Exxon Valdez Oil Spill

Restoration Project Annual Report

Sockeye Salmon Overescapement

Restoration Project 94258

Annual Report

This annual report has been prepared for peer review as part of the Exxon Valdez Oil Spill Trustee Council restoration program for the purpose of assessing project progress. Peer review comments have not been addressed in this annual report.

Dana C. Schmidt

Kenneth E. Tarbox
Bruce M. Barrett
Gary B. Kyle
Jim A. Edmundson
Bruce E. King
Steven G. Honnald
Linda K. Brannian
Charles O. Swanton
Patrick Shields
John M. Edmundson
Patricia A. Roche
Stan R.Carlson

Alaska Department of Fish and Game
Commercial Fisheries Management and Development Division
34828 Kalifornsky Beach Road
Soldotna, Alaska 99669

April 1995

Sockeye Salmon Overescapement

Restoration Project 94258
Final Report

Study History: Restoration Project 94258 continues the study effort initiated in 1990 with Fish/Shellfish 27 (same title), which continued until 1992. In 1993, the effort continued with Restoration Project 93002.

Abstract

We provide a continuing examination of the effects of large escapements of sockeye salmon into the Kenai River system and into Red and Akalura lakes on Kodiak Island. Larger than anticipated adult returns to the Kenai River in 1994 suggest earlier reported smolt numbers were underestimated for at least the 1989 brood year. Fall fry from Skilak and Kenai lakes in 1993 were smaller and had less lipid content than Tustumena Lake fry, while spring fry samples indicated major decreases in fat content in Tustumena Lake fry while Skilak Lake fry showed little change. Mortality coupled with some early spring growth in Skilak Lake apparently explains these differences. Spawner abundances from the mainstem Kenai River are correlated with Skilak Lake fall fry size. This suggests a density dependent relationship with escapement into the Kenai River system. The effect of this density dependence on smolt production and subsequent adult returns requires data from returning adults in 1995 and 1996 due to uncertainty of Kenai River smolt esimates from the primary smolt age class migrating out of the system in 1992-93.

Key Words: Escapement, Kenai River, Kodiak Island, lake ecosystems, limnology, Oncorhynchus nerka, overescapement, overwinter survival, rearing, smolt production, sockeye salmon.

Citation:

Schmidt, D.C., K.E. Tarbox, B.M. Barrett, G.B. Kyle, J.A. Edmundson, B.E. King, S.G. Honnald, L.K. Brannian, C.O. Swanton, P. Shields, J.M. Edmundson, P.A. Roche, and S.R. Carlson. 1995. Sockeye salmon overescapement, Exxon Valdez Oil Spill Restoration Project Annual Report (Restoration Project 94258), Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Soldotna, Alaska.

REPORT NOTE: This is a report of studies that are in progress. All data and analyses provided are incomplete and preliminary. This report, as well as the data and analyses contained in the report, should not be cited without an express statement of the incomplete and preliminary nature of the information.

TABLE OF CONTENTS
Page
STUDY HISTORY/ABSTRACT/KEY WORDS/CITATION i
LIST OF TABLES iv
LIST OF FIGURES v
EXECUTIVE SUMMARY 1
INTRODUCTION 2
OBJECTIVES 3
METHODS 3
Adult Sockeye Salmon Escapement Assessment 3
Juvenile Sockeye Salmon Assessment 4
Sockeye Salmon Smolt Enumeration. 4
Limnological Studies 5
RESULTS AND DISCUSSION 6
Kenai River System Investigations 6
Adult Returns and Escapement 6
Smolt Production 6
Fry Production 6
Limnological Studies 7
Kodiak Lake Investigations 8
Adults Returns 8
Smolt Abundance, Size, and Age 8
Red Lake 8
Akalura Lake 8
Frazer Lke 9
STATUS OF INJURY ASSESSMENT 9
LITERATURE CITED 11
APPENDICES A-H. A-1 to $\mathrm{H}-1$

LIST OF TABLES

Table 1. Kenai River smolt production by age class. 16
Table 2. Kenai River smolt age composition summary 16
Table 3. Kasilof River escapement and smolt production summary by brood year 17
Table 4. Kasilof River smolt age class summary. 17
Table 5. Kasilof River smolt fork length by outmigration year 18
Table 6. Kenai Peninsula lakes fall fry data summary 19
Table 7. Comparison of copepod biomass and fall density of juvenile sockeye salmon in Tustumena and Skilak Lakes, Kenai Peninsula, Alaska. 20
Table 8. Sockeye salmon smolt estimates by age by brood year escapement for Red Lake, 1986-94. 21
Table 9. Sockeye salmon smolt estimates by brood year escapement for Akalura Lake, 1986-93 21
Table 10. Frazer Lake smolt abundance data and escapements. 22
Table 11. Sockeye salmon smolt estimates by age for each year for Red Lake, 1986-93 22
Table 12. Mean lengths of sockeye salmon smolt by age and year for the Kodiak systems, 1990-94 23
Table 13. Mean weights of sockeye salmon smolt by age and year for the Kodiak systems, 1990-94. 24
Table 14. Sockeye salmon smolt estimates by age for eac: year for Akalura Lake, 1986-93. 25
Table 15. Sockeye salmon smolt estimates by age for each year and by brood year escapement for Frazer Lake, 1986-93 25
Table 16. Tow net results from September, 1994 in Red and Frazer Lakes, Kodiak 25

LIST OF FIGURES

Figure 1. Location of Kenai and Kasilof Rivers, Upper Cook Inlet, Alaska. 26
Figure 2. Kodiak study lakes, Alaska 27
Figure 3. Summary of sonar count sockeye salmon escapements and historical escapement goal ranges for the Kenai River. 28
Figure 4. Summary of sonar count sockeye salmon escapements and historical escapement goal ranges for the Kasilof River. 29
Figure 5. Relationship between the number of fall fry in Kenai and Skilak Lakes and mainstem potential egg deposition. 30
Figure 6. Relationship of Kenai River sockeye salmon spawning escapement to average weight of $0+$ fall fry in Skilak Lake, Alaska 31
Figure 7. Seasonal turbidity fluctuations in Skilak Lake, Stations A, B, and C. 32
Figure 8. Inter-annual variation in Skilak Lake mean seasonal biomass 33
Figure 9. The relationship of fall fry mean wet weight versus relative zooplankton biomass are compared for Tustema (1986-94) and Skilak (1987-94) Lakes 34

EXECUTIVE SUMMARY

This status report is the fifth in a series describing progress on studies conducted of the effect of overescapement on the production of sockeye salmon from selected major rearing lakes impacted by the Exxon Valdez oil spill. Large escapements can result in the over abundance of juvenile salmon rearing in lakes. By exceeding the rearing capacity, prey resources are altered through changes in species, size composition, and biomass (Koenings and Burkett 1987; Kyle et al. 1988; Koenings and Kyle 1991). In some sockeye salmon systems, escapements of two to three times normal levels create major changes in nursery lakes which affect the abundance, size, and age structure of sockeye salmon smolts. These alterations to nursery lakes may be sustained and adversely affect productivity in succeeding years. We report an update on the results of studies of the 1989 overescapement event caused by the presence of oil on the fishing grounds.

