	1.4	32.1	2.1	214.3	1298	61	NA	0,17	0.20
SKILAK	07/13/94	В	50	10.8	4.4	5.4	26.9	3.2	222.6	1499	41	NA	0.11	0.10
SKILAK	07/13/94	C	1	9.6	1.7	1.8	37.5	2.7	210.1	1384	77	NA	0.39	0.20
SKILAK	07/13/94	с	50	13.4	1.2	1.4	33.6	3.2	219.2	1327	61	NA	0.10	0.10
SKILAK	08/10/94	A	1	6.0	1.8	1.4	59.5	3.2	177.8	1488	110	NA	0.46	0.22
SKILAK	08/10/94	A	50	8.6	3.7	3.0	30.6	2.1	222.6	1508	33	NA	0.07	0.07
SKILAK	08/10/94	B	1	9.8	1.5	1.4	39.8	2.1	202.6	1570	93	NA	0.33	0.32
SKILAK	08/10/94	8	50	24.6	3.7	4.9	42.0	2.1	203.5	1502	193	NA	0.06	0.07
SKILAK	08/10/94	С	1	10.5	4.0	2.8	60.0	2.1	196.0	1529	117	NA	0.44	0.31
SKILAK	08/10/94	С	50	20.5	2.7	2.7	35.1	2.1	212.6	1502	69	NA	0.04	0.09
SKILAK	09/27/94	A	1	9.5	1.8	1.4	34.4	3.2	199.3	1384	94	NA	0.56	0.12
SKILAK	09/27/ 9 4	A	50	13.8	1.3	1.3	32.1	<1.7	206.0	1371	41	NA	0.03	0.08
SKILAK	09/27 /94	8	1	8.1	1.9	1.7	38.2	4.3	226.7	1371	69	NA	0.38	0.17
SKILAK	09/27/94	В	50	28.8	3.1	2.6	44.3	<1.7	198.5	1328	96	NA	0.07	0.07
SKILAK	09/27/ 9 4	С	1	7.0	2.6	2.2	34.4	3.2	220.1	1346	45	NA	0.31	0.18
SKILAK	09/27/94	С	50	19.9	2.5	2.1	37.5	3.2	225.1	1359	71	NA	0.02	0.08
SKILAK	10/19/94	A	1	7.5	1.8	1.7	30.6	3.2	227.6	1406	30	NA	0.18	0.19
SKILAK	10/19/94	A	50	10.2	2.1	2.1	32.1	3.2	210.1	1386	36	NA	0.26	0.07
SKILAK	10/19/94	8	1	11.3	1.9	1.6	32.9	3.2	232.5	1386	44	NA	0.09	0.19
SKILAK	10/19/94	В	50	14.8	2.4	1.9	36.0	3.2	200.2	1348	36	NA	0.09	0.17
SKILAK	10/19/94	С	1	9.6	2.6	2.3	37.5	3.2	235.9	1336	50	NA	0.14	0.17
SKILAK	10/19/94	C	50	11.8	1.9	1.9	39.0	3.2	211.8	1323	55	NA	0.12	0.16

KENAI

WATER QUALITY SUMMARY General Tests and Metals

LAKE	DATE	STA	DEPTN	Sp. Cond.	Ph	Alkalinity	Turbidity	Color	Calcium	Magnesium	Iron
			(M)	(umhos/cm)	(Units)	(mg/l)	(NTU)	(Pt)	(mg/l)	(mg/l)	(ug/l)
VENAT	05/06/94	•		(0		22.0	6.7	11	13.0	<0.3	270
KENAI KENAI	05/06/94		1	69	6.3	22.0		NA	NA	NA	NA
KENAI	05/06/94		2	AA TO	NA	NA DD E	NA 6.7	5	12.0	<0.3	291
			50	70	6.5	22.5					
KENAI	05/06/94		1	69	6.4	22.0	6.8.	4	15.0	<0.3	282
KENAI	05/06/94		2	NA	NA	NA DO O	NA / 7	NA	NA	NA D. 7	NA
KENAI	05/06/94 05/06/94		50	69	6.6	22.0	6.3	5 4	12.0 12.0	0.7	273
KENAI KENAI	05/06/94		1	69	6.6	22.0	6.1	NA	NA	<0.3 NA	238
	05/06/94		2	NA KO	NA 4 E	NA 22.0	NA 4 7	5	12.0	0.7	NA DAR
KENAI	06/08/94		50	69 70	6.5	22.0	6.7	10	11.6	<0.3	268. 223
KENAI KENAI	06/08/94		1	72	6.9	22.0	6.0		NA		
KENAI	06/08/94		2	NA T	NA	NA DD D	NA (D	NA 2	10.6	NA <0.3	NA 100
	06/08/94		50	73	6.9	22.0	4.0	2	11.6	<0.3	199 95
KENAI	06/08/94		1	61	6.9	22.0	1.7	NA NA	NA NA		
KENAI	06/08/94		2	NA	NA	NA	NA E O	2	11.6	NA <0.3	NA 130
KENAI			50	69	6.9	21.0	5.0	2			
KENAI	06/08/94		1	72	6.8	22.0	4.1		11.6	<0.3	116
KENAI	06/08/94		2	NA	NA	NA	NA E T	NA 7	NA 11 4	NA CO Z	NA 1/0
KENAI	06/08/94		50	72	6.8	22.0	5.3	3	11.6	<0.3	140
KENAI	06/30/94		1	78	7.0	23.5	3.9	2	11.8	0.7	145
KENAI	06/30/94		24	NA	NA	NA	NA	NA	NA	NA	NA
KENAI	06/30/94		2B	NA	NA	NA	NA	NA	NA	NA o 7	NA
KENAI	06/30/94		50	78	6.8	23.0	4.8	2	11.8	0.7	154
KENAI	06/30/94		1	77	7.0	23.5	6.0	2	11.8	0.7	218
KENAI	06/30/94		28	NA	NA	NA	NA	NA	NA	NA	NA
KENAI	06/30/94		2B	NA	NA	NA DZ D	NA P 1	NA 2	NA 11 B	NA 20.7	NA 77/
KENAI KENAI	06/30/94 06/30/94		50 1	78 77	6.9	23.0	8.1 4.3	2	11.8 11.8	<0.3 0.7	334
KENAI	06/30/94		24	NA	7.0	23.0	NA NA	NA NA	NA NA	NA	125 NA
KENAI	06/30/94		28	NA	NA NA	NA NA	NA	NA	NA	NA	NA
KENAI	06/30/94		50	76			4.8	2	11.8	0.7	78
KENAI	07/29/94		1	76	6.8	23.0	4.0	2	11.7	0.7	
KENAI	07/29/94		2	NA NA	7.0	24.0	4.0 NA	NA	NA	NA	172 NA
KENAI	07/29/94		50	NA 74	NA 7.0	NA 24.0	4.2	4	11.7	0.9	172
KENAI	07/29/94		1	71	7.0	24.0	4.2	3	11.7	0.9	128
KENAI	07/29/94		2	NA	NA NA	NA NA	NA	NA	NA	NA	NA
KENAI	07/29/94		50	73	7.2	24.0	5.7	2	11.7	0.9	260
KENAI	07/29/94		1	74	7.2	24.0	4.8	4	11.7	0.9	208
KENA1	07/29/94		2	NA	NA	NA	NA	NA	NA	NA	NA
KENAI	07/29/94		50	69	7.1	22.0	25.2	2	11.7	<0.3	1190
KENAI	08/16/94		1	71	6.9	24.0	5.5	18	10.5	0.6	178
KENAI	08/16/94		50	72	6.9	24.0	1.1	2	10.5	1.3	40
KENAI	08/16/94		1	69	7.0	22.0	13.3	4	10.5	0.6	596
KENAL	08/16/94		50	68	6.9	22.0	7.2	4	10.5	0.6	294
KENAI	08/16/94		1	70	7.0	23.0	10.7	2	10.5	0.6	418
KENAI	08/16/94		50	71	6.9	23.0	3.9	2	10.5	0.6	195
KENAI	09/28/94		1	71	7.0	21.0	3.6	2	10.9	0.6	152
KENAI	09/28/94		50	72	6.9	21.5	2.9	2	11.9	<0.3	173
KENAI	09/28/94		1	71	6.9	21.0	12.1	2	10.9	0.6	636
KENAI	09/28/94		50	71	6.9	21.0	7.3	2	10.9	0.6	658
	•			-				-			

.

KENAI

WATER QUALITY SUMMARY

Nutrients and Primary Production

LAKE	DATE	STA	DEPTH	TP	TFP	FRP	TKN	NH3+NH4	NO3+NO2	RSi	Carbon	трр	Chl a	Phaeo a
			(M)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
	05 (0/ /0/	_		<i>.</i> -	• •			.4.7	242 5	4555	7/			• • •
KENAI	05/06/94		1	6.7	8.6	7.2	32.1	<1.7	212.5	1555	36	NA	0.12	0.14
KENAI	05/06/94		2	NA	NA	NA	NA	NA T	NA D1/ /	NA 15/7	NA	NA	0.28	0.10
KENAI	05/06/94		50	7.7	2.5	2.0	42.0	<1.7	214.4	1543	25	NA	0.28	0.07
KENAI	05/06/94		1	7.3	2.1	1.6	36.0	<1.7	214.4	1561	17	NA	0.10	0.13
KENAI	05/06/94		2	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.13	0.10
KENAI	05/06/94		50	7.5	2.5	1.9	32.9	<1.7	216.3	1561	<8	NA	0.14	0.05
KENAI	05/06/94		1	7.2	2.3	1.9	29.9	<1.7	214.4	1531	9	NA	0.13	0.14
KENAI	05/06/94		2	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.15	0.14
KENAI	05/ 06/%		50	7.3	2.4	1.9	30.6	<1.7	214.4	1513	9	NA	0.10	0.18
KENAI	06/08 /%		1	6.0	6.7	6.7	32.9	2.2	205.2	1513	52	NA	0.22	0.16
KENAI	06/08/%	B	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.23	0.16
KENAI	06/08/%		50	7.8	1.7	1.7	46.7	2.8	242.8	1502	46	NA	0.16	0.19
KENAI	06/0 8/%	С	1	6.7	1.9	1.8	42.0	2.2	238.1	1572	33	NA	0.24	0.16
KENAI	06/08/94	C	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.22	0.18
KENAI	06/08 /%	С	50	8.0	1.9	1.7	37.5	3.3	219.3	1513	20	NA	0.20	0.19
KENAI	06/08/94	D	1	6.9	2.6	2.2	37.5	4.9	216.2	1466	30	NA	0.26	0.20
KENAI	06/08/94	D	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.15	0.12
KENAI	06 /08/94	D	50	6.5	2.4	2.2	47.4	2.8	216.2	1484	36	NA	0.24	0.19
KENAI	06/30/94	в	1	6.0	1.1	1.1	44.3	2.8	222.4	1599	30	NA	0.17	0.14
KENAI	06/30/94	В	2 A	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.26	0.17
KENAI	06/30/94	В	2B	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.23	0.18
KENAI	06/30/94	в	50	9.1	2.7	1.7	58.8	2.8	228.7	1587	20	NA	0.13	0.19
KENAI	06/30/%	С	1	9.2	1.7	1.7	46.6	4.9	230.2	1732	44	NA	0.11	0.13
KENAI	06/30/94	c	2 A	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.23	0.14
KENAI	06/30/94		2B	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.19	0.14
KENAI	06/30/94		50	12.0	2.8	1.4	42.8	4.9	220.9	1660	57	NA	0.18	0.20
KENAI	06/30/94		1	5.9	1.3	0.9	27.5	4.9	227.2	1574	30	NA	0.14	0.13
KENAI	06/30/94		2 A	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.10	0.16
KENAI	06/30/94		2B	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.12	0.14
KENAI	06/30/94		50	7.0	1.0	0.9	30.6	3.9	228.7	1587	17	NA	0.16	0.19
KENAI	07/29/94		1	3.9	1.0	0.8	34.4	<1.7	213.0	1640	67	NA	0.16	0.16
KENAI	07/29/94		2	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.29	0.18
KENAI	07/29/94		50	4.8	5.2	2.8	29.8	<1.7	234.9	1616	20	NA	0.07	0.22
KENAI	07/29/94		1	5.0	3.7	1.9	39.1		219.3	1598	33	NA	0.22	0.15
KENAI	07/29/94		2	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.30	0.16
KENAI	07/29/94		50	7.3	2.4	1.5	28.2	<1.7		1592	22	NA	0.04	0.26
KENAI	07/29/94		1	5.5	3.5	2.2	29.8	<1.7	219.3	1592	28	NA	0.13	0.14
KENAI	07/29/94		2	NA	NA	NA	29.0 NA	NA	NA	NA	NA	NA	0.40	0.16
KENAI	07/29/94		50	25.4	1.2	1.4	36.0		195.8	1507	83	NA	0.07	0.14
									234.9	1708	52			
KENAI	08/16/94 08/16/94		1 50	6.8 2 /	11.8	11.1	39.9	2.8	234.9	1708	17	NA NA	0.21 0.05	0.17 0.11
KENAI			50	2.4	1.3	1.3	32.1 44.5	<1.7 <1.7	177.0	1577	71	NA NA	0.32	0.11 0.38
KENAI	08/16/94		1 50	12.4	3.3	3.3		<1.7	220.9	1632	44	NA	0.05	0.38
KENAI	08/16/94		50	15.3	3.1	3.2	29.1	<1.7	194.2	1564	83	NA	0.05	
KENAI	08/16/94		1	7.7	1.7	1.2	36.2							0.21
KENAI	08/16/94		50	11.8	2.3	1.7	29.1	<1.7	222.4	1653	89 57	NA	0.04	0.10
KENAI	09/28/94		1	4.3	1.2	1.2	22.1		188.0	1432	54	NA	0.21	0.16
KENAI	09/28/94		50	5.7	1.0	1.0	18.2		217.8	1506	12	NA	0.05	0.08
KENAI	09/28/94		1	10.8	0.9	1.0	25.2		184.8	1414	49	NA	0.16	0.16
KENAI	09/28/94	C	50	26.1	1.0	1.4	29.8	<1.7	203.6	1518	110	NA	0.03	0.07

Page No. 11/03/95	2				KENAI					
				WATER	QUALITY SUM	MARY				
				General	Tests and I	Metais				
LAKE	DATE	STA DEPTH (M)	Sp. Cond. (umhos/cm)		Alkalinity (mg/l)	Turbidity (NTU)	Color (Pt)	Calcium (mg/l)	Magnesium (mg/l)	lron (ug/l)
KENAI	09/28/94	D 1	70	7.1	21.0	2.1	4	10.9	0.6	142
KENAI	09/28/94	D 50	71	7.0	21.0	8.8	2	11.9	0.6	342
KENAI	10/25/94	B 1	70	6.4	24.0	6.7	2	13.0	<0.3	326
KENAI	10/25/94	B 50	70	6.4	24.0	1.9	2	12.0	<0.3	108
KENAI	10/25/94	C 1	69	6.5	23.0	3.7	2	12.0	<0.3	184
KENAI	10/25/94	C 50	70	6.6	22.0	1.7	2	12.0	<0.3	120
KENAI	10/25/94	D 1	70	6.4	22.0	7.1	2	12.0	0.7	413
KENAI	10/25/94	D 50	70	6.4	23.0	2.4	2	12.0	0.7	132