Preliminary data are available on the 1994 smolt production, including size, age structure, and abundance. Adult returns in 1994 from predominantly the 1989 brood year were much higher than forecasts based on the smolt data. This suggests that the smolt numbers were underestimated in 1991. Projected returns from future smolt estimates will have a high degreee of uncertainty and the amount of damages incurred will await adult returns. The smolt estimates for 1994 were up significantly however, suggesting production in the future may be recovering. The pre-smolt however, indicated very low fat content and apparently significant mortality when compared with smolt produced from Tustumena Lake. The Red Lake system demonstrated low numbers of smolt outmigrating in 1994 although lake fry abudnance appeared to be significantly higher. .Akalura Lake also had low numbers of smolt and showed continuing poor production.

Further analysis of density related affects in Skilak Lake indicate that low return per spawner and fall weight and lipid content are related to escapements. Because of the uncertainty of the smolt numbers, the effect of these larges escapements on adult production is uncertain. Therefore, detailed studies recommended in the 1994 status report have been delayed for one year, pending the adult return for 1995.

INTRODUCTION

Following the Exxon Valdez oil spill (EVOS) in 1989, the presence of oil in the waters of traditional fishing areas in the Gulf of Alaska resulted in the closure of many commercial fisheries. This resulted in the escapement of large numbers of sockeye salmon (Oncorhynchus nerka) into some freshwater systems. EVOS-funded studies on the impact of large escapements on future sockeye salmon production were initiated in 1990. Specifically, these investigations assessed impacts to the production and ecology of major sockeye salmon rearing lakes on Kodiak Island and the Kenai Peninsula (Figures 1 and 2).

In the Kodiak Island area, 1989 Red Lake sockeye salmon escapement was 768,000 , more than twice the management goal of 200,000 to 300,000. At Akalura Lake, the escapement was 116,000 , about twice the 40,000 to 60,000 goal range. However, not all Kodiak systems received higher-than-average escapements. For example, nearby Upper Station Lake had a 286,000 escapement, which is reasonably close to the 200,000 to 275,000 goal.

The Kenai Peninsula in Southcentral Alaska contains several major glacial lakes that have produced large runs of sockeye salmon over the past decade. From 1987 to 1989, escapements of adults into the Kenai River system were approximately double those of previous years, and double the Alaska Department of Fish and Game's management goal of 550,000 adults.

High densities of planktivorous fish can exert top-down control over lower trophic levels, and measurable ecosystem changes within the affected lakes were expected to occur. For example, major forage items within the zooplankton community may be reduced or eliminated, prey item body-sizes may be reduced and preferred food items may be replaced by forms resistant to predation. Kyle et al. (1988) found that large sockeye escapements into Frazer Lake on Kodiak Island resulted in subsequent reductions in smolt size that was correlated to a depressed zooplankton community.

Density-dependent mechanisms may decrease production whereby predation exhausts or alters the availability of the food resources. This reduction in food resources may subsequently lead to decreased survival. Alternatively, climatic variation, such as extended winters could be a primary or an associated cause of poor survival.

Although measuring the magnitude of fish production is a high priority, the measurement of nutrients and the zooplankton community provides information to support potential rehabilitation programs required to restore lost productivity. Therefore, our investigations examined the availability of food resources to sockeye salmon fry in five glacial lake systems on the Kenai Peninsula and three clearwater lakes on Kodiak Island. Our studies attempt to link measurements of the food supply in these lakes with the fall condition and survival of juvenile sockeye salmon. These data also are essential to determine if production changes in fish are related to density rather than climatic or other non-density dependent factors.

This report provides interim observations as to changes that occurred in the biological, physical, and chemical properties during the course of these studies and relies on other investigations for comparative purposes. We also provide preliminary analyses of some of these data with the intent of determining if existing monitoring programs are adequate to measure the biological responses and provide evidence as to the cause of observed changes. Therefore, this report is not complete as sample analysis and data availability are time-dependent (for example adult returns lag 3-5 years from the time of juvenile measurements to estimate survival). It is not intended to be a comprehensive analysis but an overview of studies in progress. In addition, detailed methods and results for some portions of the study are presented in companion reports. These are referenced for further information. In addition, supporting data (e.g., adult run size estimates by river of origin) which are critical to these investigations are conducted and reported independently by ADF\&G.

OBJECTIVES

The objectives of this study are to:

1. measure critical biological attributes (number, age, size) of juvenile sockeye salmon in the nursery lakes of the Kenai Peninsula and Kodiak Island;
2. estimate the biological effects on juvenile sockeye salmon production and subsequent adult returns for brood years with large spawning escapements; and
3. measure and prepare nutrient budgets, estimate plankton populations, and measure physical and chemical parameters in the nursery lakes.

Although not included in the original study plan, the collected data inherently provides an opportunity to examine the feasibility of alternative restoration methods.

METHODS

Adult Sockeye Salmon Assessment

Escapements of sockeye salmon were estimated by weirs at Red, Upper Station, and Akalura lakes. Escapement into the Kenai and Kasilof rivers was estimated by sonar counters using fish wheels for capturing fish samples for species apportionment, sex ratios, and size data (King and Tarbox 1991). Sockeye salmon spawners in the Kenai River were estimated from the sonar counts minus the estimated sport fishing harvests above the counting sites. Kenai River spawner estimates were further adjusted by removing escapement estimates from the Russian River and Hidden Lake (weir adults in the fisheries and spawning populations. Standard methods of scale sampling and aging were used.

Juvenile Sockeye Salmon Assessment

For each of the three lake studies on the Kenai Peninsula, the abundance, size and freshwater age of juveniles were estimated through hydroacoustic surveys combined with tow net sampling Detailed survey methods are documented for the Kenai River lakes in Tarbox and King (1992) and for Tustumena Lake in Kyle (1992). Since 1992, hydroacoustic surveys were conducted only on the Kenai Peninsula lakes.

Additional collections of hydroacoustic data and its analysis to determine the vertical distribution of sockeye salmon juveniles within Skilak, Kenai, and Tustumena lakes were initiated in 1992. One of the hydroacoustic transects used in the fall 1992 was surveyed again in May 1993 on Skilak Lake. Multiple recordings of hydroacoustic data from this same transect were obtained from twilight through darkness to determine diel changes in distribution of fry (Appendix A details the 1993 and 1994 Skilak and Kenai Lakes hydroacoustic methods and results).

A hydroacoustic survey of Upper Russian Lake was conducted on 14 September 1994. The survey consisted of 14 orthoganal transects and the data collected with the same equipment as in Skilak and Kenai Lakes. The data were analyzed by a combination of echo integration and echo counting. Counts were made in 8 depth strata. Detailed methods and results from this investigation are reported in Thorne (1994).

Freshwater growth and age of juvenile sockeye salmon from all study systems were determined from scale and otolith measurements made either by direct visual analysis of scales or from otoliths with an optical pattern recognition system. Sampling of fry using a closing net system designed by Biosonics Inc. was deployed in the summer and fall of 1994 in Skilak and Kenai Lake. This provided size and age data at different depth and area strata; stratified sampling methods were used to estimate fry age, weight, and length.

Lipid analyses for the 1994 sampling year are being conducted by the Palmer Laboratory of the University of Alaska using the methods described by Randall (1974). Because of contractual issues and delays which were beyond the control of the investigators these analyses have not been completed. Results will be reported in future reports.

Sockeye Salmon Smolt Enumeration

The total number of sockeye salmon smolt (with 95% confidence intervals) migrating from each of the lake systems in 1990-1994 was estimated by a mark-recapture technique (Rawson 1984). At regular intervals, a sample of sockeye salmon smolt was marked with Bismark Brown dye and released upstream. Recovery rates of the dyed fish were used to estimate trap efficiency. This efficiency rate was then applied to estimate the total smolt outmigration. Methods deviated slightly each year but specific details of sampling are available in Barrett et al. (19c:a) for the Kodiak lakes, in King et al. (1991) for the Kenai River, and in Kyle (1992) for the Kasilof River. King et al. (1994; in Appendix A) described the procedures used to estimate smolt abundance in the mainstem Kenai River and Russian River.

Subsamples of smolts from Kodiak Island were stored frozen and sent to the University of Alaska Fairbanks to determine the relative levels of marine versus terrestrial nitrogen from selected Kodiak Island systems. These samples were taken to determine the effects of carcass nutrient additions in maintaining the productivity of Red Lake. These sample sets will be reported in the final report or in a later progress report.

Limnological Studies

Limnological sampling has been conducted in the Tustumena Lake at three stations since 1981. Two stations were sampled from Skilak and Kenai Lakes from 1986-1989, and beginning in 1990 three stations were used to collect limnological parameters. Zooplankton data were collected from Skilak Lake at five stations in 1990, 10 in 1991, and three in 1992, 1993, and 1994. Zooplankton samples from Kenai Lake were collected at three stations during 1990-1994.

Limnological data were collected from three stations in Red Lake, two stations in Akalura Lake, and two stations in Upper Station Lake. Samples were collected at about three-week intervals on each lake during May through October. Study site locations, sampling dates, physical, chemical and biological parameters, and data summaries are provided in Appendix A of Schmidt and Tarbox (1993).

Water nutrients and basic physical parameters, chlorophyll a, and zooplankton samples were analyzed at the State of Alaska's Limnology Laboratory located in Soldotna. Analytical procedures followed standardized laboratory and quality assurance methods (Koenings et al. 1987). In cases where prior years' data are available, limnological parameters during residence of juveniles from the 1987-89 escapements were compared to parameters during prior years.

To collect quantitative data representative of the vertical distribution of the zooplankton community, a closing zooplankton net was utilized. The net is constructed of $153-\mu$ Nitex mesh with a $0.5-\mathrm{m}$ stainless steel ring at the mouth and a $200-\mathrm{ml}$ collection bucket. Essentially, this netting procedure is identical to the methods used for collecting water column zooplankton samples used for biomass estimates. The net is vertically lowered to the desired depth as measured with a tow line marked in $1-\mathrm{m}$ increments. After vertically retrieving a 5 - or $10-\mathrm{m}$ tow, the line is sharply jerked triggering the release of a closure mechanism at the opening of the net. Triggering this mechanism causes the net to fold over on itself stopping any further collection of zooplankton.

After the collection bucket is thoroughly rinsed with distilled water, the release mechanism is reset and the net lowered to the depth at which collection had previously been halted.

RESULTS AND DISCUSSION

Kenai River System Investigations

Adults Returns and Escapement

Major departures from the established escapement goals in the Kenai River occurred during 19871989 (Figure 3). The 1989 event corresponded with closures associated with the Exxon Valdez oil spill. Escapements did not greatly exceed targeted values in the nearby Kasilof River/Tustumena Lake sockeye system during this same time period and was the primary reason this system has been studied has been used for comparison.

Since 1991 escapements into the Kenai River have exceeded the goal range (Figure 3). In contrast, the Kasilof River system has been managed to achieve the desired goal (Figure 4).

Smolt Production

Detailed study results are listed in King et al. (1991) and King et al.(1994, in Appendix A), for the Kenai River smolt investigations and in Kyle (1992) and Todd and Kyle (1992, 1994) for the Kasilof River smolt investigations. T ye abundance and population characteristics of smolts which migrated from the Kenai and Kasil そuivers are presented in Tables 1-5, respectively. The adult returns in 1994 to the Kenai Rive: \quad ested the Kenai mainstem smolt estimates were substantially below the number which actually grated. An estimated 3.1 million smolt were produced by the 1989 brood year. However, a returns for that brood year were estimated at 3.5 million sockeye salmon. Therefore, an es. ate of smolt numbers was not produced from the 1994 trap data (individual trap data are prese $i_{i}{ }^{2}$ d in Appendix A). The mainstem smolt program has been discontinued in 1995.

Fry Production

The juvenile sockeye salmon production within Kenai and Skilak Lakes as reflected by fall fry abundance are reported in Tarbox and Brannian (1995; Appendix C). The fall fry abundance generally reflects escapement levels (Figure 5).