-

TUSTUMENA

WATER QUALITY SUMMARY General Tests and Metals

(H) (unines/cm) (Units) (MPU) (HU) (HU) (mg/L) (mg/L) (mg/L) TUSTURENA 0/26/94 1 42 6.5 14.0 44.5 9 5.0 0.7 2503 TUSTURENA 0/26/94 1 40 6.4 15.0 44.0 6 50 0.7 2505 TUSTURENA 0/26/94 50 40 6.4 15.0 44.0 8 50 0.7 2505 TUSTURENA 0/26/94 50 40 6.4 14.0 43.9 6 5.0 0.7 2502 TUSTURENA 0/26/94 2 50 40 7.4 12.5 33.1 4 4.8 1.6 2672 TUSTURENA 0/26/94 2 50 40 7.1 12.0 47.6 6 4.8 1.8 2622 TUSTURENA 0/26/94 50 40 7.1 12.0 47.6 6 5.0 0.7 2734 TUSTURENA 0/26/94 1 40 6.5 1.01	LAKE	DATE	STA	DEPTH	Sp. Cond.	Ph	Alkalinity	Turbidity	Color	Calcium	Magnesium	Iron
TUSTUMENA 04/26/94 3 0 6.4 13.0 43.6 8 5.0 0.7 2863 TUSTUMENA 04/26/94 5 0 6.4 14.0 44.3 4 5.0 0.7 2365 TUSTUMENA 04/26/94 C 1 40 6.5 14.0 40.0 8 5.0 0.7 2539 TUSTUMENA 04/26/94 C 50 40 6.6 14.0 40.0 8 5.0 0.7 2596 TUSTUMENA 05/24/94 A 25 40 7.2 12.5 43.0 4.8 1.6 2642 TUSTUMENA 05/24/94 S 0.40 7.0 11.0 30.8 6 4.8 0.8 2522 TUSTUMENA 05/24/94 1 43 6.7 13.5 45.0 9 5.0 1.4 2562 TUSTUMENA 06/17/94 A 25 6.6 13.0 48.6 5.0				(M)	(umhos/cm)	(Units)	(mg/l)	(NTU)	(Pt)	(mg/l)	(mg/l)	(ug/l)
TUSTUMENA 04/26/94 8 1 40 6.4 13.0 43.6 8 5.0 0.7 2863 TUSTUMENA 04/26/94 50 40 6.4 14.0 44.3 4 5.0 0.7 2365 TUSTUMENA 04/26/94 C 50 6.6 14.0 40.0 8 5.0 0.7 2539 TUSTUMENA 04/26/94 C 50 40 6.6 14.0 43.9 6 5.0 0.7 2536 TUSTUMENA 05/24/94 A 25 40 7.2 12.5 43.0 4.8 1.6 2642 TUSTUMENA 05/24/94 S 0.40 7.0 11.0 30.8 6 4.8 0.8 2542 TUSTUMENA 05/24/94 1 4.3 6.7 13.5 45.0 9 5.0 1.4 2542 TUSTUMENA 06/17/94 A 25 4.6 713.0 49.8 5.0												
TUSTUMENA 04/26/94 3 0 6.4 13.0 43.6 8 5.0 0.7 2863 TUSTUMENA 04/26/94 5 0 6.4 14.0 44.3 4 5.0 0.7 2365 TUSTUMENA 04/26/94 C 1 40 6.5 14.0 40.0 8 5.0 0.7 2539 TUSTUMENA 04/26/94 C 50 40 6.6 14.0 40.0 8 5.0 0.7 2596 TUSTUMENA 05/24/94 A 25 40 7.2 12.5 43.0 4.8 1.6 2642 TUSTUMENA 05/24/94 S 0.40 7.0 11.0 30.8 6 4.8 0.8 2522 TUSTUMENA 05/24/94 1 43 6.7 13.5 45.0 9 5.0 1.4 2562 TUSTUMENA 06/17/94 A 25 6.6 13.0 48.6 5.0		0/ /2/ /0/		•				.	•	5.0		
TUSTUMENA 04/26/94 B 1 40 6.4 14.0 44.3 4 5.0 0.7 2265 TUSTUMENA 04/26/94 B 50 40 6.4 15.0 44.0 6 5.0 0.7 22409 TUSTUMENA 04/26/94 C 50 40 6.6 14.0 43.9 6 5.0 0.7 2552 TUSTUMENA 05/24/94 A 1 40 7.4 12.5 33.1 4 4.8 1.6 26217 TUSTUMENA 05/24/94 A 1 40 7.0 11.0 30.8 6 4.8 0.8 2522 TUSTUMENA 05/24/94 C 50 40 6.7 10.0 31.3 4 4.8 0.8 2592 TUSTUMENA 05/24/94 C 50 43 6.6 13.0 48.1 13 5.0 1.4 2542 TUSTUMENA 06/17/94 B 50 43 6.7 12.0 47.0 5.0 1.4												
TUSTUMENA 04/26/94 G 50 40 6.4 15.0 44.0 6 5.0 0.7 2409 TUSTUMENA 04/26/94 C 1 40 6.5 14.0 40.0 8 5.0 0.7 2556 TUSTUMENA 05/24/94 A 1 40 7.4 12.5 33.1 4 4.8 1.6 2701 TUSTUMENA 05/24/94 A 25 40 7.2 12.5 43.0 5 4.8 1.6 2647 TUSTUMENA 05/24/94 C 1 40 6.7 10.0 31.3 4 4.8 0.8 2822 TUSTUMENA 05/24/94 C 50 40 6.7 10.0 31.3 4 4.8 0.8 25211 TUSTUMENA 06/17/94 A 1 43 6.7 13.0 48.6 5 5.0 0.7 2774 TUSTUMENA 06/17/94 C 50 42 6.7 12.0 40.6 5.0 1.4												
TUSTUMENA 04/26/94 C 1 40 6.5 14.0 40.0 8 5.0 0.7 2532 TUSTUMENA 04/26/94 C 50 40 6.6 14.0 43.9 6 5.0 0.7 2532 TUSTUMENA 05/24/94 A 2 40 7.2 12.5 43.0 5 4.8 1.6 2607 TUSTUMENA 05/24/94 B 1 40 7.1 12.0 47.6 6 4.8 1.6 2607 TUSTUMENA 05/24/94 C 50 40 7.0 11.0 28.3 8 4.8 0.8 2522 TUSTUMENA 05/24/94 C 50 40 6.6 13.0 48.1 13 5.0 1.4 2562 TUSTUMENA 06/17/94 A 1 43 6.8 13.0 48.6 5 5.0 0.7 2773 TUSTUMENA 06/17/94 B 50 43 6.7 13.0 48.6 5 5.0 0.7 2774 TUSTUMENA 06/17/94 B 50 43 6.7												
TUSTUMENA 04/26/94 C 50 40 6.6 14.0 43.9 6 5.0 0.7 2596 TUSTUMENA 05/24/94 A 1 40 7.4 12.5 33.1 4 4.8 1.6 2702 TUSTUMENA 05/24/94 8 1 40 7.1 12.0 47.6 6 4.8 1.6 2642 TUSTUMENA 05/24/94 8 50 40 6.7 10.0 31.3 4 4.8 0.8 2522 TUSTUMENA 05/24/94 25 4.0 6.7 10.0 31.3 4 4.8 0.8 252 TUSTUMENA 06/17/94 1 4.3 6.7 13.0 48.1 13 5.0 1.4 25462 TUSTUMENA 06/17/94 50 4.3 6.7 13.0 48.1 5.0 0.7 2773 TUSTUMENA 06/17/94 50 4.3 6.7 12.0 43.4 5.0 1.4 1440 TUSTUMENA 06/17/94 2 6.8												
TUSTUMENA 05/24/94 A 25 40 7.4 12.5 33.1 4 4.8 1.6 2702 TUSTUMENA 05/24/94 A 25 40 7.2 12.5 43.0 5 4.8 1.6 2617 TUSTUMENA 05/24/94 B 1 40 7.1 11.0 30.8 6 4.8 0.8 2522 TUSTUMENA 05/24/94 C 1 40 6.8 11.0 28.3 8 4.8 0.8 2521 TUSTUMENA 05/24/94 C 50 40 6.7 10.0 31.3 4 4.8 0.8 2512 TUSTUMENA 06/17/94 A 1 43 6.8 13.0 48.6 5.0 0.7 2773 TUSTUMENA 06/17/94 S0 43 6.7 13.0 49.8 5.0 0.7 2754 TUSTUMENA 06/17/94 C 42 6.8 12.0 47.4 9 5.0 1.4 1420 TUSTUMENA 07/06/94 <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-											
TUSTUMENA 05/24/94 25 40 7.2 12.5 43.0 5 4.8 1.6 2617 TUSTUMENA 05/24/96 1 40 7.1 12.0 47.6 6 4.8 1.6 2647 TUSTUMENA 05/24/94 C 1 40 6.8 11.0 28.3 8 4.8 0.8 2522 TUSTUMENA 05/24/94 C 1 40 6.8 11.0 28.3 8 4.8 0.8 2592 TUSTUMENA 05/24/94 A 1 43 6.7 13.0 48.1 13 5.0 1.4 2542 TUSTUMENA 06/17/94 S 0 4.3 6.8 12.5 49.0 6 5.0 0.7 2773 TUSTUMENA 06/17/94 C 1 43 6.8 12.0 47.0 9 5.0 0.7 2754 TUSTUMENA 06/17/94 A 1 42 6.8 12.0 43.4 5.0 1.4 1420 TUSTUMENA 07/06/												
TUSTUMENA 05/24/94 B 1 40 7.1 12.0 47.6 6 4.8 1.6 2642 TUSTUMENA 05/24/94 B 50 40 7.0 11.0 30.8 6 4.8 0.8 2652 TUSTUMENA 05/24/94 C 50 40 6.7 10.0 31.3 4 4.8 0.8 23311 TUSTUMENA 05/24/94 C 50 40 6.7 10.0 31.3 4 4.8 0.8 23311 TUSTUMENA 06/17/94 A 1 43 6.8 13.0 48.1 13 5.0 1.4 2542 TUSTUMENA 06/17/94 B 1 43 6.8 12.5 49.0 6 5.0 0.7 2774 TUSTUMENA 06/17/94 C 1 42 6.8 12.0 43.4 6 5.0 0.7 2852 TUSTUMENA 07/06/94 A 1 42 6.8 12.0 43.4 6 5.0 1.4 1420 TUSTUMENA 07/06/94 B 1 42 6.7												
TUSTUMENA 05/24/94 B 50 40 7.0 11.0 30.8 6 4.8 0.8 2622 TUSTUMENA 05/24/94 C 1 40 6.8 11.0 28.3 8 4.8 0.8 2592 TUSTUMENA 05/24/94 A 1 43 6.7 10.0 31.3 4 4.8 0.8 2311 TUSTUMENA 06/17/94 A 25 43 6.6 13.0 48.1 13 5.0 1.4 2562 TUSTUMENA 06/17/94 A 25 43 6.6 13.0 48.6 5 5.0 0.7 2773 TUSTUMENA 06/17/94 A 42 6.7 12.5 50.3 8 5.0 0.7 2862 TUSTUMENA 07/06/94 A 1 42 6.8 12.0 47.0 9 5.0 1.4 1400 TUSTUMENA 07/06/94 B 50 4.1 6.7												
TUSTUMENA 05/24/94 C 1 40 6.8 11.0 28.3 8 4.8 0.8 2592 TUSTUMENA 05/24/94 C 50 40 6.7 10.0 31.3 4 4.8 0.8 2311 TUSTUMENA 06/17/94 A 25 43 6.6 13.0 48.1 13 5.0 1.4 2562 TUSTUMENA 06/17/94 B 1 43 6.8 13.0 48.6 5 5.0 0.7 2773 TUSTUMENA 06/17/94 B 50 42 6.7 12.5 50.3 8 5.0 0.7 2784 TUSTUMENA 06/17/94 A 1 42 6.8 12.0 47.0 9 5.0 1.4 1420 TUSTUMENA 07/06/94 A 1 42 6.8 12.0 46.0 8 5.0 1.4 1428 TUSTUMENA 07/06/94 B 50 41 6.7 12.0 50.3 4 5.0 1.4 1428 <td></td>												
TUSTUMENA 05/24/94 C 50 40 6.7 10.0 31.3 4 4.8 0.8 2311 TUSTUMENA 06/17/94 A 25 43 6.7 13.5 45.0 9 5.0 1.4 2562 TUSTUMENA 06/17/94 B 1 43 6.8 13.0 48.1 13 5.0 0.7 2774 TUSTUMENA 06/17/94 C 1 43 6.8 13.0 48.6 5 5.0 0.7 2773 TUSTUMENA 06/17/94 C 1 42 6.8 12.0 43.4 6 5.0 0.7 2774 TUSTUMENA 06/17/94 C 1 42 6.8 12.0 43.4 6 5.0 1.4 1440 TUSTUMENA 07/06/94 A 25 42 6.8 12.0 46.0 8 5.0 1.4 1496 TUSTUMENA 07/06/94 B 50 41 6.7 12.0 46.0 8 5.0 1.4 138 TUSTUMENA 07/26/94 A 30 41 7.0												
TUSTUMENA 06/17/94 1 43 6.7 13.5 45.0 9 S.0 1.4 2562 TUSTUMENA 06/17/94 8 1 43 6.8 13.0 48.1 15 5.0 1.4 2362 TUSTUMENA 06/17/94 B 1 43 6.8 13.0 48.6 5 5.0 0.7 2773 TUSTUMENA 06/17/94 C 1 43 6.8 12.5 49.0 6 5.0 0.7 2773 TUSTUMENA 06/17/94 C 50 42 6.7 12.5 50.3 8 5.0 1.4 1520 TUSTUMENA 07/06/94 A 25 42 6.8 12.0 44.0 8 5.0 1.4 1320 TUSTUMENA 07/06/94 B 50 41 6.7 12.0 48.0 8 5.0 1.4 1328 TUSTUMENA 07/06/94 C 1 42 6.7 12.0 50.3 4 5.0 1.4 1328 TUSTUMENA 07/06/94 C 1 <td></td>												
TUSTUMENA 06/17/94 25 43 6.6 13.0 48.1 13 S.0 1.4 2342 TUSTUMENA 06/17/94 B 10 43 6.8 13.0 48.6 5 5.0 0.7 2774 TUSTUMENA 06/17/94 C 1 43 6.8 12.5 49.0 6 5.0 0.7 2773 TUSTUMENA 06/17/94 C 1 42 6.8 12.0 43.4 6 5.0 0.7 2862 TUSTUMENA 07/06/94 A 1 42 6.8 12.0 43.4 6 5.0 1.4 1398 TUSTUMENA 07/06/94 B 1 42 6.7 12.0 48.0 8 5.0 1.4 13828 TUSTUMENA 07/06/94 C 1 42 6.7 12.0 50.3 4.9 1.3 2414 TUSTUMENA 07/28/94 A 1 42 7.1 15.0 47.1 6 4.9 1.5 2774 TUSTUMENA 07/28/94 G												
TUSTUMENA 06/17/94 B 1 43 6.8 13.0 48.6 5 5.0 0.7 2774 TUSTUMENA 06/17/94 B 50 43 6.7 13.0 49.8 5 5.0 0.7 2773 TUSTUMENA 06/17/94 C 1 43 6.8 12.5 49.0 6 5.0 0.7 2754 TUSTUMENA 06/17/94 C 1 42 6.8 12.0 43.4 6 5.0 1.4 1440 TUSTUMENA 07/06/94 B 1 42 6.8 12.0 46.0 8 5.0 1.4 1398 TUSTUMENA 07/06/94 B 1 42 6.7 12.0 50.3 5 5.0 1.4 1828 TUSTUMENA 07/06/94 S 0 41 7.0 15.0 47.1 6 4.9 1.5 2774 TUSTUMENA 07/28/94 A 1 <td></td>												
TUSTUMENA 06/17/94 5 50 43 6.7 13.0 49.8 5 5.0 0.7 2773 TUSTUMENA 06/17/94 1 43 6.8 12.5 49.0 6 5.0 0.7 2754 TUSTUMENA 06/17/94 1 42 6.8 12.0 43.4 6 5.0 0.7 2862 TUSTUMENA 07/06/94 A 1 42 6.8 12.0 47.0 9 5.0 1.4 1520 TUSTUMENA 07/06/94 B 1 42 6.8 12.0 46.0 8 5.0 1.4 1320 TUSTUMENA 07/06/94 C 1 42 6.7 12.0 50.3 4 5.0 1.4 1428 TUSTUMENA 07/28/94 1 42 7.1 15.0 39.9 5 4.9 1.5 2754 TUSTUMENA 07/28/94 30 41 7.0 15.0 <												
TUSTUMENA 06/17/94 C 1 43 6.8 12.5 49.0 6 5.0 0.7 2754 TUSTUMENA 06/17/94 C 50 42 6.7 12.5 50.3 8 5.0 0.7 2862 TUSTUMENA 07/06/94 1 42 6.8 12.0 43.4 6 5.0 1.4 1420 TUSTUMENA 07/06/94 8 50 41 6.7 12.0 48.0 8 5.0 1.4 1398 TUSTUMENA 07/06/94 B 50 41 6.7 12.0 48.0 8 5.0 1.4 1496 TUSTUMENA 07/06/94 C 50 42 6.7 12.0 50.3 4 5.0 1.4 1766 TUSTUMENA 07/28/94 A 1 42 7.1 15.0 47.1 6 4.9 1.5 2754 TUSTUMENA 07/28/94 B 50 41 7.0 15.0 44.1 5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
TUSTUMENA 06/17/94 C 50 42 6.7 12.5 50.3 8 5.0 0.7 2862 TUSTUMENA 07/06/94 A 1 42 6.8 12.0 43.4 6 5.0 1.4 1440 TUSTUMENA 07/06/94 B 1 42 6.8 12.0 46.0 8 5.0 1.4 1398 TUSTUMENA 07/06/94 B 50 41 6.7 12.0 50.3 5 5.0 1.4 1398 TUSTUMENA 07/06/94 C 1 42 6.7 12.0 50.3 4 5.0 1.4 1828 TUSTUMENA 07/28/94 A 1 42 7.1 15.0 39.9 5 4.9 1.3 2414 TUSTUMENA 07/28/94 B 30 4.1 7.0 15.0 44.1 5 4.9 0.9 2584 TUSTUMENA 07/28/94 C 50 40 7.0 15.0 44.1 5.0 0.7												
TUSTUMENA 07/06/94 A 1 42 6.8 12.0 43.4 6 5.0 1.4 1440 TUSTUMENA 07/06/94 B 1 42 6.8 12.0 47.0 9 5.0 1.4 1520 TUSTUMENA 07/06/94 B 1 42 6.8 12.0 46.0 8 5.0 1.4 1398 TUSTUMENA 07/06/94 C 1 42 6.7 12.0 48.0 8 5.0 1.4 1496 TUSTUMENA 07/06/94 C 50 42 6.7 12.0 50.3 4 5.0 1.4 1496 TUSTUMENA 07/28/94 A 1 42 7.1 15.0 37.9 5 4.9 1.3 2414 TUSTUMENA 07/28/94 B 1 39 7.0 14.0 40.6 4.9 1.5 2777 TUSTUMENA 07/28/94 C 1 40 7.0 15.0 44.1 5 4.9 0.5												
TUSTUMENA 07/06/94 25 42 6.8 12.0 47.0 9 5.0 1.4 1520 TUSTUMENA 07/06/94 B 1 42 6.8 12.0 46.0 8 5.0 1.4 1398 TUSTUMENA 07/06/94 C 1 42 6.7 12.0 48.0 8 5.0 1.4 1398 TUSTUMENA 07/06/94 C 1 42 6.7 12.0 50.3 5 5.0 1.4 1828 TUSTUMENA 07/06/94 C 1 42 6.7 12.0 50.3 4.9 1.3 2414 TUSTUMENA 07/28/94 A 30 41 7.0 15.0 47.1 6 4.9 1.5 2754 TUSTUMENA 07/28/94 S 0 41 7.0 15.0 44.1 5 4.9 1.5 2777 TUSTUMENA 07/28/94 A 30 42 6												
TUSTUMENA 07/06/94 B 1 42 6.8 12.0 46.0 8 5.0 1.4 1398 TUSTUMENA 07/06/94 50 41 6.7 12.0 48.0 8 5.0 1.4 1496 TUSTUMENA 07/06/94 C 1 42 6.7 12.0 50.3 5 5.0 1.4 1828 TUSTUMENA 07/06/94 C 50 42 6.7 12.0 50.3 4 5.0 1.4 1828 TUSTUMENA 07/28/94 A 1 42 7.1 15.0 39.9 5 4.9 1.5 2754 TUSTUMENA 07/28/94 B 1 39 7.0 14.0 40.6 4 4.9 0.9 2492 TUSTUMENA 07/28/94 B 50 41 7.0 15.0 44.1 5 4.9 1.5 2277 TUSTUMENA 07/28/94 C 50 4												
TUSTUMENA 07/06/94 B 50 41 6.7 12.0 48.0 8 5.0 1.4 1496 TUSTUMENA 07/06/94 C 1 42 6.7 12.0 50.3 5 5.0 1.4 1828 TUSTUMENA 07/06/94 C 50 42 6.7 12.0 50.3 4 5.0 1.4 1828 TUSTUMENA 07/28/94 A 1 42 7.1 15.0 39.9 5 4.9 1.3 2414 TUSTUMENA 07/28/94 B 1 39 7.0 15.0 47.1 6 4.9 1.5 2754 TUSTUMENA 07/28/94 B 50 41 7.0 15.0 44.1 5 4.9 0.9 2492 TUSTUMENA 07/28/94 C 1 40 7.0 15.0 44.1 5 4.9 1.5 2827 TUSTUMENA 08/18/94 A 1 42 6.7 13.0 30.1 4 5.0 0.7 1881 TUSTUMENA 08/18/94 A 30 42 6.5												
TUSTUMENA 07/06/94 C 1 42 6.7 12.0 50.3 5 5.0 1.4 1828 TUSTUMENA 07/06/94 C 50 42 6.7 12.0 50.3 4 5.0 1.4 1766 TUSTUMENA 07/28/94 A 1 42 7.1 15.0 39.9 5 4.9 1.3 2414 TUSTUMENA 07/28/94 A 30 41 7.0 15.0 47.1 6 4.9 1.5 2754 TUSTUMENA 07/28/94 B 1 39 7.0 14.0 40.6 4 4.9 0.9 2492 TUSTUMENA 07/28/94 C 1 40 7.0 15.0 44.1 5 4.9 1.5 2777 TUSTUMENA 07/28/94 C 50 40 7.0 15.0 46.5 4 4.9 1.5 2227 TUSTUMENA 08/18/94 A 1 42 6.7 13.0 30.1 4 5.0 0.7 2074 TUSTUMENA 08/18/94 B 1 40 6.7												
TUSTUMENA 07/06/94 C 50 42 6.7 12.0 50.3 4 5.0 1.4 1766 TUSTUMENA 07/28/94 A 1 42 7.1 15.0 39.9 5 4.9 1.3 2414 TUSTUMENA 07/28/94 A 30 41 7.0 15.0 47.1 6 4.9 1.5 2754 TUSTUMENA 07/28/94 B 1 39 7.0 14.0 40.6 4 4.9 0.9 2492 TUSTUMENA 07/28/94 C 1 40 7.0 15.0 44.1 5 4.9 1.5 2777 TUSTUMENA 07/28/94 C 1 42 6.7 15.0 44.5 4.9 0.9 2584 TUSTUMENA 08/18/94 A 30 42 6.5 13.0 30.1 4 5.0 0.7 2074 TUSTUMENA 08/18/94 B 1 40 6.7 13.0 30.1 4 5.0 0.7 1840 TUSTUMENA 08/18/94 B 50 40 6.7 13.0												
TUSTUMENA 07/28/94 1 42 7.1 15.0 39.9 5 4.9 1.3 2414 TUSTUMENA 07/28/94 30 41 7.0 15.0 47.1 6 4.9 1.5 2754 TUSTUMENA 07/28/94 8 1 39 7.0 14.0 40.6 4 4.9 0.9 2492 TUSTUMENA 07/28/94 6 1 40 7.0 15.0 44.1 5 4.9 1.5 2777 TUSTUMENA 07/28/94 C 1 40 7.0 15.0 44.1 5 4.9 1.5 2277 TUSTUMENA 08/18/94 1 42 6.7 13.0 35.5 4 5.0 0.7 2074 TUSTUMENA 08/18/94 30 42 6.5 13.0 30.1 4 5.0 0.7 1840 TUSTUMENA 08/18/94 50 40 6.7 13.0 30.0 4 5.0 0.7 1857 TUSTUMENA 08/18/94 50 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
TUSTUMENA 07/28/94 30 41 7.0 15.0 47.1 6 4.9 1.5 2754 TUSTUMENA 07/28/94 B 1 39 7.0 14.0 40.6 4 4.9 0.9 2492 TUSTUMENA 07/28/94 B 50 41 7.0 15.0 44.1 5 4.9 1.5 2777 TUSTUMENA 07/28/94 C 1 40 7.0 15.0 44.1 5 4.9 0.9 2584 TUSTUMENA 07/28/94 C 50 40 7.0 15.0 44.4 5 4.9 1.5 2827 TUSTUMENA 08/18/94 1 42 6.7 13.0 30.1 4 5.0 0.7 2074 TUSTUMENA 08/18/94 50 40 6.5 13.0 30.1 4 5.0 0.7 1881 TUSTUMENA 08/18/94 50 40 6.7 13.0 30.0 4 5.0 0.7 1857 TUSTUMENA 08/18/94 <												
TUSTUMENA 07/28/94 B 1 39 7.0 14.0 40.6 4 4.9 0.9 2492 TUSTUMENA 07/28/94 B 50 41 7.0 15.0 44.1 5 4.9 1.5 2777 TUSTUMENA 07/28/94 C 1 40 7.0 15.0 41.4 5 4.9 0.9 2584 TUSTUMENA 07/28/94 C 50 40 7.0 15.0 46.5 4 4.9 1.5 2827 TUSTUMENA 08/18/94 A 1 42 6.7 13.0 35.5 4 5.0 0.7 2074 TUSTUMENA 08/18/94 B 1 40 6.7 13.0 30.1 4 5.0 0.7 1840 TUSTUMENA 08/18/94 B 50 40 6.5 13.0 32.2 8 6.0 0.7 1860 TUSTUMENA 08/18/94 C 50 40 6.7 13.0 31.1 5 5.0 0.7 1860 <td>TUSTUMENA</td> <td></td> <td></td> <td>1</td> <td>42</td> <td></td> <td></td> <td></td> <td></td> <td>4.9</td> <td></td> <td></td>	TUSTUMENA			1	42					4.9		
TUSTUMENA 07/28/94 50 41 7.0 15.0 44.1 5 4.9 1.5 2777 TUSTUMENA 07/28/94 C 1 40 7.0 15.0 41.4 5 4.9 0.9 2584 TUSTUMENA 07/28/94 C 50 40 7.0 15.0 46.5 4 4.9 1.5 2827 TUSTUMENA 08/18/94 A 1 42 6.7 13.0 35.5 4 5.0 0.7 2074 TUSTUMENA 08/18/94 A 30 42 6.5 13.0 30.1 4 5.0 0.7 1881 TUSTUMENA 08/18/94 B 1 40 6.7 13.0 30.1 4 5.0 0.7 1881 TUSTUMENA 08/18/94 B 50 40 6.7 13.0 30.0 4 5.0 0.7 1857 TUSTUMENA 08/18/94 C 50 40 6.7 13.0 31.1 5 5.0 0.7 1860				30	41	7.0				4.9		
TUSTUMENA 07/28/94 C 1 40 7.0 15.0 41.4 5 4.9 0.9 2584 TUSTUMENA 07/28/94 C 50 40 7.0 15.0 46.5 4 4.9 1.5 2827 TUSTUMENA 08/18/94 A 1 42 6.7 13.0 35.5 4 5.0 0.7 2074 TUSTUMENA 08/18/94 A 30 42 6.5 13.0 30.1 4 5.0 0.7 2074 TUSTUMENA 08/18/94 B 1 40 6.7 13.0 30.1 4 5.0 0.7 1881 TUSTUMENA 08/18/94 B 50 40 6.5 13.0 32.2 8 6.0 0.7 1857 TUSTUMENA 08/18/94 C 1 39 6.7 13.0 31.1 5 5.0 0.7 1857 TUSTUMENA 08/18/94 C 50 40 6.7 13.0 31.1 5 5.0 0.7 1860 TUSTUMENA 09/12/94 A 1 43 6.8	TUSTUMENA			1	39	7.0	14.0			4.9	0.9	2492
TUSTUMENA 07/28/94 C 50 40 7.0 15.0 46.5 4 4.9 1.5 2827 TUSTUMENA 08/18/94 A 1 42 6.7 13.0 35.5 4 5.0 0.7 2074 TUSTUMENA 08/18/94 A 30 42 6.5 13.0 30.1 4 5.0 1.7 1881 TUSTUMENA 08/18/94 B 1 40 6.7 13.0 29.0 5 5.0 0.7 1840 TUSTUMENA 08/18/94 B 50 40 6.5 13.0 32.2 8 6.0 0.7 2108 TUSTUMENA 08/18/94 C 1 39 6.7 13.0 30.0 4 5.0 0.7 1857 TUSTUMENA 08/18/94 C 50 40 6.7 13.0 31.1 5 5.0 0.7 1860 TUSTUMENA 08/18/94 C 50 40 6.7 13.0 31.1 5 5.0 0.7 1860 TUSTUMENA 09/12/94 A 1 43 6.8	TUSTUMENA			50	41	7.0	15.0			4.9	1.5	
TUSTUMENA 08/18/94 A 1 42 6.7 13.0 35.5 4 5.0 0.7 2074 TUSTUMENA 08/18/94 A 30 42 6.5 13.0 30.1 4 5.0 1.7 1881 TUSTUMENA 08/18/94 B 1 40 6.7 13.0 29.0 5 5.0 0.7 2108 TUSTUMENA 08/18/94 B 50 40 6.5 13.0 32.2 8 6.0 0.7 2108 TUSTUMENA 08/18/94 C 1 39 6.7 13.0 30.0 4 5.0 0.7 1857 TUSTUMENA 08/18/94 C 50 40 6.7 13.0 31.1 5 5.0 0.7 1857 TUSTUMENA 08/18/94 C 50 40 6.7 13.0 31.1 5 5.0 0.7 1860 TUSTUMENA 09/12/94 A 1 43 6.8 13.0 39.0 5 4.9 1.4 2248 TUSTUMENA 09/12/94 B 50 44 6.8				1								
TUSTUMENA08/18/94A30426.513.030.145.01.71881TUSTUMENA08/18/94B1406.713.029.055.00.71840TUSTUMENA08/18/94B50406.513.032.286.00.72108TUSTUMENA08/18/94C1396.713.030.045.00.71857TUSTUMENA08/18/94C50406.713.031.155.00.71860TUSTUMENA08/18/94C50406.713.031.155.00.71867TUSTUMENA08/18/94C50406.713.031.155.00.71860TUSTUMENA09/12/94A1436.913.039.054.91.42248TUSTUMENA09/12/94A1436.813.048.064.90.62940TUSTUMENA09/12/94B50446.813.039.054.91.42368TUSTUMENA09/12/94C1436.813.049.044.91.42564TUSTUMENA09/12/94C1436.813.050.044.91.42564TUSTUMENA09/12/94C1416.611.541.0												
TUSTUMENA08/18/94 B1406.713.029.055.00.71840TUSTUMENA08/18/94 C1396.713.032.286.00.72108TUSTUMENA08/18/94 C1396.713.030.045.00.71857TUSTUMENA08/18/94 C50406.713.031.155.00.71860TUSTUMENA08/18/94 C50406.713.031.155.00.71860TUSTUMENA09/12/94 A1436.913.039.054.91.42248TUSTUMENA09/12/94 A25436.813.039.054.91.42392TUSTUMENA09/12/94 B1436.813.039.054.91.42392TUSTUMENA09/12/94 B50446.813.049.044.91.42868TUSTUMENA09/12/94 C1436.813.041.054.91.42564TUSTUMENA09/12/94 C1436.813.050.044.90.63140TUSTUMENA10/12/94 A30416.611.541.045.01.32360TUSTUMENA10/12/94 A30416.611.541.945.01.32360TUSTUMENA10/12/94 B14												
TUSTUMENA 08/18/94 B 50 40 6.5 13.0 32.2 8 6.0 0.7 2108 TUSTUMENA 08/18/94 C 1 39 6.7 13.0 30.0 4 5.0 0.7 1857 TUSTUMENA 08/18/94 C 50 40 6.7 13.0 31.1 5 5.0 0.7 1857 TUSTUMENA 09/12/94 A 1 43 6.9 13.0 39.0 5 4.9 1.4 2248 TUSTUMENA 09/12/94 A 25 43 6.8 13.0 39.0 5 4.9 1.4 2248 TUSTUMENA 09/12/94 A 25 43 6.8 13.0 39.0 5 4.9 1.4 2248 TUSTUMENA 09/12/94 B 1 43 6.8 13.0 39.0 5 4.9 1.4 2392 TUSTUMENA 09/12/94 B 50 44 6.8 13.0 49.0 4 4.9 1.4 2868 TUSTUMENA 09/12/94 C 1 43 6.8				30								
TUSTUMENA08/18/94 C1396.713.030.045.00.71857TUSTUMENA08/18/94 C50406.713.031.155.00.71860TUSTUMENA09/12/94 A1436.913.039.054.91.42248TUSTUMENA09/12/94 A25436.813.048.064.90.62940TUSTUMENA09/12/94 B1436.813.039.054.91.42392TUSTUMENA09/12/94 B50446.813.049.044.91.42868TUSTUMENA09/12/94 C1436.813.041.054.91.42564TUSTUMENA09/12/94 C1436.813.050.044.90.63140TUSTUMENA09/12/94 C50436.813.050.044.90.63140TUSTUMENA10/12/94 A1416.611.541.045.01.32360TUSTUMENA10/12/94 A30416.611.545.945.01.32639TUSTUMENA10/12/94 B1416.611.551.255.01.32886TUSTUMENA10/12/94 B50416.611.543.545.01.32418												
TUSTUMENA08/18/94 C50406.713.031.155.00.71860TUSTUMENA09/12/94 A1436.913.039.054.91.42248TUSTUMENA09/12/94 A25436.813.048.064.90.62940TUSTUMENA09/12/94 B1436.813.039.054.91.42392TUSTUMENA09/12/94 B50446.813.049.044.91.42868TUSTUMENA09/12/94 C1436.813.041.054.91.42564TUSTUMENA09/12/94 C1436.813.050.044.90.63140TUSTUMENA09/12/94 C50436.813.050.044.90.63140TUSTUMENA10/12/94 A1416.611.541.045.01.32360TUSTUMENA10/12/94 A30416.611.545.945.01.32639TUSTUMENA10/12/94 B50416.611.551.255.01.32886TUSTUMENA10/12/94 B50416.611.543.545.01.32418												
TUSTUMENA09/12/94 A1436.913.039.054.91.42248TUSTUMENA09/12/94 A25436.813.048.064.90.62940TUSTUMENA09/12/94 B1436.813.039.054.91.42392TUSTUMENA09/12/94 B50446.813.039.054.91.42392TUSTUMENA09/12/94 C1436.813.049.044.91.42868TUSTUMENA09/12/94 C1436.813.041.054.91.42564TUSTUMENA09/12/94 C50436.813.050.044.90.63140TUSTUMENA10/12/94 A1416.611.541.045.01.32304TUSTUMENA10/12/94 A30416.611.545.945.01.32639TUSTUMENA10/12/94 B50416.611.551.255.01.32886TUSTUMENA10/12/94 B50416.611.543.545.01.32418												
TUSTUMENA 09/12/94 A 25 43 6.8 13.0 48.0 6 4.9 0.6 2940 TUSTUMENA 09/12/94 B 1 43 6.8 13.0 39.0 5 4.9 1.4 2392 TUSTUMENA 09/12/94 B 50 44 6.8 13.0 39.0 5 4.9 1.4 2392 TUSTUMENA 09/12/94 B 50 44 6.8 13.0 49.0 4 4.9 1.4 2868 TUSTUMENA 09/12/94 C 1 43 6.8 13.0 41.0 5 4.9 1.4 2864 TUSTUMENA 09/12/94 C 50 43 6.8 13.0 50.0 4 4.9 1.4 2564 TUSTUMENA 09/12/94 C 50 43 6.8 13.0 50.0 4 4.9 0.6 3140 TUSTUMENA 10/12/94 A 1 41 6.6 11.5 41.0 4 5.0 1.3 2360 TUSTUMENA 10/12/94 B 1 41 6.6												
TUSTUMENA09/12/94 B1436.813.039.054.91.42392TUSTUMENA09/12/94 B50446.813.049.044.91.42868TUSTUMENA09/12/94 C1436.813.041.054.91.42864TUSTUMENA09/12/94 C1436.813.050.044.90.63140TUSTUMENA09/12/94 C50436.813.050.044.90.63140TUSTUMENA10/12/94 A1416.611.541.045.01.32304TUSTUMENA10/12/94 A30416.612.041.945.01.32360TUSTUMENA10/12/94 B1416.611.545.945.01.32639TUSTUMENA10/12/94 B50416.611.551.255.01.32886TUSTUMENA10/12/94 C1426.611.543.545.01.32418												
TUSTUMENA 09/12/94 B 50 44 6.8 13.0 49.0 4 4.9 1.4 2868 TUSTUMENA 09/12/94 C 1 43 6.8 13.0 41.0 5 4.9 1.4 2868 TUSTUMENA 09/12/94 C 1 43 6.8 13.0 41.0 5 4.9 1.4 2564 TUSTUMENA 09/12/94 C 50 43 6.8 13.0 50.0 4 4.9 0.6 3140 TUSTUMENA 10/12/94 A 1 41 6.6 11.5 41.0 4 5.0 1.3 2304 TUSTUMENA 10/12/94 A 30 41 6.6 12.0 41.9 4 5.0 1.3 2360 TUSTUMENA 10/12/94 B 1 41 6.6 11.5 45.9 4 5.0 1.3 2639 TUSTUMENA 10/12/94 B 50 41 6.6 11.5 51.2 5 5.0 1.3 2886 TUSTUMENA 10/12/94 C 1 42 6.6												
TUSTUMENA 09/12/94 C 1 43 6.8 13.0 41.0 5 4.9 1.4 2564 TUSTUMENA 09/12/94 C 50 43 6.8 13.0 50.0 4 4.9 0.6 3140 TUSTUMENA 10/12/94 A 1 41 6.6 11.5 41.0 4 5.0 1.3 2304 TUSTUMENA 10/12/94 A 30 41 6.6 12.0 41.9 4 5.0 1.3 2360 TUSTUMENA 10/12/94 B 1 41 6.6 11.5 45.9 4 5.0 1.3 2360 TUSTUMENA 10/12/94 B 1 41 6.6 11.5 45.9 4 5.0 1.3 2639 TUSTUMENA 10/12/94 B 50 41 6.6 11.5 51.2 5 5.0 1.3 2886 TUSTUMENA 10/12/94 C 1 42 6.6 11.5 43.5 4 5.0 1.3 2418												
TUSTUMENA 09/12/94 C 50 43 6.8 13.0 50.0 4 4.9 0.6 3140 TUSTUMENA 10/12/94 A 1 41 6.6 11.5 41.0 4 5.0 1.3 2304 TUSTUMENA 10/12/94 A 30 41 6.6 12.0 41.9 4 5.0 1.3 2360 TUSTUMENA 10/12/94 B 1 41 6.6 11.5 45.9 4 5.0 1.3 2360 TUSTUMENA 10/12/94 B 1 41 6.6 11.5 45.9 4 5.0 1.3 2639 TUSTUMENA 10/12/94 B 50 41 6.6 11.5 51.2 5 5.0 1.3 2886 TUSTUMENA 10/12/94 C 1 42 6.6 11.5 43.5 4 5.0 1.3 2418												
TUSTUMENA 10/12/94 A 1 41 6.6 11.5 41.0 4 5.0 1.3 2304 TUSTUMENA 10/12/94 A 30 41 6.6 12.0 41.9 4 5.0 1.3 2360 TUSTUMENA 10/12/94 B 1 41 6.6 11.5 45.9 4 5.0 1.3 2360 TUSTUMENA 10/12/94 B 50 41 6.6 11.5 45.9 4 5.0 1.3 2639 TUSTUMENA 10/12/94 B 50 41 6.6 11.5 51.2 5 5.0 1.3 2886 TUSTUMENA 10/12/94 C 1 42 6.6 11.5 43.5 4 5.0 1.3 2418												
TUSTUMENA 10/12/94 A 30 41 6.6 12.0 41.9 4 5.0 1.3 2360 TUSTUMENA 10/12/94 B 1 41 6.6 11.5 45.9 4 5.0 1.3 2639 TUSTUMENA 10/12/94 B 50 41 6.6 11.5 51.2 5 5.0 1.3 2886 TUSTUMENA 10/12/94 C 1 42 6.6 11.5 43.5 4 5.0 1.3 2418												
TUSTUMENA 10/12/94 B 1 41 6.6 11.5 45.9 4 5.0 1.3 2639 TUSTUMENA 10/12/94 B 50 41 6.6 11.5 51.2 5 5.0 1.3 2886 TUSTUMENA 10/12/94 C 1 42 6.6 11.5 43.5 4 5.0 1.3 2418												
TUSTUMENA 10/12/94 B 50 41 6.6 11.5 51.2 5 5.0 1.3 2886 TUSTUMENA 10/12/94 C 1 42 6.6 11.5 43.5 4 5.0 1.3 2418												
TUSTUMENA 10/12/94 C 1 42 6.6 11.5 43.5 4 5.0 1.3 2418												
TUSTUMENA 10/12/94 C 50 41 6.6 11.5 49.0 3 5.0 1.3 2754												
	TUSTUMENA	10/12/94	С	50	41	6.6	11.5	49.0	3	5.0	1.3	2754