Fall fry length and weight data from Skilak, Kenai, and Tustumena Lakes are presented in Table 6. The Skilak and Kenai Lake fall fry are generally smaller than in Tustumena Lake. Figure 6 illustrates the relationship between estimated mainstem spawner abundance and fall fry weight in Skilak Lake.

During 1993 and 1994, preliminary side looking hydroacoustic data collected in July indicated near surface daylight schooling aggregations of sockeye salmon in Skilak Lake. These aggregations did not occur in Tustumena Lake. The schools dispersed at dusk and were generally not apparent from downward looking sonar (Appendix D has examples of the echo grams which show this pattern). Examination of sockeye salmon fry stomachs before dusk and after dark were inconclusive relative
to this being a period of increased feeding (Appendix E presents limited food habit data analysed to date).

Contrary to earlier inferences from downward looking acoustic tranducer orientation (Schmidt and Tarbox 1993) DVM in juvenile sockeye in Skilak Lake may not occur. Dusk and night dispersions from near surface schools may provide the appearance of DVM when only down looking acoustic data are used (a full discussion of schooling behavior and results will be presented in future reports). This phenomena did not affect the September population estimates. Fish schools were deeper in the water column and dispersion makes them more available for acoustic enumeration.

In 1994, fall hydroacoustic estimate of Russian River sockeye salmon was $1,645,000$ fish. This represents mid-water estimate only. No corrections were made for surface orientation.

Extensive tow netting in Skilak Lake in 1993 and 1994 indicated that there was evidence of differences among sampling areas and between depth increments in sockeye salmon fry age structure, size of age-0 fry, and species composition. The two types of gear tested (single boat vs. two boat) gave similar results. Results indicate that daytime tows by area and depth should be undertaken for use in allocation of hydroacoustic targets to species composition and age structure of sockeye salmon fry. Summary memos from Stan Carlson on the results of the 1993 and 1994 tow netting program is attached in Appendix F.

Limnological Studies

In the previous progress report (Schmidt and Tarbox 1993) we established that standing crop biomass of zooplankton in Skilak Lake had changed modestly and water quality parameters had only modest changes. For example, Figure 7 illustrates seasonal fluctuations of the turbidity values from Skilak Lake during the study. The relatively short period of this time series does not afford more detailed analysis relating to growth or survival of Skilak Lake sockeye salmon fry. Limnological data collected in 1994 are presented in Appendix G.

Figure 8 illustrates the trend in biomass of the two dominant copepod species through 1994 (specific station data are presented in Appendix G). Cyclops had an apparent increase in abundance in 1993,. However, both Cyclops and Diaptomus decreased in abundance in 1994.

Table 7 summarizes the relationship of zooplankton densities to fall juvenile sockeye salmon densities in Skilak and Tustumena Lakes. Only in 1993 and 1994 has the biomass of zooplankton per fall fry in Tustumena Lake exceeded that of Skilak Lake. Figure 9 illustrates the relationship of this relative measure of zooplankton density to fall fry weight in Skilak Lake from 1987-94 and in Tustumena Lake from 1986-94. We lack accurate measurements of fall weights prior to 1987 in Skilak Lake to extend this time series, while in Tutstumena Lake the stocking of approximately 18 million spring fed fry into this system invalidated any extension of this time series into early years.

Our hypothesis is that fish fall weights are determined by some other factor than the relative abundance of prey throughout the growing season. We suspect that DVM of the zooplankton
(Schmidt et al. 1994) contribute to the differences in apparent growth rates of juvenile sockeye salmon observed between these two lakes. Thus, the availablity of prey is the issue.

Kodiak Lake Investigations

Adult returns

Sockeye salmon escapements to Red Lake were 380,181 fish in 1994. This is approximately 100,000 greater than 1993 and 50% of the escapement realized in 1989 (Table 8). Akalura Lake escapement was 30,692 sockeye salmon which was one half the 1993 escapement and one fourth the 1989 escapement (Table 9). Frazer Lake sockeye salmon escapement was 206,071 fish in 1994 which was close to the historical range since 1989 (Table 10).

Smolt Abundance, Size, and Age

The following information was taken from Swanton et al. (1995), and condensed for this report.

Red Lake

In 1994, an estimated $562,690 \pm 90,385$ sockeye salmon smolt migrated from Red Lake, which was $\sim 34 \%$ less than the 1990-94 average (Table 11). Age-2 smolt from the 1991 brood year were most abundant (92% of the total), followed by age- 1 smolt (7%). The average length and weight of smolt in 1994 were within the range observed for the 1990-93 period (Tables 12 and 13). The total number of sockeye salmon smolt produced from the 768,000 escapement of 1989 is an estimated 1.6 million fish (Table 8). This respresents a 4 -fold increase in smolt compared to the estimate for the 1988 brood year, and a 7 -fold increase over the 1990 brood year.

Akalura Lake

The 1994 sockeye salmon smolt migration estimate for Akalura Lake was $170,172 \pm 39,261$, which was 0.1 million less than the average for 1990-93 (Table 14). Age-2 smolt were the most abundant comprising 53% of the estimate. In 1994, age-1 smolt averaged about 14 mm and 2.9 g greater than the average from 1990-93 migrations. The average sizes of both age- 2 and age-3 smolts in 1994 were larger in length and weight than the average over 1990-93 (Tables 12 and 13). Brood years 1987 and 1988 both produced about twice the smolts than the 1989 brood year (Table 9). Also, the 1990 brood year produced fewer smolt (about 50% less) than the 1989 brood year. Presently, the causal mechanism for continued depressed smolt production is unknown, although several hypotheses have been forwarded (Edmundson et al. 1994).

Frazer Lake

The 1994 Frazer Lake sockeye salmon smolt outmigration was estimated at $5,902,863 \pm$ 617,638 smolts which was 39% less than during 1993 but closely associated with the number of smolts outmigrating in 1991-92 (Table 15). This migration was dominated by age-2 (78.1%) and age-1 (12.3%) smolts with a substantial reduction in age- 3 smolt numbers from 1993. That is, in 1991 age-1 smolt comprised 40% and age- 2 smolt comprised 59% of the emigration, whereas in 1992 age-2 comprised 89% of the total population. In 1993, all age classes of smolt were similar in size compared to previous years (Tables 12 and 13). The 1989 brood year escapement produced an estimated 12.9 million smolt from an escapement of 360,000 . The 1988 and 1990 brood year escapements produced less than half as many smolt from escapements that were only 22% and 28% less than the 1989 brood year escapement.

STATUS OF INJURY ASSESSMENT

The 1994 studies have provided some question as to the extent of reduction in smolt production in the Kenai River and from Red Lake on Kodiak Island. The Kenai River smolt production has decreased over time and major reductions in run returns from these smolt years are likely. The fall fry data coupled with limited sampling in the spring of 1992 provide support for the contention that overwintering mortality of fry in the lake is primarily responsible for the collapse. The 1993 fall data indicate high abundance and small size of juvenile sockeye salmon in Skilak Lake. In contrast, Tustumena Lake produced record sized fall fry in 1993 with increases in zooplankton densities, suggesting variations in the plankton community and in fish survival are most likely caused by density independent factors. Survival of these two populations would be expected to be different, given the pre-winter condition. As other factors may compound overwinter survival, such as length of winter, and availability spring zooplankton, forecasts of the 1994 smolt production from these systems would expect to have a high degree of uncertainty.

More detailed studies of zooplankton behavior, abundance, and distribution in Skilak Lake in 1993 suggests DVM may decline with increased abundance (and presumably increased competition for food), at least for the copepod Cyclops. The electivity of the feeding habits of fry from limited pre-overescapement gut samples is consistent with the hypothesis of reduced availability of copepods in Skilak Lake. DVM patterns in 1993 provided consistent correlation with spatial abundance and electivity indices of fry collected from the same times and areas. Because the current study approach provides only correlative data, we are recommending that in 1995, an enclosure investigation be initiated to determine the effect of altering sockeye salmon fry densities artificially, coupled with nutrient additions, on growth of juvenile sockeye salmon. These studies will provide the basis further restoration activities to facilitate recovery of Skilak Lake sockeye salmon. These investigations need to be coupled to the ongoing time series monitoring Skilak and Tustumena fry production and overwintering survival, in addition to the dynamics of the zooplankton communities.

Smolt production from Red Lake and Akalura Lake on Kodiak Island continue to be depressed. The decline in size of fry and zooplankton density from Akalura Lake suggests density based affects continue. The 1993 zooplankton abundance estimates for Akalura indicate an increase, which hopefully will be paralleled in increased growth and survival of juvenile sockeye salmon. Investigations of the nutrient status of Akalura Lake indicate sufficient nutrients to negate the value of any nutrient enrichment project. Red Lake appeared to have a recovered zooplankton community. Improved recruitment of juveniles to the lake pelagic system through maintaining adequate escapements should allow this system to restore naturally. Continued smolt monitoring until restoration is completed is recommended.

LITERATURE CITED

Barrett, M., P.A. Roche, and C.O. Swanton. 1993a. Sockeye salmon Oncorhynchus nerka smolt investigations at Red, Akalura, and Upper Station lakes conducted in response to the 1989 M/V Exxon Valdez oil spill, 1990-1992. Alaska Department of Fish \& Game, CF Div., Regional Information Report 4K93-1, Kodiak, AK.

Barrett, M., P.A. Roche, and C.O. Swanton. 1993b. Sockeye salmon smolt abundance, timing, and growth characteristics for Red, Akalura, Upper Station, and Frazer lakes, 1993. Alaska Department of Fish \& Game, CFMD Div., Regional Information Report 4K93-32, Kodiak, AK.

Belsley, D.A., E. Kuh, and R.E. Welsch. 1980. Regression diagnostics: Identifying influential data and sources of collinearity. John Wiley \& Sons, New York.

Bilton, H.T., and G.L. Robbins 1971. Effects of starvation, feeding, and light period on circulus formation on scales of young sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Bd. Canada 28: 1749-1755.

Bollens, S.M., and B.W. Frost. 1989. Predator-induced diel vertical migration in a planktonic copepod. J. Plankton Res. 11(5), 1047-1065.

Bollens, S.M., and B.W. Frost. 1991. Diel vertical migration in zooplankton: rapid individual response to predators. J. Plankton Res. 13(6), 1359-1365.

Carpenter, S.R., J.F. Kitchell, and J.R. Hodgson. 1985. Cascading trophic interactions and lake productivity. Bioscience 35:634-639.

Clutter, R.I., and L.E. Whitesel 1956. Collection and interpretation of sockeye salmon scales. Int. Pac. Salmon Fish. Comm., Bull. 9. 159 pp.

Eggers, D.M. 1978. Limnetic feeding behavior of juvenile sockeye salmon in Lake Wäshington and predator avoidance. Limnol. Oceanogr. 23:1114-1125.

Enright, J.T. 1977. Diurnal vertical migration: adaptive significance and timing. Part 1. Selective advantage: a metabolic model. Limnol. Oceanogr. 22(5) 856-886.

Frost, B.W. 1988. Variability and possible adaptive significance of diel vertical migration in Calanus pacificus, a planktonic marine copepod. Bull. Mar. Sci, 43(3): 675-694.

Frost, B.W., and S.M. Bollens. 1992. Variability of diel vertical migration in the marine planktonic copepod Pseudocalanus newmani in relation to its predators. Can. J. Fish. Aquat. Sci. 49: 1137-1141.

Gabriel, W., and B. Thomas. 1988. Vertical migration of zooplankton as an evolutionarily stable strategy. Am. Nat. Vol. 132, pp. 199-216.

Hairston, N.G. Jr. 1976. Photoprotection by carotenoid pigments in the copepod Diaptomus nevadensis. Proc. Nat. Acad. Sci. USA 73(3), pp. 971-974.

Hairston, N.G. Jr., W.E. Walton, and K.T. Li. 1983. The causes and consequences of sexspecific mortality in a freshwater copepod. Limnol. Oceanogr. 28(5), 935-947.

Honnold, S.G. 1993. Summary of hydroacoustic and tow netting surveys at Red, Akalura and Upper Station lakes conducted in response to the 1989 M/V Exxon Valdez oilspill, 19901992. FRED Technical Report No 131.. Fisheries Rehabilitation, Enhancement, and Development Division, Alaska Department Fish and Game.

Johnsen, G.H., and P.J. Jakobsen. 1987. The effect of food limitation on vertical migration in Daphnia longispina. Limnol. Oceanogr. 32(4), 873-880.

King, B.E., and K.E. Tarbox. 1991. Upper Cook Inlet salmon escapement studies, 1990. Alaska Department of Fish and Game Division of Commercial Fisheries Technical Fisheries Report No. 91-21, Juneau, AK.