2

KENAI

WATER QUALITY SUMMARY Nutrients and Primary Production

•

LAKE	DATE	STA	DEPTH (M)	TP (ug/l)	TFP (ug/l)	FRP (ug/l)	TKN (ug/l)		NO3+NO2 (ug/l)	RSi (ug/l)	Carbon (ug/l)		Chl a (ug/l)	Phaeo a (ug/l)
KENAI	09/28/94	D	1	4.3	2.4	2.6	21.3	<1.7	188.0	1420	33	NA	0.17	0.17
KENAI	09/28/94	D	50	12.5	2.3	1.2	24.4	<1.7	203.6	1488	99	NA	0.03	0.07
KENAI	10/25/94	В	1	8.9	0.8	1.2	23.6	<1.7	202.1	1647	33	NA	0.12	0.14
KENAI	10/25/94	8	50	8.7	0.9	1.2	24.4	<1.7	200.5	1586	27	NA	0.11	0.11
KENAL	10/25/94	C	1	10.9	1.6	1.2	23.6	<1.7	192.7	1568	44	NA	0.09	0.20
KENAI	10/25/94	C	50	10.5	2.5	1.2	23.6	<1.7	194.2	1623	38	NA	0.10	0.08
KENAI	10/25/94	D	1	7.2	2.6	1.3	19.8	<1.7	197.4	1598	38	NA	0.08	0.18
KENAI	10/25/94	D	50	10.4	2.6	1.2	24.4	<1.7	199.0	1604	30	NA	0.09	0.08

1

TUSTUMENA

WATER QUALITY SUMMARY Nutrients and Primary Production

LAKE	DATE	STA	DEPTH	TP	TFP	FRP	TKN	NH3+NH4	N03+N02	RSi	Carbon	TPP	Chl a	Phaeo a
			(M)	(ug/l)	(ug/L)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
TUSTUMENA	04/26/94		1	38.6	5.9	6.7	47.6	<1.7	80.6	2314	127	NA	0.05	0.13
TUSTUMENA	04/26/94		30	40.8	4.7	5.3	46.0	<1.7	91.8	2278	116	NA	0.03	0.12
TUSTUMENA	04/26/94		1	39.0	5.1	4.7	46.0	2.6	97.8	2218	66	NA	<0.01	0.14
TUSTUMENA	04/26/94		50	43.0	6.2	6.1	45.2	<1.7	98.5	2206	104	NA	<0.01	0.09
TUSTUMENA	04/26/94		1	39.1	7.2	7.1	46.8	2.6	97.0	2218	161	NA	0.02	0.15
TUSTUMENA	04/26/94	C	50	44.5	5.2	5.2	52.2	2.0	103.8	2206	125	NA	<0.01	0.07
TUSTUMENA	05/24/94		1	25.2	5.2	4.3	66.2	2.6	91.8	2206	156	NA	0.07	0.14
TUSTUMENA	05/24/94	A	25	32.1	5.1	4.3	60.5	<1.7	97.0	2182	156	NA	0.05	0.13
TUSTUMENA	05/24/94	B	1	34.8	4.9	3.8	71.2	3.6	91.8	2182	166	NA	0.03	0.14
TUSTUMENA	05/24/94	B	50	25.9	7.2	5.3	64.6	<1.7	93.2	2148	161	NA	0.03	0.09
TUSTUMENA	05/24/94	C	1	38.0	6.9	5.6	80.2	<1.7	93.2	2112	187	NA	0.02	0.14
TUSTUMENA	05/24/94	2	50	36.7	5.0	3.7	64.6	<1.7	103.8	2159	177	NA	<0.01	0.07
TUSTUMENA	06/17/94	A	1	42.6	5.7	4.9	77.77	<1.7	88.0	2760	332	NA	0.94	0.72
TUSTUMENA	06/17/94	A	25	43.0	9.0	8.3	58.4	<1.7	106.0	2737	203	NA	0.02	0.09
TUSTUMENA	06/17/94	B	1	41.8	4.7	4.6	57.6	<1.7	103.0	2138	172	NA	0.19	0.15
TUSTUMENA	06/17/94	B	50	44.5	5.2	4.7	53.8	<1.7	105.2	2126	135	NA	0.02	0.07
TUSTUMENA	06/17/94	С	1	46.1	5.8	5.0	52.2	<1.7	109.0	2126	140	NA	0.08	0.09
TUSTUMENA	06/17/94	С	50	47.1	5.2	3.5	53.8	<1.7	100.0	2114	151	NA	0.02	0.06
TUSTUMENA	07/06/94	A	1	35.7	3.4	3.0	71.5	<1.7	84.3	2024	259	NA	1.00	0.46
TUSTUMENA	07/06/94	A	25	42.2	5.2	5.3	55.3	<1.7	91.0	2024	161	NA	0.10	0.12
TUSTUMENA	07/06/94	B	1	32.1	3.5	3.4	51.4	<1.7	95.5	1909	151	NA	0.51	0.24
TUSTUMENA	07/06/94	B	50	41.0	5.5	5.4	66.1	<1.7	102.2	1966	270	NA	0.02	0.10
TUSTUMENA	07/06/94		1	37.5	5.3	5.2	53.8	<1.7	100.8	1909	259	NA	1.60	2.14
TUSTUMENA	07/06/94	С	50	46.4	5.0	5.3	53.0	<1.7	100.8	1938	244	NA	<0.01	0.08
TUSTUMENA	07/28/94	A	1	34.1	3.0	3.5	107.0	<1.7	84.3	2186	291	NA	0.55	0.38
TUSTUMENA	07/28/94	A	30	30.1	4.8	5.2	51.4	<1.7	100.8	2204	177	NA	NA	NA
TUSTUMENA	07/28/94	B	1	34.4	3.3	3.3	74.6	<1.7	91.8	2180	156	NA	0.41	0.48
TUSTUMENA	07/28/94		50	42.1	4.8	4.8	58.4	<1.7	103.0	2168	234	NA	0.02	0.15
TUSTUMENA	07/28/94	С	1	35.9	4.2	4.0	52.2	2.6	97.0	2180	368	NA	0.43	0.40
TUSTUMENA	07/28/94	C	50	42.0	4.0	3.9	46.0	<1.7	98.5	2186	228	NA	0.02	0.10
TUSTUMENA	08/18/94	A	1	25.1	2.9	2.8	56.1	<1.7	61.2	2304	441	NA	1.52	0.33
TUSTUMENA	08/18/94	A	30	44.0	4.5	5.1	46.8	<1.7	101.5	2414	223	NA	<0.01	0.27
TUSTUMENA	08/18/94	8	1	28.7	4.0	3.9	68.5	<1.7	58.2	2400	316	NA	1.82	0.20
TUSTUMENA	08/18/94	8	50	46.4	4.3	4.9	53.0	<1.7	102.2	2386	187	NA	0.02	0.12
TUSTUMENA	08/18/94	с	1	32.0	2.9	3.0	55.3	<1.7	63.3	2386	218	NA	1.08	0.38
TUSTUMENA	08/18/94	с	50	49.1	5.1	5.6	48.3	<1.7	103.0	2413	151	NA	NA	0.14
TUSTUMENA	09/12/94	A	1	27.8	3.8	3.7	41.4	<1.7	86.5	2090	280	NA	0.48	0.59
TUSTUMENA	09/12/94	A	25	39.1	6.9	7.0	51.5	<1.7	102.2	2102	182	NA	<0.01	0.26
TUSTUMENA	09/12/94	6	1	33.3	4.1	4.7	46.0	<1.7	91.8	2090	182	NA	0.31	0.44
TUSTUMENA	09/12/94		50	42.6	4.8	5.8	48.4	<1.7		2126	151	NA	0.03	0.11
TUSTUMENA	09/12/94		1	33.8	4.2	4.0	49.1	<1.7	91.8	2066	156	NA	0.30	0.44
TUSTUMENA	09/12/94		50	50.1	4.5	5.4	60.7			2102	161	NA	<0.01	0.19
TUSTUMENA	10/12/94		1	32.6	4.0	4.8	45.2	<1.7	99.2	2468	265	NA	0.13	0.29
TUSTUMENA	10/12/94		30	38.2	3.7	4.6	50.6	<1.7		2316	311	NA	0.12	0.31
TUSTUMENA	10/12/94		1	35.5	4.3	4.2	45.2		100.6	2188	156	NA	0.10	0.17
TUSTUMENA	10/12/94		50	42.9	4.8	5.7	51.5	<1.7		2138	130	NA	0.02	0.14
TUSTUMENA	10/12/94		1	35.5	4.5	4.8	48.3	<1.7		2049	130	NA	0.07	0.21
TUSTUMENA	10/12/94		50	44.0	3.5	4.7	53.0		100.8	2074	130	NA	0.03	0.19
		-		• -						• •				

Lake:	SKILAK
Station:	Α
Depth:	50m
Year:	1994

Macrozooplankton Density

(no./m^2)

	Seasonal Mean							
Date:	25-Apr	25-May	22-Jun	13-Jul	10-Aug	27-Sep	19-Oct	(No/m2)
Ergasilus								0
Epischura								0
Diaptomus	14,646	5,094	13,585	3,821	5,094	2,972	1,528	6,677
Cyclops	220,963	81,081	58,160	180,425	242,397	125,233	60,112	138,339
Ovig Cyc					6,368	10,613	1,528	2,644
Ovig Diap					1,274	3,821	340	776
Daphnia g.								0
Holopedium								0
Chydorinae								0
Polyphemus								0
								Total: 148,436

									SEASO	NAL MEAN	S
				y Size				Mean	Weighted	Biomass	Weighted Biomass
			(mm)				Length (mm)	Length (mm)	(mg/m ²)	(mg/m ²)
Ergasilus											
Epischura											
Diaptomus	0.68	0.70	0.89	1.29	1.30	1.30	1.28	1.06	0.92	34	23
Cyclops	0.77	0.75	0.91	0.59	0.78	0.68	0.74	0.75	0.73	266	256
Ovig Cyclops					0.78	1.07	1.06	0.97	0.97	9	9
Ovig Diaptomu	s				1.30	1.30	1.28	1.29	1.30	7	7
Daphni a g											
Holopedium											
Chydorinae											
Palyphemus											

316

TOTAL:

294

Lake:		LAK							
Station:		B							
Depth:)m							
Year:	19	94							
		Ма	crozoopla	ankton D	ensity				
			(no	./m^2)					
Date:	25-Apr	25-May	22-Jun	13-Jul	10-Aug	27-Sep	19-Oct]	Seasonal Mean (No/m2)
Ergasilus									0
Epischura									0
Diaptomus	5,909	9,238	33,876	28,867	18,848	4,755	16,302		16,828
Cyclops	68,671	123,758	166,330	201,3%	243,500	89,317	96,939		141,419
Ovig Cyc				1,698	27 ,509	6,283	2,717		5,458
Ovig Diap				3,3%		1,189	679		752
Daphnia g.									0
Holopedium									0
Chydorinae									0
Polyphemus									0

Total: 164,457

									SEASO	NAL MEAN	IS
				iy Size (mm)				Mean Length (mm)	Weighted Length (mm)	Biomass (mg/m²2)	Weighted Biomass (mg/m*2)
Ergasilus											
Epischura											
Diaptomus	0.67	0.86	1.12	1.28	1.28	1.28	1.26	1.11	1.17	96	112
Cyclops	0.80	0.84	0.93	1.03	0.80	0.87	0.91	0.88	0.89	390	397
Ovig Cyclops				1.18	1.07	1.08	1.08	1.10	1.08	24	23
Ovig Diaptomu	s			1.32		1.28	1.25	1.28	1.30	7	7
Daphnia g											
Holopedium											
Chydorinae											
Polyphemus											
								тс	TAL:	517	539

G-11

Lake:	SKILAK
Station:	С
Depth:	50m
Year:	1994
	_

Macrozooplankton Density

(no./m^2)

		Seasonal Mean						
Date:	25-Apr	25-May	22-Jun	13-Jul	10-Aug	27-Sep	19-Oct	(No/m2)
Ergasilus								0
Epischura								0
Diaptomus	3,057 1	9,849 1	11,293 1	7,641	10,613 1	9,806 1	3,863 1	8,017
Cyclops	106,643	162,333	83,800	216,085	203,349	91 ,824	121,243	140,754
Ovig Cyc					20,377	9,806	2,377	4,651
Ovig Diap				1,274	424	1,486		455
Daphnia g.								0
Holopedium								0
Chydorinae								0
Polyphemus								0

153,878 Total:

									SEASON	L MEANS	
				ly Size mm)				Mean Length (mm)	Weighted Length (mm)	Biomass (mg/m ⁻ 2)	Weighted Biomass (mg/m ²)
Ergasilus											
Epischura											
Diaptomus	0.62	0.81	1.05	1.19	1.24	1.29	1.24	1.06	1.09	41	44
Cyclops	0.79	0.82	0.83	0.83	0.78	0.65	0.71	0.77	0.78	292	300
Ovig Cyclops				1.28	1.07	1.11	1.09	1.14	1.08	22	20
Ovig Diaptom	us			1.33	1.29	1.33		1.32	1.32	4	4
Daphnia g											
Holopedium											
Chydorinae											
Polyphemus											
					(G-12		тс)TAL:	359	368

Lake: Station: Depth: Year:	<i>SKII</i> I 50 19) m 94									
		Ma	crozoopli (no	ankton D Jm^2)	ensity						
Date:	25-Apr	25-May	22-Jun	13-Jul	10-Aug	27-Sep	19-Oct			Seasonal Mea (No/m2)	n
Ergasilus										0	
Epischura										0	
Diaptomus	10,613	4,245	26,321	3,821	15,622	7,132	8,490			10,892	
Cyclops	176,605	261,500	165,563	117,168	457,117	206,821	104,941			212,816	
Ovig Cyc					38,716	28,528	4,755			10,286	
Ovig Diap						4,075	1,358			776	
Daphnia g.										0	
Holopedium										0	
Chydorinae										0	
Polyphemus										0	
									Total:	234,770]
										NAL MEAN	
				dy Size (mm)				Mean Length	Weighted Length	Biomass	Weighted Biomass
								(0000)	(mm)	(mg/m ²)	(mg/m ²)
Ergasilus											i
Epischura											
Diaptomus	0.73	0.74	1.12	1.26	1.28	1.32	1.29	1.11	1.12	62	65
Cyclops	0.79	0.79	0.81	0.48	0.60	0.68	0.82	0.71	0.70	368	353
Ovig Cyclops					1.12	1.10	1.07	1.10	1.11	45	46
Ovig Diaptorn	ius					1.31	1.27	1.29	1.30	7	7
Daphnia g											
Holopedium											
Chydorinae											
Polyphemus											
								TC)TAL:	482	471

Lake:	SKI	LAK									
Station:	I	Ξ									
Depth:	50	m									
Year:	19	94									
		Ma	crozoopia Ino	ankton D ./m^2)	ensity						
			(110						:	Seasonal Mea	n
Date:	25-Apr	25-May	22-Jun	13-Jul	10-Aug	27-Sep	19-Oct		-	(No/m2)	
Ergasilus										0	
Epischura										0	
Diaptomus	1,681	11,717	12,566	14,009	30,141	9,679	4,755			12,078	
Cyclops	29,954	88,299	111,564	150,023	214,812	145,438	102,562			120,379	
Ovig Cyc			170	1,019	41,603	16,301	5,434			9,218	
Ovig Diap				0	0	509	340			121	
Daphnia g.										0	
Holopedium										0	
Chydorinae										0	
Polyphemus										0	
									Total:	141,797]
										NAL MEAN	
				dy Size				Meau	-	Biomass	Weighted Biomass
				(mm)				(mm	-	(mg/m ⁺ 2)	(mg/m*2)
Ergasilus											
El Ganacia											
Epischura											
Diaptomus	0.74	0.86	1.16	1.27	1.30	1.27	1.22	1.12	1.19	71	86
Cyclops	0.87	0.85	1.00	1.06	0.82	0.93	0.87	0.93	0.92	358	360
Oviç Oyolops	5		0.96	1.15	1.11	1.09	1.07	1.0	3 1.10	39	41
Ovig Diapton	กมร			1.32	1.31	1.29	1.27	1.30) 1.28	1	1
Daphnia g			•								
Holopedium											
Chydorinae											
Polyphemus											
									TOTAL:	469	487

Lake:	KENAI	
Station:	В	
Depth:	50m	
Year:	1994	
		Macroz

acrozooplankton	Density
(no./m^2)	

								 Seasonal Mean
Date:	6-Mav	8-Jun	30-Jun	29-Jul	16-Aug	28-Sep	25-Oct	(No/m2)
OCyc		1,223	1,494	4,755	4,245	1,698		1,916
OQiap				0	1,698	5,094	1,019	1,116
Diaptomus	4,890	23,688	13,721	10,868	27,594	25,810	6,283	16,122
Cyclops	54,883	59,144	53,661	126,001	278,490	87,282	46,527	100,855
Bosmina				present				0
Daphnia I.								0
Daphnia g.								0
Holopedium								0
Chydorinae								0
Polyphemus								0

			Bo	dy Size (mm)			
OCyc		1.23	1.22	1.17	1.16	1.16	
ODiap				1.10	1.31	1.30	1.27
Diaptomus	0.57	0.77	0.92	1.10	1.22	1.25	1.26
Cyclops	0.78	0.61	0.65	0.58	0.66	0.61	0.65
Bosmina				0.24			
Daphnia I.	1						
Daphnia g							
Holopedium							
Chydorinae							
Polyphemus							

SEASONAL MEANS									
Mean	Weighted		Weighted						
Length	Length	Biomass	Biomass						
(mm)	(mm)	(mg/m ²)	(mg/m ²)						
1.19	1.18	10	10						
1.25	1.30	9	10						
1.01	1.06	72	81						
0.65	0.64	144	141						
0.24	0.24								
i									
i									
TC	TAL:	234	242						

Total:

120,010

Lake:	KENAI
Station:	С
Depth:	50m
Year:	1994

Macrozooplankton Density

(no./m^2)

								Seasonal Mean
Date:	6-May	8-Jun	30-Jun	29-Jul	16-Aug	28-Sep	25-Oct	(No/m2)
ОСус	85	509	2,377	15,452	1,868	1,528	136	3,136
ODiap			340	297	1,019	5,943	1,087	1,241
Diaptomus	4,500	22,414	57,395	13,967	9,509	9,170	1,630	16,941
Cyclops	24,198	76,666	94,073	97,467	71,319	80,148	88,97 8	76,121
Heterocope			present					0
Cyclops cap	pilatus			present				0
Daphnia g.								0
Holopedium								0
Chydorinae								0
Polyphemus	1							0

Total: 97,439

				dy Size (mm)			
OCyc	1.04	1.25	1.25	1.17	1.20	1.11	1.02
ODiap			1.24	1.34	1.34	1.30	1.26
Diaptomus	0.58	0.80	1.12	1.17	1.25	1.29	1.21
Cyclops	0.90	1.07	0.91	0.90	0.80	0.83	0.73
Heterocope			2.48				
Cyclops cappila	itus			2.24			
Daphnia g							
Holopedium							
Chydorinae							
Polyphemus							

	SEASONAL MEANS									
Mean Length (mm)	Weighted Length (mm)	Biomass (mg/m^2)	Weighted Biomass (mg/m ⁺ 2)							
1.15	1.18	15	16							
1.30	1.30	11	11							
1.06	1.07	86	88							
0.88	0.87	207	205							
2.48	2.48									
2.24	2.24									
тс)TAL:	319	321							

Lake:	KENAI	
Station:	D	
Depth:	50m	
Year:	1994	
		Macrozod

ooplankton Density (no./m^2)

			•					Seasonal Mear
Date:	6-May	8-Jun	30-Jun	29-Jul	16-Aug	28-Sep	25-Oct	(No/m2)
OCyc			170	3,566	8,915	1,358		2,001
ODiap			85	1,019	4,840	10,528	849	2,474
Diaptomus	6,962	15,283	20,037	25,471	23,688	9,509	849	14.543
Cyclops	28,528	29,208	27,848	71,488	167,346	66,057	76,582	66,722
Bosmina					present			0
Daphnia I.								0
Daphnia g.								0
Holopedium								0
Chydorinae								0
Polyphemus								0

				dy Size (mm)			
OCyc			1.21	1.17	1.21	1.18	
ODiap			1.02	1.35	1.30	1.29	1.24
Diaptomus	0.56	0.73	1.02	1.29	1.20	1.28	1.24
Cyclops	0.78	0.84	0.93	0.64	0.80	0.79	0.67
Bosmina					0.34		
Daphnia I.							
Daphnia g							
Holopedium							
Chydorinae							
Polyphemus							

SEASONAL MEANS									
Mean	Weighted		Weighted						
Length	Length	Biomass	Biomass						
(mm)	(mm)	(mg/m*2)	(mg/m*2)						
1.19	1.20	11	11						
1.24	1.29	20	22						
1.05	1.08	71	78						
0.78	0.76	141	134						
0.34	0.34								
TC	TAL:	242	245						

85,741

Total:

1

Lake:	KENAI
Station:	E
Depth:	50m
Year:	1994

Macrozooplankton Density

(no./m^2)

			•					Seasonal Me
Date:	6-Mav	8-Jun	30-Jun	29-Jul	16-Aug	28-Sep	25-Oct	(No/m2)
OCyc		255	2,377	11,887	3,566	170		2,608
ODiap				340	3,269	4,755	425	1,256
Diaptomus	5,094	15,198	35,999	34,980	21,396	4,415	1,486	16,938
Cyclops	23,518	24,707	89,998	210,565	103,119	118,186	119,715	98,544
Bosmina						170		24
Heterocope					present			0
Daphnia g.								0
Holopedium								0
Chydorinae								0
Polyphemus	;							0

Total: 119,370

		E	3ody Size (mm)				Mean Length (mm)
OCyc	1.22	1.21	1.18	1.13	1.10		1.17
ODiap			1.33	1.31	1.33	1.26	1.31
Diaptomus 0.59	0.82	1.02	1.12	1.26	1.28	1.25	1.05
Cyclops 0.90	1.01	0.97	0.91	0.90	0.81	0.88	0.91
Bosmina					0.26		0.26
Heterocope				2.84			2.84
Daphnia g							
Holopedium							
Chydorinae							
Polyphemus							