King, B.E., L.K. Brannian, and K.E. Tarbox. 1991. Kenai River sockeye salmon smolt studies, 1990-91. Alaska Department of Fish and Game Division of Commercial Fisheries Regional Information Report No. 2S91-8, Anchorage.

King, B.E., L.K. Brannian, and K.E. Tarbox. In review. Kenai River sockeye salmon smolt studies, 1993. Alaska Department of Fish and Game Division of Commercial Fisheries Management and Development Regional Information Report (In Review). Anchorage.

Koenings, J.P., and R.D. Burkett. 1987. Population characteristics of sockeye salmon (Oncorhynchus nerka) smolts relative to temperature regimes, euphotic volume, fry density, and forage base within Alaskan lakes. p. 216-234. In H. D. Smith, L. Margolis, and C.C. Wood [ed.] Sockeye salmon (Oncorhynchus nerka) population biology and future management. Can. Spec. Publ. Fish. Aquat. Sci. 96.

Koenings, J.P., R.D. Burkett, and J.M. Edmundson. 1990. The exclusion of limnetic cladocera from turbid glacier-meltwater lakes. Ecology 71(1)57-67.

Koenings, J.P., J.E. Edmundson, G.B. Kyle, and J.M. Edmundson. 1987. Limnology field and laboratory manual: methods for assessing aquatic production. Alaska Department of Fish and Game, FRED Division Report Series No. 71:212 p.

Koenings, J.P., and G.B. Kyle. 1991. Collapsed populations and delayed recovery of zooplankton in response to heavy juvenile sockeye salmon (Oncorhynchus nerka) foraging. (Proceedings: International Symposium on Biological Interactions of Enhanced and Wild Salmonids held at Nanaimo, B. C., Canada). Spec. Publ. Can J. Fish. and Aquat. Sci. In review.

Kyle, G.B. 1992. Summary of sockeye salmon (Oncorhynchus nerka) investigations in Tustumena Lake, 1981-1991. Alaska Department of Fish and Game, Division of Fisheries Rehabilitation, Enhancement and Development Division Report No. 122, Juneau.

Kyle, G.B., J.P. Koenings, and B.M. Barrett. 1988. Density-dependent, trophic level responses to an introduced run of sockeye salmon (Oncorhynchus nerka) at Frazer lake, Kodiak Island, Alaska. Canadian Journal of Fisheries and Aquatic Sciences 45:856-867.

Lampert, W. 1989. The adaptive significance of diel vertical migration of zooplankton. Functional Ecology 3:21-27.

LeCren, E.D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 20:201-219.

Levy, D.A. 1990a. Reciprocal diel vertical migration behavior in planktivores and zooplankton in British Columbia lakes. Can. J. Fish. Aquat. Sci. 47: 1755-1764.

Levy, D.A. 1990b. Sensory mechanism and selective advantage for diel vertical migration in juvenile sockeye salmon, Oncorhynchus nerka. Can. J. Fish. Aquat. Sci. 47: 1796-1802.

Maly, E.J. 1970. The influence of predation on the adult sex ratios of two copepod species. Limnol. Oceanogr. 15(4), 566-573.

Neill, W.E. 1990. Induced vertical migration in copepods as a defence against invertebrate predation. Nature, Vol. 345, pp. 524-525.

Neter, J., W. Wasserman, and M.H. Kutner. 1989. Applied Linear Regression Models. Boston, Irwin, Inc. 667 p.

Ohman, M.D. 1990. The demographic benefits of diel vertical migration by zooplankton. Ecological Monographs, Vol. 60, No. 3, pp. 257-281.

Ohman, M.D., B.W. Frost, and E.B. Cohen. 1983. Reverse diel vertical migration: an escape from invertebrate predators. Science, Vol. 220, pp. 1404-1407.

Olsson, H., P. Blomqvist, and H. Olofsson. 1992. Phytoplankton and zooplankton community structure after nutrient additions to the oligotrophic Lake Hecklan, Sweden. Hydrobiologia 243/244:147-155.

Randall, E.L. 1974. Improved method for fat and oil analysis by a new process of extraction. Jour. of the AOAC, 57(5):1165-1168.

Rawson, K. 1984. An estimate of the size of a migrating population of juvenile salmon using an index of trap efficiency obtained by dye marking. Alaska Department of Fish and Game. FRED Div. Rep. Ser. No. 28. Juneau, Alaska. 23 p.

Roche, P.A. 1992. The estimated incidence of Upper Station late run sockeye salmon in the Alitak Bay District, Inner Akalura Section fishery of 20 August 1992. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K92-34, Kodiak.

Stirling, D.G., D.J. McQueen, and M.R.S. Johannes. 1990. Vertical migration of Daphnia galeata mendotae (Brooks): demographic responses to changes in planktivore abundance. Can. J. Fish. Aquat. Sci. 47:395-400.

Tarbox, K.E., and B.E. King. 1992. An estimate of juvenile fish densities in Skilak and Kenai Lakes, Alaska through the use of dual beam hydroacoustic techniques in 1990. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fisheries Report No. 92-05, Juneau.

Tarbox, K.E., and L.K. Brannian. 1993. An estimate of juvenile fish densities in Skilak and Kenai Lakes, Alaska, through the use of dual-beam hydroacoustic techniques in 1992. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development. Tech. Fish. Rep. No 93-2008, Anchorage.

Thorne, R.E. 1982. Application of hydroacoustic assessment techniques to three lakes with contrasting fish distributions. FAO Fish. Rpt. No. 300:369-277.

Todd, G.L., and G.B. Kyle. 1992. Tustumena Lake sockeye salmon studies. Alaska Department of Fish and Game. Federal Aid Annual Rep. AFS-50-8. Juneau, Alaska. 28 p.

Todd, G.L., and G.B. Kyle. 1994. Tustumena Lake project report: Sockeye salmon investigations (Fall 1992-1993). Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 5J94-11, Juneau

Vuorinen, I., M. Rajasilta, and J. Salo. 1983. Selective predation and habitat shift in a copepod species - support for the predation hypothesis. Oecologia (Berlin) 59:62-64.

Weider, L.J. 1984. Spatial heterogeneity of Daphnia genotypes: vertical migration and habitat partitioning. Limnol. Oceanogr. 29(2), 225-235.

Winfield, I.J., and C.R. Townsend. 1983. The cost of copepod reproduction: increased susceptibility to fish predation. Oecologia (Berlin), 406-411.

Yanusz, R.J. 1989. Diel vertical migration by sockeye salmon fry and zooplankton in a stained and a glacial lake. Thesis for Master of Science, Univ. Alaska. 84 p.