Mean Length (mm)	Weighted Length (mm)	Biomass (mg/m²2)	Weighted Biomass (mg/m ⁺ 2)
1.17	1.17	13	13
1.31	1.32	11	12
1.05	1.06	83	86
0.91	0.90	291	281
0.26	0.26	0.01	0.01
2.84	2.84		
```			
тс	)TAL:	386	379

Lake:	KENAI
Station:	F
Depth:	50m
Year:	1994

# Macrozooplankton Density

(no./m^2)

			•					Seasonal Mean
Date:	6-Mav	8-Jun	30-Jun	29-Jul	16-Aug	28-Sep	25-Oct	(No/m2)
0Cyc		127	1,274	679	4,585	509		1,025
ODiap				679	2,887	45,593	2,207	7,338
Diaptomus	1,953	23,688	22,287	15,113	19,188	58,583	1,358	20,310
Cyclops	21,396	41,772	93,180	75,904	67,244	112,073	97,978	72,792
Bosmina								0
Daphnia I.								0
Daphnia g.								C
Holopedium								0
Chydorinae								0
Polyphemus								0

Total: 101,465

								;	SEASO
			Во	dy Size (mm)				Mean Length (mm)	Weighte Length (mm)
00ус		0.80	1.23	1.18	1.16	0.66		1.01	1.13
ODiap				1.35	1.30	1.29	1.24	1.30	1.29
Diaptomus	0.55	0.69	1.03	1.04	1.26	1.16	1.24	1.00	1.05
Cyclops	0.80	0.80	. 0.79	0.71	0.59	0.66	0.70	0.72	0.71
Bosmina									
Daphnia I.									
Daphnia g									
Holopedium									
Chydorinae									
Polyphemus									
								то	TAL:
					C	.10			

_	SEASON	AL MEANS	
Mean	Weighted		Weighted
Length	Length	Biomass	Biomass
( <b>mm</b> )	(mm)	(mg/m^2)	(mg/m ² )
1.01	1.13	4	5
1.30	1.29	65	65
1.00	1.05	86	101
0.72	0.71	130	125

TOTAL: 286

296

Station: A Depth: 35-40m Year: 1994

Үеаг.		r	2

# Macrozooplankton Density

(no./m^2)

			(,	10.3111 2.					Seasonal Mean
Date:	26-Apr	24-May	17-Jun	6-Jul	28-Jul	18-Aug	12-Sep	12-Oct	(No/m2)
Ovig Cyc		153		2,038	891	170	102	68	428
Ovig Diap					1,189	1,528	5,502		1,027
Diaptomus			1,868	16,301	141,747	12,141	27,916	23,908	27,985
Cyclops	25,132	28,171	57,224	23,841	35,957	34,131	24,452	9,713	29,828
Bosmina									0
Daphnia I.									C
Daphnia g.									0
Holopedium									0
Chydorinae									0
Polyphemus									0

Total: 59,268

(mm)       Length (mm)       Length (mm)       Length (mm)       Biomass (mg/m*2)       Biomass (mg/m*2)         Ovig Cyc       1.28       1.24       1.20       1.20       1.17       1.18       1.22       1.21       1.20       2         Ovig Diap       1.15       1.02       1.02       1.06       1.04       5         Diaptomus       1.30       0.59       0.78       0.97       1.03       1.04       1.02       0.96       0.97       108										SEASO	NAL MEAN	IS
Ovig Ojap       1.15       1.02       1.02       1.06       1.04       5         Diaptomus       1.30       0.59       0.78       0.97       1.03       1.04       1.02       0.96       0.97       108         Cyclops       0.94       0.97       0.99       0.97       0.79       0.74       0.86       0.78       0.88       0.89       82         Bosmina       Daphnia I.       Daphnia g									Length	Length		Weighted Biomass (mg/m ² )
Diaptomus       1.30       0.59       0.78       0.97       1.03       1.04       1.02       0.96       0.97       108         Cyclops       0.94       0.97       0.99       0.97       0.79       0.74       0.86       0.78       0.88       0.89       82         Bosmina       Daphnia I.       Daphnia g       1.01       1.02       1.02       1.02       1.03       1.04       1.02       1.03       1.04       1.02       0.96       0.97       1.08       1.02       1.03       0.96       0.97       1.08       1.02       0.96       0.97       1.08       1.02       0.96       0.97       1.08       1.02       0.96       0.97       1.08       1.02       0.88       0.89       82       1.03       1.04       1.02       0.88       0.89       82       1.03       1.04       1.02       0.88       0.89       82       1.03       1.04       1.02       1.03       1.04       1.02       1.03       1.04       1.02       1.04       1.02       1.04       1.02       1.04       1.02       1.04       1.04       1.02       1.04       1.02       1.04       1.04       1.04       1.04       1.04       1.04       1.04	Ovig Cyc	1.28	1.24	1.20	1.20	1.17	1.18	1.22	1.21	1.20	2	2
Cyclops         0.94         0.97         0.99         0.97         0.79         0.74         0.86         0.78         0.88         0.89         82           Bosmina         Daphnia I.         Daphnia g         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	Ovig Diap				1.15	1.02	1.02		1.06	1.04	5	5
Bosmina Daphnia I. Daphnia g	Diaptomus	1.30	0.59	0.78	0.97	1.03	1.04	1.02	0.96	0.97	108	111
Daphnia I. Daphnia g	Cyclops	0.94 0.9	0.99	0.97	0.79	0.74	0.86	0.78	0.88	0.89	82	84
Daphnia g	Bosmina								}			
	Daphnia I.											
Holopedium	Daphnia g											
	Holopedium											
Chydonnae	Chydorinae											
Polyphemus	Polyphemus											
TOTAL: 197 2									TC	TAL:	197	202

Lake:	TUSTUMENA
Station:	В
Depth:	50m
Year:	1994

Macrozooplankton Density

(no./m^2)

			(i	10,711-2)					Seasonal Mean
Date:	26-Apr	24-May	17-Jun	6-Jul	28-Jul	18-Aug	12-Sep	12-Oct	(No/m2)
Ovig Cyc				408	815	543	153		240
Ovig Diap	170				204	2,717	1,630	1,596	790
Diaptomus	679	1,494	32,739	18,034	36,679	4,024	3,872		12,190
Cyclops	40,925	21,939	31,721	41,842	41,875	31,788	21,446	16,335	30,984
Bosmina									0
Daphnia I.									0
Daphnia g.									0
Holopedium									0
Chydorinae									0
Polyphemus									0

44,204 Total:

										SEASO	NAL MEAN	IS
			В	ody Size (mm)					Mean Length (mm)	Weighted Length (mm)	Biomass (mg/m°2)	Weighted Biomass (mg/m*2)
Ovig Cyc			1.26	1.17	1.14	1.17	1.20	0.98	1.15	1.16	1	1
Ovig Diap	0.98				0.80	1.04	1.04	1.02	0.98	1.03	3	4
Diaptomus	0.98	0.57	0.81	0.80	1.05	1.06	1.00	1.22	0.94	0.91	44	41
Cyclops	0.89	0.85	0.80	0.89	0.85	0.81	0.79	0.81	0.84	0.84	76	78
Bosmina												
Daphnia I.												
Daphnia g												
Holopedium												
Chydorinae												
Polyphemus												
						G-21			тс	TAL:	124	123

Lake:	TUSTUMENA
Station:	С
Depth:	50m

Year: 1994

Macrozooplankton Density

(no./m^2)

			(•						Seasonal Mean
Date:	26-Apr	29-May	17-Jun	6-Jul	28-Jul	18-Aug	12-Sep	12-Oct	(No/m2)
Ovig Cyc					1,698	1,274		170	393
Ovig Diap	68				2,123		2,445	509	643
Diaptomus	34			10,121	179,152	68,263	2,853	1,596	32,752
Cyclops	13,653	13,381	22,992	36,679	29,292	50,943	23,570	16,268	25,847
Bosmina									0
Daphnia I.									O
Daphnia g.									0
Holopedium									0
Chydorinae									0
Polyphemus									0

Total: 59,636

-

										SEASON	AL MEANS	
			B	ody Size					Mean	Weighted		Weighted
				(mm)					Length (mm)	Length (mm)	Biomass (mg/m°2)	Biomass (mg/m*2)
										,	(	(
Ovig Cyc					1.17	1.14	1.17	1.15	1.16	1.16	2	2
Ovig Diap	0.98			0.65	1.08		1.00	1.00	0.94	1.03	2	3
Diaptomus	0.98			0.65	0.89	1.01	1.01	1.01	0.93	0.91	113	109
Cyclops	0.79	0.91	0.80	0.86	0.83	0.83	0.86	0.96	0.86	0.85	67	65
Bosmina												
Daphnia I.												
Daphnia g.												
Holopedium												
Chydorinae												
Polyphemus												
					~	-22			тс	TAL:	184	180

Lake:	TUSTUMENA
Station:	D

Depth:	50m
--------	-----

Year: 1994

Macrozooplankton Density (no./m^2)

									Seasonal Mea
Date:	26-Apr	29-Mav	17-Jun	6-Jul	28-Jul	18-Aug	12-Sep	12-Oct	(No/m2)
Ovig Cyc		34	255	1,189	1,528		272		410
Ovig Diap					340	2,343	2,921	1,562	896
Diaptomus	374			242,486	46,697	21,498	5,026	5,026	40,138
Cyclops	33,759	12,294	106,979	157,496	57,565	22,720	44,151	23,637	57,325
Bosmina									0
Daphnia I.									0
Daphnia g.									0
Holopedium									0
Chydorinae									0
Polyphemus									0

										SEASO	NAL MEAN	S
			B	ody Size					Mean	Weighted		Weighted
				(mm)					Length (mm)	Length (mm)	Biomass (mg/m*2)	Biomass (mg/m*2)
											(	(
Ovig Cyc		1.14	1.21	1.18	1.16	1.17	1.16	1.10	1.16	1.17	2	2
Ovig Diap					1.11	1.02	1.01	1.03	1.04	1.02	4	4
Diaptomus	0.97			0.82	0.95	1.01	1.02	1.03	0.97	0.86	157	112
Cyclops	0.86	0.94	0.96	0.96	0.82	0.73	0.92	0.92	0.89	0.92	160	172
Bosmina												
Daphnia I.												
Daphnia g.												
Holopedium												
Chydorinae												
Polyphemus												

Total:

TOTAL:

290

324

98,769

Lake:	TUSTUMENA
Station:	E
Depth:	50m
Year:	1994

Macrozooplankton	Density
(no./m^2)	

no./m^2)	
----------	--

			Seasonal Mean						
Date:	26-Apr	24-May	17-Jun	6-Jul	28-Jul	18-Aug	12-Sep	12-Oct	<u>(No/m2)</u>
Ovig Cyc			170	509	2,547	340	306	51	490
Ovig Diap		34			679	1,698	3,260	968	830
Diaptomus		136	136	13,754	37,188	24,962	11,819	2,853	11,356
Cyclops	40,075	17,150	17,287	52,387	64,697	<b>46,8</b> 67	44,115	20,071	37,831
Bosmina									0
Daphnia I.									0
Daphnia g.									0
Holopedium									0
Chydorinae									0
Polyphemus									0

Total:	50,507
	اس

									SEASONAL MEANS				
			В	ody Size (mm)					Mean Length (mm)	Weighted Length (mm)	Biomass (mg/m²2)	Weighted Biomass (mg/m*2)	
Ovig Cyc			1.19	1.20	1.20	1.16	1.21	1.16	1.19	1.20	3	3	
Ovig Diap		1.02			1.14	1.01	1.03	1.00	1.04	1.03	4	4	
Diaptomus		1.02	0.57	0.83	0.99	1.03	1.03	1.02	0.93	0.98	39	46	
Cyclops	0.86	0.87	0.90	0.99	0.96	0.82	0.88	0.90	0.90	0.91	108	110	
Bosmina													
Daphnia I.													
Daphnia g													
Holopedium													
Chydorinae													
Polyphemus													
									TC	)TAL:	154	163	

I

APPENDIX H

.

			Deplh	<ul> <li>Specific conductance</li> </ul>	рН	Alkalinity	Turbidity	Color	Calcium	Magnesium	Iron	Total-P	Total filter- able-P
			(m)	(umhos/cm)	(Units)	(mg/L)	(NTU)	(Pt units)	(mg/L)	(mg/L)	(ug/L)	(ug/L P)	(ug/L P)
AFOGNAK	05/05/94	1	1	48	6.2	9.0	4.0	15	4.0	0.7	242	4.8	2.0
AFOGNAK	05/05/94	1	2						•				
AFOGNAK	05/05/94	1	17	48	6.2	8.5	1.2	13	4.0	0.7	145	7.4	2.7
AFOGNAK	05/05/94	2	1	48	6.4	8.5	1.4	13	3.0	1.4	144	5.1	3.3
AFOGNAK	05/05/94	2	2										
AFOGNAK	05/05/94	2	9	48	6.3	9.0	4.5	13	3.0	0.7	474	6.6	3.0
AFOGNAK	06/09/94	1	1	48	6.6	8.0	1.0	11	3.0	0.7	49	5.0	2.1
AFOGNAK	06/09/94	1	2										
AFOGNAK	06/09/94	1	18	48	6.5	8.0	0.7	11	3.0	0.7	60	4.0	2.3
AFOGNAK	06/09/94	2	1	54	6.6	9.0	1.0	11	3.0	0.7	72	5.3	2.4
AFOGNAK	06/09/94	2	2										
AFOGNAK	06/09/94	2	11	47	6.6	9.0	3.0	13	3.0	0.7	217	5.4	3.1
AFOGNAK	06/30/94	1	1	52	6.4	90	1.5	10	3.0	1.4	48	10.2	2.4
AFOGNAK	06/30/94	1	2										
AFOGNAK	06/30/94	1	18	51	6.4	9.0	1.4	11	3.0	1.4	64	4.0	2.9
AFOGNAK	06/30/94	2	1	50	6.6	10.0	1.3	11	3.0	1.4	46	15.3	7.3
AFOGNAK	06/30/94	2	2					•					
AFOGNAK	06/30/94	2	11	51	6.4	90	1.1	11	3.0	1.4	38	4.5	3.1
AFOGHAK	07/20/94	1	1	49	6.6	10.0	1.3	11	2.9	1.3	97	8.1	2.7
AFOGNAK	07/20/94	1	2										
AFOGNAK	07/20/94	1	17	51	6.6	10.0	1.3	10	2.9	1.3	70	10.1	1.0
AFOGNAK	07/20/94	2	1	50	6.6	10.0	1.1	12	3.9	0.7	52	9.6	1.9
AFOGNAK	07/20/94	2	2										
AFOGNAK	07/20/94	2	11	50	6.5	10.0	1.1	15	3.9	1.3	110	7.9	4.3
AFOGNAK	08/12/94	1	1	50	6.7	10.0	0.9	19	2.7	1.3	68	10.0	9,8
<b>AFOGNAK</b>	08/12/94	1	2										
AFOGNAK	08/12/94	1	15	51	6.4	11.0	0.9	12	3.7	1.3	84	7.8	3.
AFOGNAK	08/12/94	2	÷ 1	49	6.7	10.0	0.9	13	3.7	0.6	79	11.1	7.
AFOGNAK	08/12/94	2	2										
AFOGNAK	08/12/94	2	12	53	6.4	11.0	1.8	11	3.7	1.3	138	7.9	3.
AFOGNAK	08/31/94	1	1	53	6.5	11.0	1.5	8	3.9	1.3	64	7.2	2
AFOGHAK	08/31/94		2										
AFOGHAK			15	53	6.5	11.0	1.3	8	3.9	1.3	77	8.4	2
AFOGHAK			1	52	6.6	11.0	1.5	5	3.9	1.3	69	36.4	2
AFOGNAK			2					•					
AFOGNAK			10	52	6.5	11.0	1.5	9	3.9	1.3	72	8.5	3.
AFOGNAK			1	51	6.5	9.5	0.6	12	4.0	1.2	64	8.1	36.
AFOGNAK	09/22/94	1	2										

•

-

AFOGNAK	09/22/94 1	16	52	6.5	10.0	1.1	8	3.0	1.2	64	6.4	4.8
AFOGNAK	09/22/94 2	1	51	6.6	10.0	0.8	9	4.0	1.2	60	7.8	24.2
AFOGNAK	09/22/94 2	2	51	0.0	10.0	0.0	3	4.0	1.4	~	1.0	27.2
AFOGNAK	09/22/94 2	11	52	6.6	10.0	1.1	10	4.0	1.2	122	6.5	4.0
AFOGNAK	10/14/94 1	1	54	6.5	9.0	1.3	9	4.0	1.3	79	7.2	2.7
AFOGNAK	10/14/94 1		54	0.5	3.0	1.5	3	4.0	1.5	15	1.2	<b>2</b> .7
		2	54	6.4	9.0	1.0	9	4.0	1.3	79	7.7	2.2
AFOGNAK	10/14/94 1	16		6.5	9.0	1.0	10	4.0	1.3	82	6.0	2.2
AFOGNAK	10/14/94 2	1	50	0.5	9.0	1.3	10	4.0	1.5	02	0.0	2.1
AFOGNAK	10/14/94 2	2	62	6 F	0.0		10	4.0	1.3	90	6.9	6.1
AFOGNAK	10/14/94 2	10	52	6.5	9.0	1.0	10	4.0	1.5	50	0.9	0.1
AKALURA	05/16/94 1	1	58	6.9	13.0	2.1	9	5.0	1.4	56	12.5	6.3
AKALURA	05/16/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
AKALURA	05/16/94 1	17	58	7.2	14.0	3.0	8	5.0	1.4	128	16.7	3.1
AKALURA	05/16/94 2	1	58	7.0	13.5	2.4	4	4.0	1.4	56	12.7	3.4
AKALURA	05/16/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
AKALURA	05/16/94 2	14	58	7.1	14.0	3.0	5	5.0	1.4	64	11.7	3.4
AKALURA	06/14/94 1	1	58	6.8	14 0	2.3	6	5.0	0.7	66	9.5	2.8
AKALURA	06/14/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
AKALURA	06/14/94 1	16	59	6.6	14.0	3.0	5	5.0	0.7	244	12.1	2.6
AKALURA	06/14/94 2	1	58	6.8	14.0	3.0	4	5.0	0.7	84	10.1	3.0
AKALURA	06/14/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
AKALURA	06/14/94 2	14	58	6.6	13.0	3.0	8	5.0	0.7	308	16.9	3.8
AKALURA	07/18/94 1	1	58	6.9	14.0	3.2	4	4.9	1.5	76	9.6	2.7
AKALURA	07/18/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
AKALURA	07/18/94 1	16	61	6.6	15.0	2.0	10	4.9	1.5	679	18.6	7.5
AKALURA	07/18/94 2	1	58	7.0	14.0	3.3	4	4.9	1.5	70	10.4	3.2 ·
AKALURA	07/18/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
AKALURA	07/18/94 2	13	58	6.6	15.0	2.4	5	4.9	1.5	192	11.7	3.1
AKALURA	08/18/94 1	1	57	6.7	14.0	7.5	6	5.0	1.7	66	19.8	3.5
AKALURA	08/18/94 1	2	0	0.0	0.0	0.0	0	0.0	00	0	0.0	0.0
AKALURA	08/18/94 1	17	63	6.4	16.0	2.1	12	5.0	1.7	1186	50.9	13.6
AKALURA	08/18/94 2	1	59	7.2	15.0 ;	13.0	9	5.0	1.7	228	10.6	14.1
AKALURA	08/18/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
AKALURA	08/18/94 2	14	61	6.3	15.0	1.7	9	5.0	1.7	434	19.9	6.5
AKALURA	09/26/94 1	1	64	7.0	15.0	0.8	6	4.9	1.3	98	22.9	6.7
AKALURA	09/26/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
AKALURA	09/26/94 1	16	64	7.9	15.0	1.1	3	4.9	1.3	112	22.5	5.6
AKALURA	09/26/94 2	1	64	7.0	15.0	1.0	4	4.9	1.3	107	18.5	6.4
AKALURA	09/26/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
AKALURA	09/26/94 2	14	63	7.0	15.0	1.0	6	4.9	1.3	129	20.1	6.8
BIG KITOI	05/26/94 1	1	66	6.8	19.0	1.0	20	7.6	1.6	64	5.6	5.3

BIG KITOI	05/26/94 1	2	0	0.0	0.0	0.0	0	0.0	0.U	0	0,0	0.0
BIG KITOI	05/26/94 1	32	68	6.7	20.0	0.4	13	7.6	1.6	38	2.6	1.4
<b>BIG KITOI</b>	07/27/94 1	1	91	7.4	23.0	1.0	18	8.1	1.5	88	6.0	5.3
<b>BIG KITOI</b>	07/27/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
BIG KITOI	07/27/94 1	31	84	7.0	21.0	0.6	14	9.0	1.5	75	2.5	2.0
<b>BIG KITOI</b>	09/08/94 1	1	86	7.5	23.0	0.6	17	7.9	2.2	64	4.2	2.0
<b>BIG KITOI</b>	09/08/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
<b>BIG KITO</b>	09/08/94 1	31	88	7.0	21.0	0.4	15	7.9	1.4	42	3.8	1.9
BIG KITOI	10/27/94 1	1	77	6.8	24.0	0.3	13	9.0	1.4	10	4.6	1.3
BIG KITO	10/27/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
<b>BIG KITOI</b>	10/27/94 1	30	86	6.5	24.0	0.2	14	10.0	0.7	3	3.2	1.4
CRESCEN	06/01/94 1	1	36	6.9	5.0	1.8 · .	6	2.0	0.2	134	5.9	3.7
CRESCEN	• .	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
CRESCEN		26	35	6.7	5.0	0.7	4	3.1	0.2	142	6.5	3.2
CRESCEN		1	52	6.4	5.0	0.5	4	1.0	0.7	76	4.9	1.8
CRESCEN	06/30/94 1	2	0	0.0	0.0	0.0	Ο.	0.0	0.0	Ó	0.0	0.0
CRESCEN		28	36	6.1	5.0	1.0	4	2.0	0.7	139	4.4	4.0
CRESCEN		1	39	6.5	10.0	2.3	3	3.9	0.7	204 ·	6.9	6.2
CRESCEN		2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
CRESCEN		26	35	6.0	5.0	0.4	4	1.9	0.7	165	4.1	4.0
CRESCEN		1	36	6.8	7.0	0.5	3	2.0	0.6	141	5.6	2.1
CRESCEN		2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
CRESCEN		26	37	6.6	8.0	0.5	3	2.0	0.6	178	6.0	2.5
CRESCEN		1	35	6.4	5.0	0.7	11	2.0	0.5	118	5.4	10.4
CRESCEN		2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
CRESCEN		25	37	5.9	5.0	0.8	15	2.0	0.5	372	6.1	12.6
CRESCEN		1	36	6.4	10.0	0.7	3	2.0	0.6	171	5.2	2.6
CRESCEN		2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
CRESCEN	10/19/94 1	25	36	6.4	11.0	1.0	3	2.0	0.6	187	4.4	2.2
FRAZER	06/02/94 1	1	55	7.3	15.0	1.3	6	4.8	1.1	9	6.9	2.0
FRAZER	06/02/94 1	2	0	0.0	0.0	0.0	0.	0.0	0.0	0	0.0	0.0
FRAZER	06/02/94 1	23	56	7.2	14.0	0.5	8	4.8	0.2	8	3.7	2.6
FRAZER	06/02/94 3	1	55	7.1	14.0	0.8	8	4.8	1.1	12	11.0	3.5
FRAZER FRAZER	06/02/94 3 06/02/94 3	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
FRAZER		50	54	7.0	13.0	0.5	4	4.8	1.1	3	3.2	2.1
FRAZER	07/19/94 1 07/19/94 1	1	56	6.5	13.0	0.4	5	4.9	1.3	13	9.8	1.8
		2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
FRAZER FRAZER	07/19/94 1 07/19/94 3	23 1	55 55	6.6 6.6	14.0 13.0	0.5	5	4.9	1.3	14	3.3	1.9
FRAZER	07/19/94 3	2	0	0.0	0.0	0.9 0.0	4 0	4.9	1.3	36	3.9	1.8
FRAZER	07/19/94 3	2 50	54	6.5	13,0	0.0	4	0.0 4.9	0.0 1.3	0 10	0.0 5.2	0.0 2.2
	01110101 0	00		0.0	10.0	v.7	7	4.5	1.5	IV	5.4	۷.۷
									-			

	FRAZER	08/25/94 1	1	54	7.3	15.0	0.4	6	4.7	1.4	32	3.6	1.7
	FRAZER	08/25/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
	FRAZER	08/25/94 1	24 .	52	7.0	14.0	0.3	4	4.7	1.4	30	3.6	1.7
	FRAZER	08/30/94 - 3	1	54	6.8	13.0	0.4	6	4.8	1.3	30	5.8	2.5
	FRAZER	08/30/94 3	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
	FRAZER	08/30/94 3	50	54	6.5	12.5	0.4	4	4.8	1.3	36	3,4	1.2
	FRAZER	10/11/94 1	1	57	6.7	13.0	0.3	4	5.0	1.3	10	4.8	1.6
	FRAZER	10/11/94 1	2	0	0.0	0.0	0.0	o	0.0	0.0	0	0.0	0.0
	FRAZER	10/11/94 1	23	56	6.6	12.0	0.4	3	5.0	1.3	11	4.7	1.8
	FRAZER	10/11/94 3	1	56	6.7	12.5	0.4	4	5.0	1.3	11	4.9	1.6
	FRAZER	10/11/94 3	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
	FRAZER	10/11/94 3	43	55	6.6	12.0	0.4	3	5.0	1.3	12	13.5	1.5
					· ·							•	
	HIDDEN K	05/16/94 1	1 :	47	6.7	7.0	0.7	13	3.0	0.7	66	3.0	1.2
	HIDDEN K	05/16/94 1	2	0	0.0	0.0	0.0	`o	0.0	0.0	0	0.0	0.0
	HIDDEN K	05/16/94 1	40	47	6.7	7.0	1.0	13	3.0	0.7	53	2.6	0.9
	HIDDEN K	06/16/94 1	1	53	6.7	6.5	1.3	12	3.0	0,7	0	5.9	1.1
	HIDDEN K	06/16/94 1	2	0	0.0	0.0	0.0	0	0.0	0,0	. 0	0.0	0.0
	HIDDEN K	06/16/94 1	36	47	6.5	6.5	0.2	13	3.0	0.7	0	4.2	1.2
	HIDDEN K	07/05/94 1	1	45	6.4	7.0	0.7	11	3.0	0.5	30	5.2	1.5
	HIDDEN K	07/05/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
	HIDDEN K	07/05/94 1	42	45	6,4	7.0	0.8	14	3.0	0.5	36	3.3	1.6
H-	HIDDEN K	07/29/94 1	1	45	6.6	7.0	0.4	14	2.9	1.3	74	4.4	2.5
ហ	HIDDEN K	07/29/94 1	2	· <b>O</b>	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
0.	HIDDEN K	07/29/94 1	43	46	6.2	6.0	0.4	13	2.9	0.7	65	4.6	1.2
	HIDDEN K	08/19/94 1	1	48	6,4	8.0	0.9	10	3.9	1.2	87	4.8	1.8
	HIDDEN K	08/19/94 1	2	. 0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
	HIDDEN K	08/19/94 1	41	46	6.0	8.0	0.3	12	2.9	1.2	68	3.3	1.4
	HIDDEN K	09/16/94 1	1	50	6.6	8.0	0.4	10	4.0	1.2	38	7.0	1.9
	HIDDEN K	09/16/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
	HIDDEN K	09/16/94 1	39	49	6.2	8.0	0.4	12	3.0	1.2	30	9.2	2.5
	HIDDEN K	10/07/94 1	1	47	6.2	7.0	0.5	11	2.9	1.3	42	2.1	1.9
	HIDDEN K	10/07/94 1	2	• 0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
	HIDDEN K	10/07/94 1	39	46	6.0	7.0	0.3	11	2.9	- 1.3	29	2.7	1.4
	JENNIFER	06/01/94 1	1	133	7.0	17.0	0.4	15	5.8	2.1	26	3.0	1.9
	JENNIFER	06/01/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
	JENNIFER	06/01/94 1	21	136	6.7	17.0	0.5	17	5.8	2.1	30	4.4	3.5
	JENNIFER '	07/21/94 1	1	130	6.6	19.0	0.8	30	5.9	1.9	71	5.4	10.8
	JENNIFER	07/21/94 1	2	0	0.0	0.0	0.0	0	0,0	0.0	0	0.0	0.0
	JENNIFER	07/21/94 1	20	134	6.4	19.0	1.0	17	5.9	1.9	75	4.4	2.9
	JENNIFER	08/18/94 1	1	130	6.5	18.0	0.6	13	5,8	3.6	84	5.4	3.1
	JENNIFER	08/18/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	00

JE	NNIFER	08/18/94 -1	20	136	6.2	17.0	0.4	15	6,7	3.6	70	4.9	2.8	
JE	NNIFER	10/24/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	
JE	NNIFER	10/24/94 1	19	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	
	NNIFER	10/24/94 2	1	128	6.5	18.0	0.4	20	7.0	2.1	26	5.0	3.2	
	NNIFER	10/24/94 2	19	127	6.5	18.0	0.5	22	6.0	2.8	47	45.5	4.0	
					0.0	10.0	0.0		0.0			10.0		
IE	NNIFER	06/01/94 1	1	133	7.1	16.5	0.5	9	4.8	4.2	12	6.2	1.7	
	NNIFER	06/01/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	
	NNIFER	06/01/94 1	21	133	6.8	16.5	0.6	10	4.8	3.2	10	2.6	1.8	
	NNIFER	07/21/94 1	1	128	6.5	16.0	0.6	13	5.9	1.9	48	3.9	4.0	
				120	0.0			0	0.0	0.0	40	0.0	0.0	
	INNIFER	07/21/94 1	2	-		0.0	0.0	9			_			
	INNIFER	07/21/94 1	21	133	6.4	18.0	2.0		5.9	1.9	102	3.4	3.3	
	INNIFER	08/18/94 1	1	127	6.6	17.0	0.3	8	5.8	3.6	50	6.0	2.1	
	INNIFER	08/18/94 1	2 .	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	
	INNIFER	08/18/94 1	21	, 132	6.3	18.0	• 0.4	8	6.7	3.6	48	5.0	2.1	
	ENNIFER	10/24/94 1	1	129	6.5	17.0	0.3	9	6.0	2.1	3	4.3	2.5 0.0	
	ENNIFER	10/24/94 1	2	0	0.0	0.0	0.0	0	.0.0	0.0	0 3	0.0		
JE	ENNIFER	10/24/94 1	20	133	6.5	18.5	0.2	12	7.0	2.8	3	3.3	2.3	
ĸ	ARLUK	06/02/94 3	1	70	7.3	20.0	0.6	8	7.7	1.1	3	4.3	4.5	
	ARLUK	06/02/94 3	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	
	ARLUK	06/02/94 3	50	69	7.1	20.0	0.7	9	7.7	1.1	3	5.5	5.0	
	ARLUK	07/19/94 3	1	71	7.0	22.0	1.6	8	6.9	1.3	70	4.1	2.3	
	ARLUK	07/19/94 3	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	
Ϊĸ	ARLUK	07/19/94 3	 50	72	6.8	22.0	4.5	9	7.9	1.3	326	5.0	2.1	
5	ARLUK	08/30/94 3	1	71	7.1	22.U	0.4	10	7.7	1.3	27	7.6	2.5	
	ARLUK	08/30/94 3	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	
	ARLUK	08/30/94 3	50	72	6.5	22.0	1.5	9	7.7	1.3	344	68.6	19.2	
	ARLUK	10/11/94 3	1	73	6.9	20.5	0.4	10	7.0	2.0	7	5.9	2.2	
	ARLUK	10/11/94 3	2	,5	0.0	0.0	· 0.0	0	0.0	0.0	0	0.0	0.0	
	ARLUK	10/11/94 3	2 43	72	6.8	20.5	0.0	11	8,0		30	9.2	2.7	
R.	ANUN	10/11/94 3	40	14	0.0	20.5	0.4	* *	0.0	2.0	50	¥.L	2.1	
·υ	AURA	05/16/94 1	1	67	6.8	9.0	1.5	18	3.9	1.1	94	4.4	1.8	••
υ	AURA	05/16/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	
U	AURA	05/16/94 1	38	67	6.7	9.5	1.2	17	4.0	1.4	97	3.8	1.8	
U	AURA	06/15/94 1	1	66	6.6	9.0	0.5	19	4.0	0.2	40	6.2	2.2	
U	AURA	06/15/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	
U	AURA	06/15/94 1	32	67	6.5	9.0	0.9	15	4.0	0.2	52	3.2	3.5	
L	AURA	07/06/94 1	1	64	6.6	9.0	1.8	11	4.0	0.5	66	16.9	4.4	
ι	AURA	07/06/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	
	AURA	07/06/94 1	35	73	6.7	14.0	1.2	14	6.0	1.9	102	5.2	2.4	
	AURA	07/29/94 1	1	64	6.6	15.0	0.5	11	3.9	1.3	62	11.5	2.2	
-	AURA		•	~ '	0.0									

Н-6

LAURA	07/29/94 1	37	68	6.3	11.0	1.0	13	3.9	1.3	95	5.7	2.3
LAURA	08/19/94 1	1	66	6.4	10.0	0.7	13	3.9	1.2	64	11.6	2.9
LAURA	08/19/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
LAURA	08/19/94 1	34	69	6.2	10.0	0.7	14	3.9	2.4	83	4.3	1.9
LAURA	09/16/94 1	1	69	6.6	10.0	0.7	11	4.9	1.2	17	11.6	2.6
LAURA	09/16/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
LAURA	09/16/94 1	37	81	6.5	10.0	0.6	12	4.0	1.9	40	4.6	2.1
LAURA	10/07/94 1	1	66	6.2	10.0	0.6	12	3.8	1.5	0 60	7.5	3.5
LAURA	10/07/94 1	2	0	0.2	0.0	0.0	0	0.0	0.0	0	0.0	0.0
LAURA	10/07/94 1	37	65	6.0	10.0	0.7	14	3.8	2.0	58	4.8	1.8
CAUNA	10/07/94 1	57	05	0.0	10.0	0.7	14	5.0	2.0	50	4.0	1.0
LITTLE KI	F 05/26/94 1	1	97	6.8	24.0	0.6	19	9.5	2.4	51	3.8	2.5
LITTLE KI	T 05/26/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0,0	0.0
LITTLE KI	T 05/26/94 1	18	126	6.5	26.0	1.0	20	9.5	2.4	57	4.3	2.3
<b>LITTLE KI</b>	T 05/26/94 2	1	95	6.6	24.0	1.0	22	8.6	2.4	42	4.2	2.5
LITTLE KI	T 05/26/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
LITTLE KI	T 05/26/94 2	14	120	6.5	30.0	5.7	18	11.4	2.4	92	4.2	2.6
LITTLE KI	T 07/24/94 1	1	106	7.2	29.0	1.0	19	9.7	1.5	48	4.9	3.2
LITTLE KI		2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
LITTLE KI		18	381	7.0	32.0	0.8	20	11.7	7.8	42	4.4	4.4
LITTLE KI	T 07/24/94 2	1	107	7.3	32.0	1.3	19	9.7	1.5	68	4.8	3.9
LITTLE KI	T 07/24/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
LITTLE KI	T 07/24/94 2	15	141	6.9	34.0	0.8	19	12.6	2.2	30	3.7	4.1
LITTLE KI	T 09/09/94 1	1	113	6.9	27.0	0.8	19	9.8	2.2	44	4.6	3.8
LITTLE KI	T 09/09/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
LITTLE KI	T 09/09/94 1	11	190	6.7	27.0	0.8	14	10.8	3.7	45	4.5	3.0
LITTLE KI	T 09/09/94 2	1	128	7.5	33.0	0.7	15	11.8	2.2	46	7.4	3.7
LITTLE KI	T 09/09/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
LITTLE KI	T 09/09/94 2	15	156	6.6	32.0	· 1.0	18	11.8	2.2	57	4.5	3.5
LITTLE KI		1	132	6.6	26.0	0.3	20	12.0	2.1	6	5.6	2.8
LITTLE KI	T 10/27/94 1	2.	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
LITTLE KI	T 10/27/94 1	20	5990	7.6	160.0	0.7	·97	88.0	140.0	202	62.3	64.7
LITTLE KI	T 10/27/94 :2	1	* 224	6.6	31.0	0.3	26	13.0	0.7	24	6.0	4.3
LITTLE KI	T 10/27/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
LITTLE KI	T 10/27/94 2	15	129	6.6	30.0	0.4	21	11.0	2.1	10	6.6	3.2
MALINA L	05/05/94 1		71	6.7	20.0	1.0	•	7.0	• •	74	7.0	
MALINAL		1 2	0	0.0	20.0 0.0		8	7.0	1.4	74	7.9	2.7
MALINAL		2 10	71	6.5	19.0	0.0	0	0.0	0.0	0	0.0	0.0
MALINAL		1	72	6.8	20.0	1.0 0.9	6	7.0	1.4	60 22	6.1 5 2	2.7
MALINA L		2	0	6.8 0,0			29	8.0	1.4	22	5.3	12.5
MALINA L		2 9			0.0	0.0	0	0.0	0.0	0	0.0	0.0
MALINA L		9 1	72 75	6.8 7.0	20.0	0.8	5 10	7.0	1.4	18	3.7	2.5
MALINAL	. 00/30/94 1	I	10	1.0	20.0	0.7	10	7.0	2.1	38	6.6	4.5

MALINA L	06/30/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	. 0.0
MALINA L	06/30/94 1	9	88	6.9	20.0	0.7	6	7.0	2.1	32	5.1	4.1
MALINA L	07/20/94 1	1	76	6.8	22.0	0.7	44	6.9	1.9	29	5.3	40.9
MALINA L	07/20/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
MALINA L	07/20/94 1	9	17	6.9	21.0	0.7	14	6.9	1.3	30	4.2	5.5
MALINA L	08/12/94 1	1	76	7.0	22.0	0.4	9	12.4	1.3	55	7.3	5.7
MALINA L	08/12/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
MALINA L	08/12/94 1	10	74	6.9	22.0	0.5	21	12.4	1.3	57	6.2	7.4
MALINA L	08/31/94 1	1	79	6.9	22.0	0.6	4	6.7	2.0	54	5.2	2.7
MALINA L	08/31/94 1	2	, s 0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
MALINAL	08/31/94 1	8	79	7.0	22.0	0.6	5	7.7	1.3	49	5.1	2.7
MALINA L	09/22/94 1	1	76	7.1	21.0	0.5	18	7.8	1.2	23	4.4	9.3
MALINAL	09/22/94 1	2	0	0.0	0.0	· 0.0	0	0.0	0.0	0	0.0	0.0
MALINAL	09/22/94 1	9	76	7.1	22.0	1.3	14	6.8	1.2	55	6.8	· 7.2
MALINAL	10/14/94 1	1	77	7.0	21.5	0.4	. 4	8.0	2.0	28	5.8	3.1
MALINA L	10/14/94 1	. 2	0.	0.0	0.0	0.0	· 0	0.0	0.0	0	0.0	0.0
MALINA L	10/14/94 1	9	77	6.9	21.5	0.5	4	8.0	2.0	26	4.9	3.9
MALINA U	05/05/94 2	1	68	6.5	18.5	1.2	8	7.0	1.4	109	4.6	2.1
MALINA U	05/05/94 2	2	· 0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
MALINA U	05/05/94 2	27	68	6.5	18.0	1.0	8	7.0	1.4	102	7.6	2.6
MALINA U	06/09/94 2	1	69	6.8	18.0	1.0	8	7.0	1.4	28	5.0	1.9
MALINA U	06/09/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
MALINA U	06/09/94 2	27	71	6.8	18.0	0.8	9	7.0	1.4	46	4.4	2.8
MALINA U	06/30/94 2	1	72	7.0	18.0	1.0	6	6.0	1.4	42	10,7	2.7
MALINA U	06/30/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
MALINA U	06/30/94 2	27	72	6.7	18.0	0.8	6	7.0	1.4	43	5,9	2.5
MALINA U	07/20/94 2	1	71	6.9	19.0	1.0	9	6.9	1.3	36	8.0	2.8
MALINA U	07/20/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
MALINA U	07/20/94 2	27	73	6.6	19.0	1.9	13	6.9	1.3	85	6.9	6.3
MALINA U	08/12/94 2	1	70	7.0	20.0	0.6	8	6.6	1.3	82	11.0	3.8
MALINA U	08/12/94 2	2	0	0.0	0.0	0.0	· O	0.0	0.0	0	0.0	0.0
MALINA U	08/12/94 2	27	73	6.6	20.0	0.6	6	6.6	1.3	63	6.5	3.8
MALINA U	08/31/94 2	1	73	7.0	21.0	0.8	6	6.7	1.3	42	5.5	2.6
MALINA U	08/31/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
MALINA U	08/31/94 2	21	74	6.5	20.0	0.6	18	6.7	1.3	50	7.6	5.3
MALINA U	09/22/94 2	1	72	6.9	19.0	1.3	5	6.8	1.9	39	6.0	2.9
MALINA U	09/22/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
MALINA U	09/22/94 2	26	72	6.8	19.0	1.3	5	6.8	1.9	55	7.2	4.5
MALINA U	10/14/94 2	1	74	7.0	19.0	1.0	5	7.0	1.3	43	4.6	3.9
MALINA U	10/14/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
MALINA U	10/14/94 2	26	74	6.9	19.0	1.0	6	7.0	2.0	40	4.7	3.5

1 1 2 .

PORTAGE												
PURIAGE	05/16/94 1	1	47	6.8	8.5	2.6	22	4.0	0,7	214	5.0	2.4
PORTAGE	05/16/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
PORTAGE	05/16/94 1	14	48	6.8	8.5	3,5	21	4.0	0.7	332	5.9	2.3
PORTAGE	06/16/94 1	1	47	6.8	10.0	2.0	20	4.0	0.7	109	9,1	2.1
PORTAGE	06/16/94 1	2	0	0.0	0.0	0.0	0	0.0	0,0	0	0.0	0.0
PORTAGE	06/16/94 1	17	83	6.7	9.0	1,4	23	4.0	0.7	120	5.8	3.5
PORTAGE	07/06/94 · 1	1	47	6.5	9.0	0.9	21	4.0	0.5	106	13.9	39
PORTAGE	07/06/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
PORTAGE	07/06/94 1	17	46	6.1	9.0	0.8	22	4.0	0.5	126	4.6	2.4
PORTAGE	07/29/94 1	1	45	6.5	11.0	1.4	28	3.9	1.3	230	20.0	5.0
PORTAGE	07/29/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
PORTAGE	07/29/94 1	15	48	6.3	11.0	0.7	20	4.1	0.8	170	5.3	2.6
PORTAGE	08/19/94 1	1	48	6.5	11.0	1.2	23	3.9	1.2	182	10.6	3.9
PORTAGE	08/19/94 1	18	49	6.0	10.0	1.0	21	3.9	1.2	182	5.4	2.8
PORTAGE	09/16/94 1	1	46	6.6	10.0	1.0	19	4.0	1.2	100	7.2	3.5
PORTAGE	09/16/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
PORTAGE	09/16/94 1	17	55	6.2	10.0	1.6	20	4.0	1.2	123	6.8	2.6
PORTAGE	10/07/94 1	1	51	6.2	10.0	1.4	24	3.8	1.3	268	7.9	3.0
PORTAGE	10/07/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
PORTAGE	10/07/94 1	17	51	6.2	10.0	2.0	28	4.0	1.3	276	8.6	3.0
RED	05/16/94 1	1	59	7.3	15.0	1.0	12	5.0	1.4	28	13.7	9.4
RED	05/16/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
RED	05/16/94 1	38	62	7.1	15.0	1.0	5	5.0	1.4	36	13.2	4.6
RED	05/16/94 2	1	63	7.1	15.0	1.0	3	5.0	1.4	34	10.6	4.2
RED	05/16/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
RED	05/16/94 2	38	63	7.1	15.0	1.5	2	5.0	1.4	46	14.1	4.7
RED	06/14/94 1	1	61	7.2	16.0	1.0	2	5.0	0.7	12	9.0	4.0
RED	06/14/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0,0	0.0
RED	06/14/94 1	38	62	6.9	16.0	1.9	3	5.0	0.7	212	42.0	13.4
RED	06/14/94 2	1	61	7.1	16.0	2.0	3	5.0	0.7	14	9.2	3.8
RED	06/14/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
RED	06/14/94 2	38	75	7.4	20.0	2.0	2	5.0	0.7	197	32,1	9.9
RED	07/18/94 1	1	62	6.7	16.0	0.4	3	4.9	1.5	55	11.4	4.6
RED	07/18/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
RED	07/18/94 1	38	63	6.6	16.0	1.8	4	4.9	1.5	546	76.2	22.6
RED	07/18/94 4	1	62	6.8	16.0	0.5	4	4.9	1.5	59	11.7	5.1
RED	07/18/94 4	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
RED	07/18/94 4	37	64	6.7	16.0	1.8	4	4.9	1.5	519	70.7	26.4
RED	08/18/94 1	1	64	6.7	16.0	0.5	4	5.8	1.2	30	20.6	6.3
RED RED	08/18/94 1 08/18/94 1	2 38	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
			65	6.2	15.0	2.7	9	4.8	2.4	916	125.3	63.1
RED	08/18/94 2	1	63	6.7	16.0	0.5	3	5.8	1.2	43	10.5	6.9

RED	08/18/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
RED	08/18/94 2	37	70	6.3	16.0	3.4	5	4.8	2.4	1334	130.4	45.0
RED	09/22/94 1	1	65	6.8	15.0	0.8	4	5.9	1.2	22	17.2	9.5
RED	09/22/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	00	0.0
RED	09/22/94 1	37	65	6.4	15.0	1.8	5	4.9	1.9	529	111.2	40.0
RED	09/22/94 2	1	63	6.9	15.0	0.8	4	4.9	1.2	34	17.9	10.7
RED	09/22/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
RED	09/22/94 2	37	65	6.3	14.5	2.0	4	5.9	1.2	648	147.9	44.8
RED	10/22/94 1	1	62	6.9	12.0	1.1	5	5.0	0.7	74	34.8	16.8
RED	10/22/94 1	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
RED	10/22/94 1	37	61	6.3	17.0	1.0	6	6.0	1.4	91	33.6	23.4
RED	10/22/94 2	1	62	6.4	17.0	1.1	6	6.0	1.4	77	34.2	18.1
RED	10/22/94 2	2	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
RED	10/22/94 2	37	62	6.4	19.0	1.5	5	6.0	1.4	144	39.4	17.7

.

AKE	Date St	a Depth (m)	Fillerable reactive-P (ug/L P)	Total Kjel- dahl nitrogen (ug/L N)	Ammonia (ug/L N)	Nitrate+ nitrite (ug/L N)	Reactive silicon (ug/L SI)	Organic carbon (ug/L)	Chloro- phyll a (ug/L)	<ul> <li>Phaeo- phylin a (ug/L)</li> </ul>
FOGNAK	05/05/94 1	1	2.5	129.5	1.7	150.4	2942	201	2.33	0.01
FOGNAK	05/05/94 1	2							1.88	0.44
FOGNAK	05/05/94 1	17	3.0	139.6	1.5	155.3	2882	190	2.00	0.57
FOGNAK	05/05/94 2	1	3.5	137.2	1.5	154.3	2894	165	2.06	0.39
FOGNAK	05/05/94 2	2							2.17	0.53
FOGNAK	05/05/94 2	9	2.7	161.2	1.5	154.3	2894	182	2.30	0.43
FOGNAK	06/09/94 1	1	2.2	145.0	1.5	98,0	2820	209	1.93	0.71
FOGNAK	06/09/94 1	2							1.60	0.59
FOGNAK	06/09/94 1	18	2.4	137.2	2.1	103.9	2878	146	1.14	0.45
FOGNAK	06/09/94 2	1	2.6	131.8	3.2	98.0	2690	154	1.30	0.30
FOGNAK	06/09/94 2	2							1.04	0.39
FOGNAK	06/09/94 2	11	2.9	131.8	3.7	98.0	2714	168	1.11	0.32
FOGNAK	08/30/94 1	1	2.2	187.7	12.6	• 52.4	2310	278	2.22	1.21
FOGNAK	06/30/94 1	2							2.11	1.37
FOGNAK	06/30/94 1	18	2.2	136.5	20.3	99.0	2740	113	0.71	0.41
FOGNAK	06/30/94 2	1	4.7	231.0	22.5	64.0	2310	289	2.43	1.22
FOGNAK	06/30/94 2	2							2.07	1.47
FOGNAK	06/30/94 2	11	2.5	136.6	23.6	90,3	2597	127	0.63	0.67
FOGNAK	07/20/94 1	t	2.4	195.4	2.6	30.1	2225	292	3.88	1.20
FOGNAK	07/20/94 1	2							4.38	1.11
FOGNAK	07/20/94 1	17	1.9	199.2	14.8	38.8	2310	294	2.70	1.54
FOGNAK	07/20/94 2	1	2.0	196.9	3.7	32.0	2164	432	4.16	1.25
FOGNAK	07/20/94 2	2							4.12	1.45
FOGNAK	07/20/94 2	11	3.8	183.8	12.6	41.7	2480	474	2.64	1.57
FOGNAK	08/12/94 1	1	9.4	202.4	13.7	14.6	2180	379	1.62	0.62
FOGNAK	08/12/94 1	2							1,82	0.55
FOGNAK	08/12/94 1	15	3.2	225.6	57.8	38.9	2633	131	1.06	1.08
FOGNAK	08/12/94 2	1	6.7	207.8	14.8	18.4	2125	234	2.11	0.53
FOGNAK	08/12/94 2	2							1.80	0.59
FOGNAK	08/12/94 2	12	2.5	224.8	70.0	35.9	2620	192	1.52	1.45
FOGNAK	08/31/94 1	1	1.4	214.8	25.8	16.5	1742	271	2.26	0.63
FOGNAK	08/31/94 1	2							2.00	0.86
FOGNAK	08/31/94 1	15	1.6	244.2	31.3	23.3	1858	274	1,50	0.74
FOGNAK	08/31/94 2	1	1.0	217.1	22.5	14.6	1730	313	1.99	0.68
AFOGNAK	08/31/94 2	2							2.46	0.56
AFOGNAK	08/31/94 2	10	1.8	211.7	25.6	16.5	1717	278	1.47	0.68
AFOGNAK	09/22/94 1	1	27.2	179.1	29.1	37.9	1580	161	1.72	0.30
AFOGNAK	09/22/94 1	2							1.84	0.29

.

AFOONAV	09/22/94 1	40								
AFOGNAK	03122154	16	2.5	179.1	28.6	48.6	1697	174	1.09	0.49
AFOGNAK	09/22/94 2	1	19.9	214.1	26.9	34.0	1592	210	1.97	0.59
AFOGNAK	09/22/94 2	2	:						2.64	0.24
AFOGNAK	09/22/94 2	11	2.6	182.2	29.1	45.6	1801	174	1.26	0.42
AFOGNAK	10/14/94 1	1	1.7	215.6	17.6	70.9	2021	189	1.70	0.35
AFOGNAK	10/14/94 1	2							1.71	0.33
AFOGNAK	10/14/94 1	16	1.6	175.2	19.2	35.9	2123	152	1.20	0,40
AFOGNAK	10/14/94 2	1	1.8	187.6	26.9	70.9	2052	176	1.83	0.32
AFOGNAK	10/14/94 2	2	1.0	107.0	20.5	10.5	LUOL	110	1.79	0.39
AFOGNAK	10/14/94 2	10	3.9	177.6	14.8	72.8	2148	152	1.29	0.43
AFUGNAK	10/14/94 2	10	3.9	177,0	14.0	72.0	2140	152	1.25	0.45