Zaret, T.M., and J.S. Suffern. 1976. Vertical migration in zooplankton as a predator avoidance mechanisms. Limnol. Oceanogr. 21(6), 804-813.

Table 1. Kenai River smolt production by age class.

Brood Year	Spawning Escapement	Total Number of Smolt Produced			Brood year Total
		Age-1.0	Age-2.0	Age-3.0	
1986	422,000	a	$115,000^{\text {b }}$	16,000	
1987	1,408,000	24,416,000 ${ }^{\text {b }}$	5,807,000 ${ }^{\text {b }}$	1,000	30,224,000
1988	910,000	$5,249,000^{\text {b }}$	$431,000^{6}$	0	5,680,000
1989	1,379,000	2,776,000 ${ }^{\text {b }}$	$312,000^{\text {c }}$	0	3,088,000
1990	519,000	253,000 ${ }^{\text {c }}$	$33,000^{\text {c }}$	d	284,000
1991	431,000	735,000 ${ }^{\text {c }}$	d		-
1992	807,000	d			
1993	697,000	d			
1994	857,000	d			

${ }^{\mathrm{a}}$ No data collected.
b Includes Hidden Lake migration not thought to be captured by the km 31 inclined plane traps.
C Includes Hidden Lake and Moose River migration not thought to be captured by the km 31 inclined plane traps.
d 1994 migrating smolt numbers were not estimated.

Table 2. Kenai River smolt age composition summary.

	Smolt Age Composition (\%)				
Smolt Year	Age-0	Age-1	Age-2	Age-3	n
1989	0	99.7	0.3	0	3567
1990	0	46.7	53.1	0.2	3422
1991	0	86.1	13.9	0	3741
1992	0	17.3	82.7	0	981
1993	8.5	88.5	3.0	0	1200
1994	0.7	95.7	3.6	0	2705

Table 3. Kasilof River escapement and smolt production summary by brood year.

	Spawner	Numbers of smolt with percent hatchery contribution				
	Escapement	Age-1*1000	\% Hatchery	Age-2 * 1000	\% Hatchery	Total * 1000
1981	256,625	6,817	40.7	2,869	20.6	9,686
1982	180,239	11,390	36.3	4,001	7.7	15,391
1983	210,270	12,580	27.8	2,223	11.1	14,803
1984	231,685	5,268	30.2	3,540	31.1	8,808
1985	505,049	1,074	59.2	2,549	17.0	3,623
1986	275,963	2,056	52.0	3,009	10.2	5,065
1987	249,246 ${ }^{\text {a }}$	3,109	30.3	3,521	3.0	6.630
1988	204,000	3,916	2.0	2,335	1.0	6,251
1989	158,206	2,400	7.0	2,012	1.3	4,412
1990	144,136	2,107	7.5	1,833	3.3	3,940
1991	238,269	7,189	6.3	1,763	1.1	8,952
1992	184,178	7,376	4.7			
1993	149,939					
1994	205,117					

${ }^{\text {a }}$ Because of sonar failure, escapement estimates were from stream surveys and spawning stream weir counts above Tustumena Lake. See Kyle (1992) for statistics of smolt abundance precision estimates.

Table 4. Kasilof River smolt age class summary.

Smolt	\% Smolt Age Composition		
Year	n	Age-1	Age-2
1983	1163	84	16
1984	1192	80	20
1985	1263	76	24
1986	1348	70	30
1987	1635	23	77
1988	1275	45	55
1989	1125	51	49
1990	1150	53	47
1991	1018	51	49
1992	1150	56	44
1993	942	80	20
1994	737	81	19

Table 5. Kasilof River smolt fork length by outmigration year. ${ }^{\text {. }}$

	Age-1			Age-2		
Year	Mean	n	SD	Mean	n	SD
1983	70	712	3.8	83	451	5.4
1984	73	1005	3.5	85	187	4.4
$19 z^{\prime} 85$	70	981	2.8	84	282	5.4
1986	69	983	3.9	84	365	5.1
1987	64	412	6.1	77	1223	4.8
1988	68	623	4.0	78	652	4.5
1989	66	609	4.4	81	516	4.5
1990	69	683	4.4	82	467	4.2
1991	68	529	3.5	80	489	3.2
1992	74	594	3.8	87	556	4.7
1993	69	755	3.5	82	187	4.2
1994	72	737	3.6	86	163	4.0

${ }^{3}$ Values are in mm; $\mathrm{n}=$ sample size; $\mathrm{SD}=1$ standard deviation.

Table 6. Kenai Peninsula lakes fall fry data summary.

Location	Age-0						Age-1						
	Year	Length (n) (mm)		SD	(n)	Weight \qquad	SD	Length		SD	(n)	Weight	
Skilak													
	1986	15	57	n/a				8	74				
	1988	109	50	5.3	109	0.9	0.4						
	1989	136	50	3.3	136	1.2	0.3	126	64	6.0	126		
	1990	928	49	4.3	290	1.3	0.3	34	72.8	3.3	20		0.4
	1991	863	51	4.9	286	1.5	0.5	55	73.8	3.8	14		0.5
	1992	883	54	6.0	883	1.8	0.6	10	89	3.0	10	7.0	
	1993	3652	49	5.0	3652	1.2	0.4	55	75	5.0	55		
	1994	687	50	4	687	1.4	0.4	110	68.2	3.6	110		0.6
Kenai													
	1986	227	52	n/a	227			2	77				
	1989	38	48	4.5	38	1.0	0.2	56	64	4.6	56		
	1990	1484	52	4.6	1484	1.5	0.4	62	69.4	4.2	22		
	1991	1364	54	6.5	1364	2.0	0.6	40	75.9	4.8	15	5.5	1.0
	1992	1492	56	7.3	1492	2.0	0.8	12	78	10	12	5.6	1.7
	1993	2969	45	4.0	2969	1.0	0.2	4	68	1.0	4		0.5
	1994	861	54	4.6	861	1.9	0.5	39	76.8	3.7	39		0.7
Tustumena													
	1980	222	59	6.1	222	2.3	0.7	20	80	3.5	20	5.7	
	1981	197	55	5.1	197	1.6	0.4	21	73	4.6	21	3.8	0.7
	1982	194	54	5.1	194	1.8	0.5	17	74	3.9	17		0.9
	1983	562	60	6.1	562	2.5	0.7	55	80	5.0	55		
	1984	388	61	4.6	388	2.5	0.6	186	79	3.7	186		
	1985	173	56	5.6	173	2.1	0.6	52	78	5.0	52	5.6	
	1986	156	50	6.4	156	1.3	0.5	92	73	4.5	92		0.7
	1987	143	53	5.9	143	1.8	0.6	50	71	3.8	50		0.6
	1988	303	55	5.3	303	1.8	0.5	89	75	3.6	. 89		0.6
	1989	47	52	5.7	47	1.9	0.6	18	74	4.6	18		0.9
	1990	200	57	5.5	200	1.5	0.4	50	75	2.9	50		0.5
	1991	202	57	5.4	202	2.0	0.5	47	78	6.5	47		1.2
	1992	323	59	4.4	323	2.0	0.4	21	79	4.1	21	4.52	0.7
	1993	417	63	6.7	417	2.9	0.8	46	81	3.0	46	6.18	0.7
	1994	318	64	5.	318	2.6	0.6	76	83	3.0	76		0.5