AKALURA	05/16/94 1	1	3.9	204.7	1.8	23.4	752	487	5.75	0.12
AKALURA	05/16/94 1	2	0.0	.0.0	0.0	0.0	0	0	4.74	1.05
AKALURA	05/16/94 1	17	2.0	241.6	6.2	34.2	776	565	7.23	1.69
AKALURA	05/16/94 2	1	2.2	193.8	3.4	27.9	724	490	5.73	0.36
AKALURA	05/16/94 2	2	0.0	0.0	0.0	0.0	0	0	5.65	1.13
AKALURA	05/16/94 2	14	2.5	193.0	3.4	27.9	724	524	6.16	0.63
AKALURA	06/14/94 1	1	1.7	171.8	3.4	0.8	705	348	2.58	0.60
AKALURA	06/14/94 1	2	0.0	0.0	0.0	0.0	0	0	2.35	0.42
AKALURA	06/14/94 1	16	1.7	133.3	50.7	8.2	922	224	2.36	0.87
AKALURA	06/14/94 2	1	1.7	133.3	3.4	7.0	664	280	2.25	0.52
AKALURA	06/14/94 2	2	0.0	0.0	0.0	0.0	0	0	2.33	0.42
AKALURA	06/14/94 2	14	2.5	224.3	59.6	7.6	940	318	2.78	1.63
AKALURA	07/18/94 1	1	2.2	240.8	6.8	0.8	596	509	5.45	0.77
AKALURA	07/18/94 1	2	0.0	0.0	0.0	0.0	0	0	5.31	0.71
AKALURA	07/18/94 1	16	4.9	317.6	149.7	18.9	1358	239	0.73	0.81
AKALURA	07/18/94 2	1	2.7	240.8	7.9	4.0	609	609	5.29	0.93
AKALURA	07/18/94 2	2	0.0	0.0	0.0	0.0	0	0	5.84	0.57
AKALURA	07/18/94 2	13	2.7	272.1	45.1	5.9	797	427	4.09	0.44
AKALURA	08/18/94 1	1	3.0	460.7	1.7	4.0	935	1227	14.67	0.01
AKALURA	08/18/94 1	2	0.0	0.0	0.0	0.0	0	0	13.79	0.01
AKALURA	08/18/94 1	17	8.6	433.3	176.7	78.8	1717	524	0.39	0.87
AKALURA	08/18/94 2	1	8.9	378.7	1.7	0.8	959	1038	13.70	0.15
AKALURA	08/18/94 2	2	0.0	0.0	0.0	0.0	0	0	12.11	0.01
AKALURA	08/18/94 2	14	4.8	218.2	75.4	125.1	1546	138	0.65	0.73
AKALURA	09/26/94 1	1	4.8	301.7	91.2	47.1	1408	319	2.10	1.06
AKALURA	09/26/94 1	2	0.0	0.0	0.0	0.0	0	0	2.39	0.64
AKALURA	09/26/94 1	16	4.0	303.2	92.3	46.0	1396	399	3.01	0.51
AKALURA	09/26/94 2	1	4.7	280.4	90.1	44.9	1420	312	1.93	0.59
AKALURA	09/26/94 2	2	0.0	0.0	0.0	0.0	0	0	1.75	0.75
AKALURA	09/26/94 2	14	4.8	285.0	93,4	47.1	1420	269	1.77	0.98
<b>BIG KITOI</b>	05/26/94 1	1	2.1	103.8	4.3	169.5	2450	103	0.34	0.19

<b>BIG KITOI</b>	05/26/94 1	2	0.0	0.0	0.0	0.0	0	0	0.43	0.17
<b>BIG KITOI</b>	05/26/94 1	32	1.0	81.1	5.4	139.6	2520	36	0.22	0.11
BIG KITOI	07/27/94 1	1	3.4	229.2	25.2	79.0	2599	480	0.27	0.20
<b>BIG KITOI</b>	07/27/94 1	2	0.0	0.0	0.0	0.0	0	0	0.16	0.21
BIG KITO	07/27/94 1	31	1.2	101.4	18.6	167.0	2768	61	0.08	0.12
BIG KITO	09/08/94 1	1	1.4	130.5	7.6	55.0	2174	86	0.80	0.19
BIG KITO	09/08/94 1	2	0.0	00	0.0	0.0	0	0	0.79	0.23
BIG KITOI	09/08/94 1	31	1.2	110.1	12.0	173.7	2531	91	0.10	0.17
BIG KITOI	10/27/94 1	1	0.7	96.7	1.0	132.2	2707	60	0.40	0.24
BIG KITOI	10/27/94 1	2	0.0	0.0	0.0	0.0	0	0	0.32	0.18
BIG KITOI	10/27/94 1	30	0.7	91.2	1.0	131,3	2732	52	0.39	0.21
Diditation	10121101	50	0.7	01.2	1.0	101.0	2102	02	0.00	0.21
CRESCEN	06/01/94 1	1	3.6	195.0	0.7	71.0	2968	66	0.94	0.30
CRESCEN	06/01/94 1	2	0.0	0.0	0.0	0.0	0	0	0.99	0.37
CRESCEN	. 06/01/94 1	26	3.2	191.2	1.2	75.9	2956	216	0.71	0.33
CRESCEN	06/30/94 1	1	1.5	161.4	1.8	40. <b>i</b>	2740	96	0.21	0.16
CRESCEN	06/30/94 1	2	0.0	0.0	0.0	0.0	0	Q	0.14	0.23
CRESCEN	06/30/94 1	26	3.3	. 149.2	12.6	85.7	2970	140	0.21	0.39
CRESCEN	07/28/94 1	1	5.6	121.0	0.7	59.6	2651	108	D.41	0.34
CRESCEN	07/28/94 1	2	0.0	0.0	0.0	0.0	0	0	0.62	0.45
CRESCEN	07/28/94 1	26	3.9	141.6	18.0	82.4	3392	55	0.18	0.15
CRESCEN	08/25/94 1	1	1.8	159.1	4.0	17.3	2924	143	0.45	0.36
CRESCEN	08/25/94 1	2	0.0	0.0	0.0	0.0	0	0	0.19	0.44
CRESCEN	08/25/94 1	26	2.3	150.8	21.8	92.2	3476	122	0.19	0.26
CRESCEN	09/22/94 1	1	6.9	154.6	5.1	23.8	2865	158	0.76	0,20
CRESCEN	09/22/94 1	2	0.0	0,0	0.0	0.0	0	0	0.86	0.23
CRESCEN	09/22/94 1	25	10.6	162.9	28.8	82.4	3430	110	0.44	0.18
CRESCEN	10/19/94 1	1	1.9	167.6	5.1	27.0	2912	115	0.56	0.29
CRESCEN	10/19/94 1	2	0.0	0.0	0.0	0.0	0	0	0.57	0.31
CRESCEN	10/19/94 1	25	1.7	166.8	8.3	27.0	2836	126	0.44	0.30
FRAZER	06/02/94 1	1	1.7	99.7	2.2	75.0	1841	149	0.58	0.13
FRAZER	06/02/94 1	2	0.0	0.0	0.0	0.0	0	0	0.73	0.16
FRAZER	06/02/94 1	23	1.9	92.0	4.4	85.0	1900	124	0.96	0.08
FRAZER	06/02/94 3	1	2.4	138.6	4.4	79.2	1876	190	0.66	0.20
FRAZER	06/02/94 3	2	0.0	0.0	0.0	0.0	0	0	0.69	0.19
FRAZER	06/02/94 3	50	1.6	86.7	9.8	90.7	1923	116	0.75	0.17
FRAZER	07/19/94 1	1	1.5	102.7	8.6	53.6	1901	165	0.52	0.16
FRAZER	07/19/94 1	2	0.0	0.0	0.0	0.0	0	0	0.47	0.20
FRAZER	07/19/94 1	23	1.3	89.8	5.5	56.4	1913	171	0.52	0.21
FRAZER	07/19/94 3	1	1.2	95.1	3.3	47.9	1931	124	0.61	0.17
FRAZER	07/19/94 3	2	0.0	0.0	0.0	0.0	0	0	0.58	0.20
FRAZER	07/19/94 3	50	1.8	97.4	16.4	75.0	2004	80	0.36	0.24

FRAZER	08/25/94 1	1	1.2	91,3	7.7	42.1	1924	127	0.79	0.17
FRAZER	08/25/94 1	2	0.0	0.0	0.0	0.0	0	0	0.65	0.17
FRAZER	08/25/94 1	24	1.2	101.2	22.9	67.8	2015	138	0.42	0.14
FRAZER	08/30/94 3	1	1.9	111.9	5.5	30.7	1963	132	0.76	0.17
FRAZER	08/30/94 3	2	0.0	0.0	0.0	0.0	0	0	0.74	0.16
FRAZER	08/30/94 3	50	1.0	101.2	33.8	80.7	2143	36	0.18	0.09
FRAZER	10/11/94 1	1	1.0	86.0	1.1	73.5	1932	102	0.71	0.08
FRAZER	10/11/94 1	2	0.0	0.0	0.0	0.0	0	0	0.79	0.11
FRAZER	10/11/94 1	23	1.2	84.4	1.1	76.4	2014	134	0.62	0.10
FRAZER	10/11/94 3	1	1.0	89.0	1.1	70.7	2059	102	0.78	0.13
FRAZER	10/11/94 3	2	0.0	0.0	0.0	0.0	0	0	0.75	0.13
FRAZER	10/11/94 3	43	1.0	105.8	4.4	70.7	1983	70	0.56	0.13
HIDDEN K	05/16/94 1		1.3	76.8	1.1	56.4	1733	86	0.49	0.10
HIDDEN K	05/16/94 1	1 2	0.0	0.0	0.0	0.0	0	80 0	0.49	0.10
HIDDEN K	05/16/94 1	∡ 40	0.0 0.9	75.2	1.1	56.4	1768	68	0.28	0.13
HIDDEN K	06/16/94 1	1	1.0	94.3	1.1	32.1	1744	195	0.18	0.17
HIDDEN K	06/16/94 1	2	0.0	0.0	0.0	0.0	0	0	0.31	0.17
HIDDEN K	06/16/94 1	38	1.1	80.6	3.3	50.7	1862	170	0.04	0.12
HIDDEN K	07/05/94 1	1	0.9	149.2	5.5	10.8	1499	220	0.73	0.09
HIDDEN K	07/05/94 1	2	0.0	0.0	0.0	0.0	0	0	0.62	0.14
HIDDEN K	07/05/94 1	42	1.5	127.1	6.6	52.2	1671	38	0.04	0.16
HIDDEN K	07/29/94 1	1	2.4	138.6	3.3	2.2	1644	273	4.43	0.01
HIDDEN K	07/29/94 1	2	0.0	0.0	0.0	0.0	0	0	2.89	0.12
HIDDEN K	07/29/94 1	43	1.2	88.2	9.8	52.2	1858	44	0.04	0.12
HIGLENK	08/19/94 1	1	0.9	169.8	3.3	2.2	1558	295	1.10	0.01
HIDDEN K	08/19/94 1	2	0.0	0.0	0.0	0.0	0	0	1.02	0.04
HIDDEN K	08/19/94 1	41	1.1	86.7	8.8	55.0	1790	55	0.06	0.11
HIDDEN K	09/16/94 1	1	1.1	113.4	5.5	2.9	1616	69	0.57	0.32
HIDDEN K	09/16/94 1	2	0.0	0.0	0.0	0.0	0	0	0.61	0.35
HIDDEN K	09/16/94 1	39	1.9	79.9	9.8	57.9	1930	56	0.06	0.33
HIDDEN K	10/07/94 1	1	0.9	99.7	8.8	26.4	1767	110	0.25	0.20
HIDDEN K	10/07/94 1	2	0.0	0.0	0.0	0.0	0	0	0.19	0.24
HIDDEN K	10/07/94 1	39	0.7	79.9	12.0	60.0	1818	33	0.04	0.12
JENNIFER	06/01/94 1	1	1.6	163.2	7.7	230.5	1017	80	0.00	0.40
JENNIFER	06/01/94 1	2	0.0	0.0	0.0	230.5	1917	80	0.20	0.10
JENNIFER	06/01/94 1	21	2.6				0	0	0.17	0.16
JENNIFER	07/21/94 1	1	2.8 9.1	165.5 177.2	17.5 22.9	301.8	2230	7	0.20	0.22
JENNIFER	07/21/94 1	2	0.0	0.0	0.0	173.4	1852	234	0.62	0.28
JENNIFER	07/21/94 1	20	1.9	192.9	33.8	0.0	0	0	0.00	0.00
JENNIFER	08/18/94 1	1	1.9	185.9	9.8	252.7 72.1	2431 1570	131	0.13	0.18
JENNIFER	08/18/94 1	2	0.0	0.0	9.8 0.0	0.0	1570	192 0	0.64	0.17
	5010/54 1	4	0.0	0.0	0.0	0.0	U	U	0.57	0.24

JENNIFER	08/18/94 1	20	1.3	174.9	28.9	261.2	2725	55	0.12	0.20
JENNIFER	10/24/94 1	2	0.0	0.0	0.0	0.0	0	0	0.20	0.09
JENNIFER	10/24/94 1	19	0.0	0.0	0.0	0.0	0	105	0.13	0.18
JENNIFER	10/24/94 2	1	1.7	189.1	25.1	263.2	2204	102	0.04	0.25
JENNIFER	10/24/94 2	19	3.0	243.9	25.1	260.4	2364	105	0.00	0.00
JENNIFER	06/01/94 1	1	1.1	158.5	9.8	32.1	1338	198	0.12	0.14
JENNIFER	06/01/94 1	2	0.0	0.0	0.0	0.0	0	0	0.20	0.23
JENNIFER	06/01/94 1	21	1.0	127.9	12.0	69.2	1490	100	0.20	0.26
JENNIFER	07/21/94 1	1	3.3	146.7	9.8	16.5	1076	97	0.84	0.15
JENNIFER	07/21/94 1	2	0.0	0.0	0.0	0.0	0	0	0.46	0.18
JENNIFER	07/21/94 1	21	1.6	146.7	25.1	85.0	1604	52	0.12	0.12
JENNIFER	08/18/94 1	1	1,0	179.6	5.5	2.2	1008	66	0.28	0.14
JENNIFER	08/18/94 1	2	0.0	0.0	0.0	0.0	0	0	0.20	0.14
JENNIFER	08/18/94 1	21	1.1	157.7	27.2	102.1	1632	60	0.12	0.09
JENNIFER	10/24/94 1	1	1.0	153.8	12.0	42.1	1353	107	0.30	0.09
JENNIFER	10/24/94 1	2	0.0	0.0	0.0	0.0	0	0	0.17	0.17
JENNIFER	10/24/94 1	20	1.0	145.1	25.1	80.7	1629	67	0.06	0.21
									_	
KARLUK	06/02/94 3	1	0.9	110.1	2.9	136.2	61	293	0.53	0.12
KARLUK	06/02/94 3	2	0.0	0.0	0.0	0.0	0	0	0.49	0.13
KARLUK	06/02/94 3	50	1.0	96.2	10.0	147.5	44	346	1.13	0.20
KARLUK	07/19/94 3	1	1.3	107.8	4.0	59.6	112	246	0.91	0.24
KARLUK	07/19/94 3	2	0.0	0.0	0.0	0.0	0	0	0.86	0.14
KARLUK	07/19/94 3	50	1.1	100.0	19.1	126.4	94	222	1.31	0.27
KARLUK	08/30/94 3	1	1.0	136.5	4.0	30.3	126	502	1.21	0.15
KARLUK	08/30/94 3	2	0.0	0.0	0.0	0.0	0	0	1.14	0.23
KARLUK	08/30/94 3	50	17.0	184.5	53.7	124.7	512	376	0.65	0.42
KARLUK	10/11/94 3	1	0.4	103.2	1.7	92.2	257	121	1.22	0.27
KARLUK	10/11/94 3	2	0.0	0.0	0.0	0.0	0	0	1.18	0.41
KARLUK	10/11/94 3	43	1.6	87.7	1.7	154.0	225	126	0.61	0.20
LAURA	05/16/94 1	1	1.4	114.1	4.4	17.6	1686	146	1.07	0.18
LAURA	05/16/94 1	2	0.0	0.0	0.0	0.0	0	0	1.09	0.31
LAURA	05/16/94 1	38	0.9	110.2	4.4	20.9	1710	118	0,49	0.31
LAURA	06/15/94 1	1	1.4	146.5	5.4	4.0	1544	69	1.04	0.20
LAURA	06/15/94 1	2	0.0	0.0	0.0		0	0		
LAURA	06/15/94 1	2 32	2.2	113.4	9.7	0.0	1791		1.22 0,55	0.30
LAURA	07/06/94 1		2.2			17.6		88		0.27
LAURA	07/06/94 1	1 2	2.0	238.8 0.0	4.4 0.0	4.4	109	60	5.21	1.02
LAURA						0.0	0	0	5.50	0.94
LAURA	07/06/94 1	35	1.5	130.2	14.0	14.3	1656	102	0.48	0.30
LAURA	07/29/94 1 07/29/94 1	1 2	1.6 · 0.0	230.4	28.9	12.7	630	265	2.62	0.21
LAURA	01129/94 1	4	· U.U	0.0	0.0	0.0	0	0	2.79	0.35

LAURA	07/29/94 1	37	1.3	194.2	68.4	22.6	1832	74	0.35	0.25
LAURA	08/19/94 1	1	1.4	218.1	10.8	4.0	690	248	1.43	0.80
LAURA	08/19/94 1	2	0.0	0.0	0.0	0.0	0	0	1.71	0.78
LAURA	08/19/94 1	34	1.4	200.3	96.1	24.2	1766	69	0.18	0.22
LAURA	09/16/94 1	1	1.4	187.3	5.5	4.0	871	210	4.36	0.33
LAURA	09/16/94 1	2	0.0	0.0	0.0	0.0	0	0	3.63	0.89
LAURA	09/16/94 1	37	1.7	171.9	63.0	11.0	1930	58	0.21	0.20
LAURA	10/07/94 1	1	1.5	152.6	6.5	91.9	1145	166	2,38	0.86
LAURA	10/07/94 1	2	0.0	0.0	0.0	0.0	0	0	2.75	0.60
LAURA	10/07/94 1	37	1.4	143.4	39.6	92.2	1805	126	0.45	0.25
LITTLE KIT	05/26/94 .1	1	1.6	153.2	2.9	210.9	2649	119	1.05	0.36
LITTLE KIT	05/26/94 1	2	0.0	0.0	0.0	0.0	0	0	0.81	0.49
LITTLE KIT	05/26/94 1	18	1.6	149.8	6.3	223.7	3150	117	0.33	0.37
LITTLE KIT	05/26/94 2	1	1.7	175.9	6.3	214.1	2556	164	0.87	0.34
LITTLE KIT	05/26/94 2	2	0.0	0.0	0.0	0.0	0	0	0.88	0.55
LITTLE KIT	05/26/94 2	14	1.8	141.3	13.1	244.6	3210	83	0.29	0.29
LITTLE KIT	07/24/94 1	1	1.6	143.0	5.2	130.8	2262	131	0.96	0.53
LITTLE KIT	07/24/94 1	2	0.0	0.0	0.0	0.0	0	0	1.24	0.47
LITTLE KIT	07/24/94 1	18	2.8	151.3	70.1	287.3	3110	47	0.25	0.18
LITTLE KIT	07/24/94 2	1	2.0	143.0	5.2	128.7	2250	172	1.38	0.45
LITTLE KIT	07/24/94 2	2	0.0	0.0	0.0	0.0	0	0	1.41	0.49
LITTLE KIT	07/24/94 2	15	2.8	105.2	6.3	259.6	3135	50	0.47	0.29
LITTLE KIT	09/09/94 1	1	2.2	198.6	10.9	86.0	2007	228	0.67	0.34
LITTLE KIT	09/09/94 1	2	0.0	0.0	0.0	0.0	0	0	0.77	0.34
LITTLE KIT	09/09/94 1	11	1.6	162.1	14.2	270.2	2852	50	0.40	0.14
LITTLE KIT	09/09/94 2	1	1.6	208.0	13.1	90.3	2090	209	0.85	0.30
<b>LITTLE KIT</b>	09/09/94 2	2	0.0	0.0	0.0	0.0	0	0	0.78	0.31
LITTLE KIT	09/09/94 2	15	2.4	116.7	4.0	251.0	3102	75	0.47	0.32
LITTLE KIT	10/27/94 1	1	1.3	143.0	20.0	215.2	2780	78	0.88	0.48
LITTLE KIT	10/27/94 1	2	0.0	0.0	0.0	0.0	0	0	0.76	0.35
LITTLE KIT	10/27/94 1	20	61.2	3282.5	2223.0	108.4	6931	619	0.17	0.36
LITTLE KIT	10/27/94 2	1	2.5	160.2	21.1	214.1	2915	78	0.00	0.00
LITTLE KIT	10/27/94 2	2	0.0	0.0	0.0	0.0	0	0	0.77	0.29
LITTLE KIT	10/27/94 2	15	0.8	212.1	21.1	222.6	2866	30	0.61	0.31
MALINA L	05/05/94 1	1	0.7	140.3	2.2	207.3	2811	218	1.39	0.00
MALINAL	05/05/94 1	2	0.0	0.0	0.0	0.0	0	0		0.20
MALINA L	05/05/94 1	10	1.0	129.5	3.3	207.3	2811	201	1,33 1,41	0.24 0.25
MALINA L	06/09/94 1	1	11.1	165.7	5.5	156.2	2620	331	1.41	0.25
MALINA L	06/09/94 1	2	0.0	00	0.0	0.0	0			
MALINA L	06/09/94 1	9	3.1	125.7	4.4	151.2	2714	0	1.81	0.27
MALINA L	06/30/94 1	1	4.7	145.7	4.4 6.5	116.6	2339	262	1.46	0.31
	0000071	•	7.7	143.7	0.0	110.0	2008	201	1.22	0.33

			0	0.0		• •	~ ~	0	0	1.40	0.24
	MALINA L	06/30/94 1	2	0.0	0.0	0.0	0.0	. 0	0		0.31
	MALINA L	06/30/94 1	9	4.4	128.0	8.6	119.9	2482	162	0.72	0.32
	MALINA L	07/20/94 1	1	35.8	168.0	15.0	93.5	2489	146	1.26	0.32
	MALINA L	07/20/94 1	2	0.0	0.0	0.0	0.0	0	0	1.06	0.42
	MALINA L	07/20/94 1	9	5.8	154.2	15.0	95.2	2513	140	0.67	0.36
	MALINA L	08/12/94 1	1	5.0	161.1	4.4	86.9	2566	140	1.44	0.43
	MALINA L	08/12/94 1	2	0.0	0.0	0.0	0.0	0	0	1.23	0.47
	MALINA L	08/12/94 1	10	6.2	146.5	19.3	93.5	2628	152	0.72	0.28
	MALINA L	08/31/94 1	1	3,2	153.4	4.4	70.4	2516	146	0.99	0.29
	MALINA L	08/31/94 1	2	0.0	0.0	0.0	0.0	0	0	0.97	0.26
	MALINA L	08/31/94 1	8	3.1	145.7	6.5	70.4	2464	131	0.84	0.34
	MALINA L	09/22/94 1	1	7.1	144.2	10.8	67,1	2471	123	1.05	0.41
	MALINA L	09/22/94 1	2	0.0	0.0	0.0	0.0	0	0	1.00	0.27
	MALINA L	09/22/94 1	9	4.8	143.3	12.9	63.8	2324	120	0.69	0.31
	MALINA L	10/14/94 1	1	3.3	151.1	12.9	93.5	2519	105	0.61	0.18
	MALINA L	10/14/94 1	2	0.0	0.0	0.0	0.0	0	0	0.62	0.27
	MALINA L	10/14/94 1	9	3.8	143.3	15.0	96.8	2532	81	0.50	0.21
	MALINA U	05/05/94 2	1	2.5	120.2	4.4	225.5	2942	209	1.19	0.33
	MALINA U	05/05/94 2	2	0.0	0.0	0.0	0.0	0	0	1.78	0.03
	MALINA U	05/05/94 2	27	1.0	134.1	4.4	181.0	2930	201	1.51	0.17
	MALINA U	06/09/94 2	1	1.9	137.2	6.5	191.7	2808	251	1.14	0.24
	MALINA U	06/09/94 2	2	0.0	0.0	0.0	0.0	0	0	1.16	0.21
н	MALINA U	06/09/94 2	27	3.9	127.2	9.7	138.1	2901	207	1.02	0.16
ا سر	MALINA U	06/30/94 2	1	2.9	176.5	11.8	195.8	2310	336	2.62	0.89
2	MALINA U	06/30/94 2	2	0.0	0.0	0.0	0.0	0	0	3.07	0.63
	MALINA U	06/30/94 2	27	3.2	130.2	21.4	17.6	2769	146	0.55	0.31
	MALINA U	07/20/94 2	1	3.0	181.1	2.2	108.4	2528	333	3.36	0.85
	MALINA U	07/20/94 2	2	0.0	0.0	0.0	0.0	0	0	<b>3</b> .25	0.85
	MALINA U	07/20/94 2	27	6.2	147.2	21.4	187.6	3050	116	0.43	0.43
	MALINA U	08/12/94 2	1	4.0	192.7	7.5	57.2	2742	99	3.25	1.05
	MALINA U	08/12/94 2	2	0.0	0.0	0.0	0.0	0	0	3.38	0.86
	MALINA U	08/12/94 2	27	1.7	144.1	42.8	184.2	3374	87	0.28	0.34
	MALINA U	08/31/94 2	1	2.9	171.9	8.6	62.1	2513	282	2.56	0.19
	MALINA U	08/31/94 2	2	0.0	0.0	0.0	0.0	0	0	1.80	0.33
	MALINA U	08/31/94 2	21	6,4	142.6	34.2	184.2	3078	90	0.40	0.32
	MALINA U	09/22/94 2	1	3.2	159.6	4.4	75.4	2520	323	2.71	0.46
	MALINA U	09/22/94 2	2	0.0	0.0	0.0	0.0	0	0	2.54	0.63
	MALINA U	09/22/94 2	26	4.0	154.9	9.7	97.7	2644	193	1.89	0.29
	MALINA U	10/14/94 2	1	3.7	154.2	6.5	90.2	2696	181	2.06	0.13
	MALINA U	10/14/94 2	2	0.0	0.0	0.0	0.0	0	0 -	2.06	0.05
	MALINA U	10/14/94 2	26	3.6	143.3	8.6	90.2	2658	179	1.72	0.28

PORTAGE	05/16/94 1	1	2.2	104.7	1.7	19.0	2100	149	0.42	0.22	
PORTAGE	05/16/94 1	2	0.0	0.0	0.0	0.0	0	0	0.38	0.23	
PORTAGE	05/16/94 1	14	1.8	105.5	1.7	25.5	2083	202	0.17	0.31	
PORTAGE	06/16/94 1	1	1.8	112.5	1.7	9.2	2267	164	0.56	0.29	
PORTAGE	06/16/94 1	2	0.0	0.0	0.0	0.0	0	0	0.41	0.28	
PORTAGE	06/16/94 1	17	3.1	137.2	1.7	19.0	2314	128	0.09	0.21	
PORTAGE	07/06/94 1	1	2.7	124.8	1.7	4.0	1585	720	3.78	0.87	
PORTAGE	07/06/94 1	2	0.0	0.0	0.0	0.0	0	0	2.01	0.99	
PORTAGE	07/06/94 1	17	2.1	210.9	2.2	27.1	1986	84	0.04	0.15	
PORTAGE	07/29/94 1	1	2.9	295.4	11.0	23.9	1592	202	2.89	0.67	
PORTAGE	07/29/94 1	2	0.0	0.0	0.0	0.0	0	0	2.82	0.67	
PORTAGE	07/29/94 1	15	2.2	138.0	12.1	35.2	2215	119	0.36	0.35	
PORTAGE	08/19/94 1	1	2.0	219.4	1.7	4.0	0	355	2.87	0.76	
PORTAGE	08/19/94 1	18	1.9	168.2	29.7	40.1	2138	90	0.18	0.70	
PORTAGE	09/16/94 1	1	1.6	186.8	4.4	9.2	791	183	1.82	1.02	
PORTAGE	09/16/94 1	2	0.0	0.0	0.0	0.0	0	0	1.92	0.82	
PORTAGE	09/16/94 1	17	1.8	200.8	56.1	40.1	2334	45	0.20	0.28	
PORTAGE	10/07/94 1	1	1.8	193.8	5.4	28.7	1837	160	0.94	0.32	
PORTAGE	10/07/94 1	2	0.0	0.0	0.0	0.0	0	0	0.91	0.30	
PORTAGE	10/07/94 1	17	2.7	193.1	3.6	27.1	1935	150	0.67	0.36	
RED	05/16/94 1	1	5.2	142.8	1.2	23.9	53	432	4.94	0.01	
RED	05/16/94 1	2	0.0	0.0	0.0	0.0	0	0	4.40	0.01	
RED	05/16/94 1	38	2.0	154.5	2.9	25.6	53	533	5.83	0.01	
RED	05/16/94 2	1	1.2	128.7	1.7	23.4	41	368	5.05	0.01	
RED	05/16/94 2	2	0.0	0.0	0.0	0.0	0	0	3.11	0.32	
RED	05/16/94 2	38	1.7	186.7	2.3	24.5	47	435	5.08	0.01	
RED	06/14/94 1	1	1.0	120.1	1.8	4.0	235	167	1.00	0.15	
RED	06/14/94 1	2	0.0	0.0	0.0	0.0	0	0	1.22	0.17	
RED	06/14/94 1	38	10.5	225.9	27.1	5.3	241	449	5.71	0.44	
RED	06/14/94 2	1	0.7	127.9	1.7	4.0	188	220	1.09	0.27	
RED	06/14/94 2	2	0.0	0.0	0.0	0.0	0	0	1.13	0.42	
RED	06/14/94 2	38	7.6	194.5	21.4	6.4	205	471	4.70	0.62	
RED	07/18/94 1	1	1.3	139.6	1.7	4.0	128	191	1.22	0.66	
RED	07/18/94 1	2	0.0	0.0	0.0	0.0	0	0	1.17	0.60	
RED	07/18/94 1	38	20 2	356.1	97.9	7.0	436	228	0.40	0.56	
RED	07/18/94 4	1	1.6	146.7	3.4	4.0	142	209	0.96	0.82	
RED	07/18/94 4	2	0.0	0.0	0.0	0.0	0	0	1.06	0.58	
RED	07/18/94 4	37	24.1	307.8	109.2	6.4	436	230	0.34	0.84	
RED	08/18/94 1	1	2.5	246.2	5.7	4.0	299	399	5.84	0 69	
RED	08/18/94 1	2	0.0	0.0	0.0	0.0	0	0	4.12	1.37	
RED	08/18/94 1	38	60.0	329.5	131.7	112.7	800	233	0.19	0.69	
RED	08/18/94 2	1	2.2	213.3	3.4	4.0	299	282	4.37	0.37	
										0.01	

RED	08/18/94 2	2	0.0	0.0	0.0	0.0	0	0	4.31	0.69
RED	08/18/94 2	37	44.7	334.1	154.2	88.9	764	441	0.27	1.19
RED	09/22/94 1	1	4.6	200.8	10.2	8.7	129	231	3.52	1.22
RED	09/22/94 1	2	0.0	0.0	0.0	0.0	0	0	3.98	1.16
RED	09/22/94 1	37	38.1	121.6	7.4	182.7	762	183	0.52	0.66
RED	09/22/94 2	1	5.5	167.8	10.2	13.2	117	242	3.86	1.30
RED	09/22/94 2	2	0.0	0.0	0.0	0.0	0	0	4.12	1.30
RED	09/22/94 2	37	44 B	176.4	19.2	189.5	886	318	0.60	1.03
RED	10/22/94 1	1	13.8	154.2	16.4	49.9	62	258	4.04	0.44
RED	10/22/94 1	2	0.0	0.0	0.0	0.0	0	0	9,33	0.17
RED	10/22/94 1	37	15.6	157.3	14.5	50.7	74	288	0.00	0.00
RED	10/22/94 2	1	14.6	158.8	18.2	<b>53.1</b>	68	280	8.33	0.86
RED	10/22/94 2	2	0.0	0.0	0.0	0.0	0	0	8.25	0.76
RED	10/22/94 2	37	14.9	171.3	16.4	51.5	56	293	8.75	0.84

Lake:	AKALURA
Station:	1
Depth:	16-17m
Year:	1994

(no./m²)

		1	(10.111.)			Seasonal Mean
Date:	16-May	14-Jun	18-Jui	17-Aug	26-Sep	(No/m ² )
Ergasilus					1,062	212
Epischura	1,911	21.019	29,725	30,255	6,369	17,856
Eurytemora Ovig Eurytemora	955	34,077 318	32,377	40,446	19,639 2,123	25.499 488 7,176
Cyclops	637	11,465	3,185	5,732	14,862	
Bosmina	1,274	6,688	92,357	42,356	186,831	65,901 18,853
Ovig Bosmina Daphnia I.	318	3,503	28,132 318	28,344	33,970	64

## Daphnia g.

Holopedium

Chydorinae

Polyphemus

		В	ody Size (mm)		
Ergasilus					0.42
Epischura	0.53	0.96	0.94	1.11	0.70
Eurytemora Ovig Eurytemora Cyclops	0.89 0.53	0.94 1.08 0.54	0.98 1.01 0.71	0.88 0.55	0.88 1.10 0.46
Bosr∵na Ovig Bosmina Daphnia I.	0.36 0.41	0.28 0.37	0.27 0.31	0.27 0.29	0.29 0.31

Daphnia g.

Holopedium

Chydorinae

Polyphemus

Mean	Weighted		Weighted
Length	Length	Biomass	Biomass
(mm)	(mm)	(mg/m^2)	(mg/m^2)
0.42	0.42	0.1	0.1
0.85	0.98	50	75
			1.70
0.91	0.92	128	130
1.06	1.10	3	3
0.56	0.52	7	6
0.29	0.28	51	46
0.34	0.31	19	16

259

TOTAL:

277

136,050

Total:

(no./m²)

						Seasonal Mean
Date:	16-May	14-Jun	18-Jul	17-Aug	26-Sep	(No/m ² )
Ergasilus					present	
Epischura		9,236	29,724	35,881	5,414	16,051
Eurytemora	4,777	17,197	24,204	20,382	13,376	15,987
Ovig Eurytemora					955	191
Cyclops	318	5,732	4,671	1,486	22,293	6,900
Bosmina	1,911	12,739	91,296	49.469	96,182	50,319
Ovig Bosmina Daphnia I.		3,822	28,875	25,053	19,746	15,499
Ovig Daphnia Daphnia g.		955				191

## Holopedium

Chydorinae

Polyphemus

		В	ody Size (mm)		
Ergasilus					0.58
Epischura		0.85	0.96	1.18	0.78
Eurytemora Ovig Eurytemora Cyclops	1.00 1.24 0.52	0.93 1.10 0.59	0.85 1.03 0.71	0.90 0.57	1.01 1.13 0.53
B∝smina Ovig Bosmina Daphnia I. Ovig Daphnia Daphnia g.	0.35	0.30 0.35 0.94	0.30 0.31	0.27 0.29	0.30 0.30
Holopedium Chydorinae					

Polyphemus

Total: 105,139

Length Length Biomass Bio	ghted mass /m^2)
(mm) (mm) (mg/m^2) (mg/	/m^2)
0.58 0.58	
0.94 1.03 61	79
0.94 0.92 84 8	30
1.13 1.13 1	1
0.58 0.57 8	7
	39 13
0.94 0.94 0.8 0	.8
TOTAL: 210 22	21

Lake:	ARALURA
Station:	3
Depth:	20m
Year:	1994

(no./m²)

		1	(10./11.)			Sessonal Mea
Date:	16-May	14-Jun	18-Jul	17-Aug	26-Sep	(No/m ² )
Ergasilus					present	
Epischura	849	10,616	30,997	32,484	6,369	16.263
Eurytemora	4,034	35,669	42,038	41,401	14,862	27.601
Ovig Eurytemora	·			212	425	127
Cyclops	425	5,945	2,548	1,274	19,958	6,030
Bosmina	637	3,397	142,255	36,094	118.047	60,086
Ovig Bosmina	212	1,274	39,490	24,204	22,080	17.452
Daphnia I.						
Ovig Daphnia						
Daphnia g.						
Holopedium						

Chydorinae

Polyphemus

## Total: 127,559

		B	ody Size (mm)		
Ergasilus					0.58
Epischura	0.80	1.01	0.85	1.14	0.95
Eurytemora	0.90	0.99	0.90	0.93	0.87
Ovig Eurytemora		1.13	1.06	1.02	1.14
Cyclops	0.62	0.51	0.63	0.47	0.48
Bosmina	0.31	0.29	0.27	0.27	0.30
Ovig Bosmina	0.36	0.37	0.31	0.31	0.31
Daphnia I.					
Ovig Daphnia					
Daphnia g.					
Holopedium					
Chydorinae					
Polyphemus					

	SEASON	AL MEAN	S
Mean	Weighted		Weighted
Length	-	Biomass	Biomass
(mm)	(mm)	(mg/m^2)	(mg/m^2)
0.58	0.58		
0.95	0.95	63	72
0.92	0.93	140	142
1.09	1.10	0.8	0.9
0.54	0.50	6	5
0.29 0.33	0.28 0.31	44 17	42 15
TO	TAL:	271	278

Lake:	FRAZER
Station:	1
Depth:	23-24m
Year:	1994

(no./m²)

			(nom)		Seasonal Mea
Date:	2-Jun	19-Jul	25-Aug	11-Oct	(No/m ² )
Ergasilus			1,062	637	425
Epischura					
Diaptomus	425				106
Ovig Diaptomus		318			80
Cyclops	47,559	7,643	9,023	4,883	17,277
Ovig Cyclops		present	present		
Bosmina	2,760	45,542	99,788	45,648	48,435
Ovig Bosmina	0	7,325	30,255	14.438	13,005
Daphnia I.	637	7,006	37,686	13,588	14,729
Ovig Daphnia		637	19,639	425	5,175
Daphnia g.					

## Holopedium

## Chydorinae

## Polyphemus

		В	ody Size (mm)	
Ergasilus		0.45	0.52	0.51
Epischura				
Diaptomus Ovig Diaptomus	1.08	1.04 1.00		
Cyclops Ovig Cyclops	0.65	0.86 1.10	0.98 0.90	0.62
Bosmina	0.39	0.33	0.35	0.37
Ovig Bosmina	0.54	0.39	0.36	0.45
Daphnia I.	0.83	0.57	0.66	0.53
Ovig Daphnia Daphnia g.		0.73	0.70	0.65

Holopedium

Chydorinae

Polyphemus

Total:	99,231
TUCKI.	//

· • •

••

SEASONAL	MEANS

		NAL MEAN	
	Weighted		Weighted
Length	-	Biomass	Biomass
(mm)	(mm)	(mg/m^2)	(mg/m^2)
0.49	0.52	0.3	0.4
1.06 1.00	1.08 1.00	1 0.3	1 0.3
0.78	0.71	36	30
1.00	1.00		
0.36	0.35	57	54
0.44	0.39	23	18
0.65	0.62	26	24
0.69	0.70	11	11
TOT	TAL:	155	139

Lake:	FRAZER
Station:	2
Depth:	50m
Year:	1994

(no./m²)

(10.711)					Seasonal Mean
Date:	2-Jun	19-Jul	5-Aug	11-Oct	(No/m ² )
Ergasilus		1,274	3,185	2,229	1.672
Epischura					
Diaptomus		1,274			319
Ovig Diaptomus					
Cyclops	296,815	159,236	39,277	10,510	126,460
Ovig Cyclops		1,274		318	398
Bosmina	10,191	38,854	311,041	76,115	109,050
Ovig Bosmina	849	10.828	81,742	17,197	27.654
Daphnia I.	849	4,459	30,786	55,096	22,798
Ovig Daphnia	•	1.274	5,308	955	1,884

# Daphnia g.

## Holopedium

## Chydorinae

Polyphemus

					_	NAL MEAN	
	B	ody Size (mm)			Weighted Length (mm)	Biomass (mg/m^2)	We Bi (mg
	0.47	0.53	0.54	0.51	0.52	1.4	
0.70	0.68			0.69	0.68	0.5	
				{			
0.73	0.88	0.85	0.81				
	1.22	1.13	0.81				
0.38	0.45	0.38	0.42		0.39		
0.50	0.44	0.38	0.45	0.44	0.40	50	
0.65	0.74	0.57	0.56	0.63	0.57	38	
0.74	0.76	0.65	0.57	0.68	0.66	4	
				ł			
	0.73 0.38 0.50	0.70 0.68 0.73 0.88 1.22 0.38 0.45 0.50 0.44 0.65 0.74	0.47         0.53           0.70         0.68           0.73         0.88         0.85           1.22         1.13           0.38         0.45         0.38           0.50         0.44         0.38           0.65         0.74         0.57	0.47         0.53         0.54           0.70         0.68         0.73         0.88         0.85         0.81           0.73         0.88         0.85         0.81         0.81         0.38         0.45         0.38         0.42           0.50         0.44         0.38         0.45         0.56         0.56         0.74         0.57         0.56	0.47         0.53         0.54         0.51           0.70         0.68         0.69         0.69           0.73         0.88         0.85         0.81         0.82           1.22         1.13         0.81         1.05         0.41           0.50         0.44         0.38         0.45         0.41           0.65         0.74         0.57         0.56         0.62	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

290,234 Total:

Mean	Weighted		Weighted
Length	Length	Biomass	Biomass
(mm)	(mm)	(mg/m^2)	(mg/m^2)
0.51	0.52	1.4	1.5
0.69	0.68	0.5	0.5
0.82	0.79	296	274
1.05	1.14	2	2
0.41	0.39	167	155
0,44	0.40	50	40
0.63	0.57	38	31
0.68	0.66	4	4
TO	TAL:	559	508

Lake:	FRAZER			
Station:	3			
Depth:	50m			
Year:	1994			

(no./m²)

			(105111)				Seasonal Mea	an
Date:	2-Jun	19-Jul	30-Aug	11-Oct			(No/m ² )	-
Ergasilus		637	1,274	637			637	
Epischura								
Diaptomus		present						
Cyclops	128,981	140,765	42,675	15,924			82,086	
Ovig Cyclops	318		637				239	
Bosmina	6,369	51,592	217,834	251,599			131,849	
Ovig Bosmina	1,274	20,383	\$3,440	36,942			35,510	
Daphnia I.	955	1,911	47,771	75,797			31,609	
Ovig Daphnia		1,911	15,287	1,911			4,777	
Daphnia g.								
Holopedium								
Chydorinae				present				
Polyphemus								
						Total:	286,706	]
								-
		-			·		NAL MEAN	
		E	lody Size			Weighted		Weighte
			(mm)		(mm)	Length (mm)	Biomass (mg/m^2)	Biomas (mg/m^
					(		( <u>B</u> )	
Ergasilus			0.49	0.52	0.51	0.50	1	1
Epischura								
Diaptomus		1.30			1.30	1.30		
Сусіорз	0.64	0.80	0.82	0.87	0.78	0.74	175	157
Ovig Cyclops	0.64	1.12	1.32	1.18	1.07	1.09	1	1
Bosmina	0.41	0.37	0.37	0.41	0.39	0.39	184	184
Ovig Bosmina	0.49	0.42	0.40	0.44	0.44	0.41	63	56
Daphnia I.	0.55	0.67	0.57	0.59	0.60	0.58	47	45
Ovig Daphnia	0.69	0.78	0.66	0.61	0.69	0.67	10	9
Daphnia g.								
folopedium								
Chydorinae				0.73	0.73	0.73		
Polyphemus								

TOTAL:

481

453

Lake:	FRAZER	
Station:	4	
Depth:	50m	
Year:	1994	

. (no./m²)

					Seasonal Mean
Date:	2lun	19-Jul	30-Aug	11-Oct	(No/m ² )
Ergasilus			3,185		796
Epischura					
Diaptomus	2,123				531
Cyclops	172,395	299,369	66.879	15,711	138,589
Ovig Cyclops	1,274	637	1,274	849	1.009
Bosmina	29,724	8,280	189,172	160.089	96.816
Ovig Bosmina	19,532	1,911	\$5,351	11,040	29.459
Daphnia I.	2,972	0	39,491	75,583	29.512
Ovig Daphnia	849		15,924		4,193
Daphnia g.					

## Holopedium

Chydorinae

Polyphemus

						Total:	300,904	]
						SEASO	NAL MEAN	IS
		В	ody Size		Mcan	Weighted		Weighted
			(mm)		Length	Length	Biomass	Biomass
					(mm)	(mm)	(mg/m^2)	(mg/m^2)
Ergasilus	0.58		0.50	0.50	0.53	0.50	0.7	0.7
Epischura								
Diaptomus	1.13				1.13	1.13	3	3
Cyclops	0.81	0.63	0.87	0.89	0.80	0.72	309	249
Ovig Cyclops	1.15	1.00	1.17	1.25	1.14	1.15	5	5
Bosmina	0.36	0.45	0.40	0.39	0.40	0.39	143	138
Ovig Bosmina	0.42	0.51	0.39	0.43	0.44	0.40	53	44
Daphnia I.	0.72	0.69	0.66	0.59	0.67	0.62	56	48
Ovig Daphnia	0.82		0.70	0.73	0.75	0.71	10	9
Daphnia g.					[			
Holopedium								
Chydorinse								
Polyphemus								

496

580

TOTAL:

#### RED - (Kodiak) Lake: 1 Station:

37-38m Depth:

Year:

1994

Macrozooplankton Density

(no./m^2)

	Seasonal Mea						
Date:	16-May	14-Jun	18-Jul	17-Aug	22-Sep	22-Oct	(No/m2)
Ergasilus					1,061		177
Immature Calanoids	15.924	7,431	\$,493	27,601	6,369	531	11.058
Diaptomus	14,331	38,747	108,280	93,417	14,862	16,986	47.771
Ovig Diaptomus		531				1,062	266
Cyclops	250.525	288,217	222,930	192,143	80,678	95,011	188.251
Ovig Cyclops		11,677	48,831	70,064	4,246		22,470
Bosmina	4,777	5,839	96,602	145,436	26,539	5,839	47,505
Ovig Bosmina	1.062	1,592	8,493	24.416	1,061		6,104
Daphnia I.				18.047	9,554	16,454	7,343
Ovig Daphnia			2,123	6,369	4,246	9,023	3,627
Daphnia g.							
Holopedium							
Chydorinae			1,061	8,493	1,061		1,769
Ovin Chydorinae			1,061				177
Polyphemus							

Total: 336,516

	SEASONAL MEANS								
Mean	Weighted		Wei						
Length	Length	Biomass	Bic						
(mm)	( <b>m</b> m)	(mg/m^2)	(mg						

		B	ody Size (mm)			
Ergasilus					0.32	
Immature Calanoids	0.54	0.58	0.54	0.49	0.45	
Diaptomus Ovig Diaptomus	0.86	1.06 1.16	1.13	1.00	0.89	1.00
Cyclops	0.71	0.80	0.96	0.65	0.66	0.52
Ovig Cyclops		1.09	1.14	1.16	1.21	1.27
Bosmina	0.46	0.48	0.43	0.41	0.38	0.47
Ovig Bosmina	0.50	0.50	0.49	0.36	0.36	0.54
Daphnia I.	0.67	0.74	0.70	0.59	0.55	0.65
Ovig Daphnia			0.86	0.76	0.68	0.77
Daphnia g.						
Holopedium						
Chydorinae Ovig Chydorinae Polyphemus	0.36		0.36 0.35	0.36 0.35	0.29	

Mean	Weighted		Weighted
Length	Length	Biomass	Biomass
(mm)	(mm)	(mg/m^2)	(mg/m^2)
0.32	0.32	0.1	0.1
0.52	0.51	8	8
0.99	1.04	200	232
1.16	1.16	1.7	1.7
0.72	0.75	332	369
1.17	1.15	114	109
0.44	0.42	85	77
0.46	0.40	12	9
0.65	0.60	13	11
0.77	0.76	9	9
0.34 0.35	0.35 0.35	1.9 0.2	2.0 0.2
тот	TAL:	777	828

	- 38m 994									
Year: 1		lacrozoo	olankton	Density						
			no./m^2)							
							-1	5	Seasonal Mea	n
Date:	16-May	14-Jun	18-Jul	17-Aug	22-Sep	22-Oct	]	•	(No/m2)	-
Immature Calanoids	4,246	3,185	5,308	7,962	3,981				4,114	
Diaptomus	35,032	18,046	41,932	40,605	58,918	35,562			38,349	
Ovig Diaptomus					present					
Cyclops	239.920	160.828	140.658	167,197	93,153	123,142			154,150	
Ovig Cyclops		3,715	43.524	26,274	8,758	1,592			13,977	
Bosmina	3,715	3,715	54,670	156,050	21,497	2,654			40,384	
Ovig Bosmina	2,123			33,439	3,185	531			6.546	
Daphnia I.			7,431	31,051	14,331	10,616			10,572	
Ovig Daphnia			4,246	8,758	3,981	1,062			3,008	
Chydorinae	1,592	531	1,062	5,573	796				1,592	
Ovig Chydorinae	present		present							
								Total:	272,691	1
								L	NAL MEAN	ı IS
		В	ody Size				Mcan	Weighted		Weighte
		_	(mm)				Length (mm)	-	Biomass (mg/m^2)	Biomas (mg/m^
Ergasilus										
mmature Calanoids	0.54	0.54	0.57	0.48	0.53		0.53	0.53	3	3
Diaptomus	0.93	1.13	0.95	0.97	0.88	1.07	0.99	0.97	160	149
Dvig Diaptomus					1.20		1.20	1.20		
yclops	0.67	0.86	0.81	0.75	0.57	0.64	0.72	0.72	272	279
ovig Cyclops		1.13	1.13	1.18	1.20	1.25	1.18	1.16	71	69
Bosmina	0.50	0.45	0.38	0.30	0.39	0.41	0.41	0.33	61	40
ovig Bosmina	0.52	0.54		0.32	0.39	0.52	0.46	0.34	13	7
aphnia I.		0.66	0.66	0_51	0.59	0.58	0.60	0.56	16	14
ovig Daphnia		0.90	0.76	0.59	0.67	0.72	J.73	0.66	7	6
							1			

TOTAL:

604

567

#### RED - KODIAK Lake: 3 Station: 32 - 38m Depth: 1994

Year:

Macrozooplankton Density

(no./m^2)

		(1	no./m^2)				Seasonal Mean
Date:	16-May	14-Jun	18-Jul	17-Aug	22-Sep	22-Oct	(No/m2)
Ergasilus							
Epischura							
Diaptomus	62.634	43.525	71,124	73,567	135,349	50,957	72,859
Ovig Diaptomus		4,246		2,972			1,203
Cyclops	329,076	398.089	185,774	168,684	218,154	171,975	245,292
Ovig Cyclops		6.369	78,557	15,605	1,592	3,185	17.551
Bosmina	2,123	4,246	101,911	167,940	38,217	17,516	55,326
Ovig Bosmina	1,061	2,123	7,431	40,127	1,592		8,722
Daphnia I.		1,061		2,972	28,662	23,885	9,430
Ovig Daphnia				1,486	15,923	7,962	4.229
Daphnia g.							
Holopedium							
Chydorinae				5,202			867
Ovig Chydorinae				743			124
Polyphemus							
							415 (02)
							Total: 415,603
							SEASONAL MEANS
		В	ody Size				Mean Weighted Weighte
			(mm)				Length Length Biomass Blomass
							(mm) (mm) (mg/m^2) (mg/m^2
Diaptomus	0.99	1.03	1.23	0.99	0.97	0.97	1.03 1.02 341 335
Ovig Diaptomus		1.03		0.99			1.01 1.01 5 5
Cyclops	0.82	0.81	0.73	0.79	0.65	0.58	0.73 0.75 450 476
Ovig Cyclops	1.09	1.12	1.12	1.19	1.18		1.14 1.13 84 82
Bosmina	0.45	0.47	0.33	0.33	0.39	0.35	0.39 0.34 76 58
Ovig Bosmina	0.53	0.53	0.41	0.34	0.42		0.45 0.36 16 11
Daphnia I.	0.82	0.49	0.48	0.61	0.51	0.59	0.58 0.55 13 12
Ovig Daphnia		0.91	0.80	0.70	0.71	0.68	0.76 0.70 11 9
Chydorinae	0.35	0.39		0.29			0.34 0.29 0.9 0.6
Ovig Chydorinae	0.47	0.39		0.35			0.40 0.35 0.2 0.1
							TOTAL: 997 989

#### RED - KODIAK Lake: 4 Station: 32 - 37m Depth:

1994

Year:

Macrozooplankton Density

		(1	no./m^2)					s	Seasonal Mea	n
Date:	16-May	14-Jun	18-Jul	17- <i>:</i> ug	22-Sep	22-()ct		-	(No/m2)	
Diaptomus	60,511	54.140	14,331	37,154	132,167	92,357			65,110	
Ovig Diaptomus		2,123	3,981		1,592	1,061			1.460	
Cyclops	498.392	254,777	78,026	72,718	152,866	300,424			226,201	
Dvig Cyclops		7,431	9,554	7,431	4,777				4,866	
Bosmina	1,592	3,185	13,535	90,764	44,586	31,847			30,918 11,766	
Ovig Bosmina		1,061	7,962	61,572	~~~~				17,693	
Daphnia I.		2,123	6.370	13,800	38,217	45,646 18,047			5,308	
Ovig Daphnia			1,592	5,839	6,369	10.04/				
Chydorinae Ovig Chydorinae			present	531 present					89	
							I	Total:	363,409	]
								SEASO	NAL MEAN	IS
		B	ody Size	I			Mean	Weighted		Weight
			(നന)				Length	Length	Blomass	Bioma
							(mm)	(mm)	(mg/m^2)	(mg/m
	1.03	0.96	0.91	0.73	0.82	0.88	0.89	0.88	200	196
Ovig Diaptomus		0.96	1.40	1.26	1.16	0.88	1.13	1.19	9	10
Ovig Diaptomus Cyclops	1.03 0.71	0.96 1.00	1.40 0.78	1.26 0.66	1.16 0.73	0.88 0.62	1.13 0.75	1.19 0.75	9 440	10 438
Dvig Diaptomus Cyclops Dvig Cyclops	0.71	0.96 1.00 1.11	1.40 0.78 1.16	1.26 0.66 1.13	1.16 0.73 1.19	0.88 0.62 1.12	1.13 0.75 1.14	1.19 0.75 1.14	9 440 23	10 438 23
Ovig Diaptomus Cyclops Ovig Cyclops Bosmina	0.71 0.50	0.96 1.00 1.11 0.46	1.40 0.78 1.16 0.34	1.26 0.66 1.13 0.32	1.16 0.73 1.19 0.35	0.88 0.62 1.12 0.41	1.13 0.75 1.14 0.40	1.19 0.75 1.14 0.35	9 440 23 45	10 438 23 34
Diaptomus Ovig Diaptomus Cyclops Ovig Cyclops Bosmina Ovig Bosmina	0.71 0.50 0.53	0.96 1.00 1.11 0.46 0.52	1.40 0.78 1.16 0.34 0.48	1.26 0.66 1.13 0.32 0.35	1.16 0.73 1.19 0.35 0.38	0.88 0.62 1.12 0.41 0.47	1.13 0.75 1.14 0.40 0.46	1.19 0.75 1.14 0.35 0.37	9 440 23 45 23	10 438 23 34 14
Dvig Diaptomus Cyclops Dvig Cyclops Bosmina Dvig Bosmina Daphnia I.	0.71 0.50 0.53 0.82	0.96 1.00 1.11 0.46 0.52 0.67	1.40 0.78 1.16 0.34 0.48 0.63	1.26 0.66 1.13 0.32 0.35 0.51	1.16 0.73 1.19 0.35 0.38 0.57	0.88 0.62 1.12 0.41 0.47 0.63	1.13 0.75 1.14 0.40 0.46 0.64	1.19 0.75 1.14 0.35 0.37 0.59	9 440 23 45 23 31	10 438 23 34 14 26
Dvig Dlaptomus Cyclops Dvig Cyclops Bosmina Dvig Bosmina Daphnia I.	0.71 0.50 0.53	0.96 1.00 1.11 0.46 0.52	1.40 0.78 1.16 0.34 0.48	1.26 0.66 1.13 0.32 0.35	1.16 0.73 1.19 0.35 0.38	0.88 0.62 1.12 0.41 0.47	1.13 0.75 1.14 0.40 0.46	1.19 0.75 1.14 0.35 0.37	9 440 23 45 23	10 438 23 34 14
Ovig Diaptomus Cyclops Ovig Cyclops Bosmina	0.71 0.50 0.53 0.82	0.96 1.00 1.11 0.46 0.52 0.67	1.40 0.78 1.16 0.34 0.48 0.63	1.26 0.66 1.13 0.32 0.35 0.51	1.16 0.73 1.19 0.35 0.38 0.57	0.88 0.62 1.12 0.41 0.47 0.63	1.13 0.75 1.14 0.40 0.46 0.64	1.19 0.75 1.14 0.35 0.37 0.59	9 440 23 45 23 31	10 438 23 34 14 26

.31 .36	0.31 0.36	0.1	0.1
TO	TAL:	783	753