Missing values indicate no data available. $\mathrm{n}=$ sample size; $\mathrm{SD}=1$ standard deviation.

Table 7. Comparison of copepod biomass and fall density of juvenile sockeye salmon in Tustumena and Skilak lakes, Kenai Peninsula, Alaska. Copepod biomass reflect the seasonal mean biomass m^{-2}. Fall fry densities estimated by hydroacoustics.

	Copepod biomass						Fall sockeye density la fry m^{-2}		Copepod biomass/fall fry $\mathrm{mg} \mathrm{fry}^{-1}$	
Rearing	$\mathrm{mg} \mathrm{m}^{-2}$									
Year	Skilak	SE	$n \backslash$	Tustumena	SE	n \c	Skilak	Tustumena	Skilak	Tustumena
1986	514	46	2	115	13	3	0.22	0.056	2,370	2,062
1987	586	28	2	100	23	3	0.09	0.045	6,426	2,242
1988	565	6	2	75	10	3	0.31	0.051	1,805	1,472
1989	783	257	2	90	18	3	0.22	0.056	3,554	1,599
1990	417	55	5	74	5	5	0.23	0.062	1,833	1,186
1991	571	40	10	165	15	5	0.07	0.052	8,418	3,181
1992	637	191	3	110	9	5	0.09	0.051	7,428	2,136
1993	710	134	3	204	29	5	0.34	0.049	2,082	4,198
1994 ${ }^{\text {b }}$	432	44	5	209	31	5	0.13	0.041	3,323	5,070

la Standard error (SE) of fall fry density estimates are $<25 \%$ of the mean.
lb Preliminary data
Ic $n=$ number of stations

Table 8. Sockeye salmon smolt estimates by age by brood year escapement for Red Lake. 1986-94

Brood Year	Escapement	1	Number of Smolt (by Age)		
1986	318,135			3	Total
1987	261,913		493,026	6,427	6,427
1988	291,774	240,500	119,849	38,184	531,210
1989	768,101	105,467	$1,365,082$	25,792	38,739
1990	371,282	29,482	201,307	1,895	$1.560,288$
1991	374,859	315,301	520,391		232.684
1992	344,184	40,404		835,692	
1993	380,170				
1994					

Missing data indicates not available.

Table 9. Sockeye salmon smolt estimates by brood vear escapement for Akalura Lake. 1986-93.

		Number of Smolt (by Age)				
Brood Year	Escapement	1	2	3	4	Total
1986	9,800		408,330	1,251	0	409,581
1987	6,116		66,460	299,591	8,315	238
1988	38,618	9,086	182,963	12,315	0	374,604
1989	116,029	1,921	73,062	7,141		204,364
1990	47,181	3,259	90,467		82,124	
1991	44,189	72,474			93,726	
1992	63,269				72,474	
1993	30,692					
1994	13,381					

Missing data indicates not available.

Table 10. Frazer Lake smolt abundance data and escapements.

| | | Number of Smolt (by Age) | | | | |
| :--- | :--- | :--- | :---: | :---: | :--- | :--- | :--- |
| Brood | Escapement | 1 | 2 | 3 | 4 | Total |

1986	126,529			0		
1987	40,544		3,786	0	3,786	
1988	246,704		$3,777,426$	557,584	612	$4,335,622$
1989	360,373	$2,552,835$	$5,739,150$	$4,687,083$		$12,979,068$
1990	226,960	108,489	$5,077,866$	566,824		$5,753,179$
1991	190,358	23,496	$4,608,258$		$4,631,754$	
1992	185,825	727,781				
1993	178,391					
1994	206,071					

Missing data indicates not available.

Table 11. Sockeye salmon smolt estimates by age for each year for Red Lake, 1986-93.

Table 12. Mean lengths of sockeye salmon smolt by age and year for the Kodiak systems, 1990-94.

Table 13. Mean weights of sockeye salmon smolt by age and year for the Kodiak systems, $1990-94$. Smolt Weight (g)

System Smolt Year	Age-0			Age-1			Age-2			Age-3			Age-4		
	N	Mean	SE	N	Mean	SE	$N \quad M$		SE	N	Mean	SE	N	Mean	SE
Red Lake															
1990	0			341	10.0	>0.1	1,050	11.0	>0.1	20	13.0	0.1	0		
1991	0			1,135	5.0	0.0	977	9.5	0.1	407	11.3	0.1	0		
1992	0			85	8.8	0.3	1,666	11.8	0.1	63	15.2	0.6	0		
1993	0			1.409	7.3	>0.1	517	11.0	0.1	395	14.5	0.2	0		
1994	0			225	5.1	0.5	1,717	7.6	>0.1	7	9.0	0.6			
Akalura															
1990	0			577	3.6	<0.1	749	5.3	<0.1	0			0		
1991	0			41	4.3	0.5	1,382	4.0	0.0	22	8.9	1.2	0		
1992	1	1.5		25	3.7	0.3	2,007	3.9	0.0	61	4.9	0.1	0		
1993	0			74	2.2	0.1	992	5.7	0.0	94	6.8	0.2	2	10.10 .5	
1994	2	3.4	0.3	721	6.1	>0.1	763	7.3	0.1	146	7.7	0.2	0		
1990	0			574	4.5	0.0	552	9.0	0.1	44	12.2	0.7	0		
1991	0			745	5.4	0.0	1,343	5.6	0.0	4	15.7	3.9	0		
1992	0			49	6.1	0.2	2,947	5.5	0.0	194	7.2	0.1	0		
1993	0			8	6.1	0.2	684	8.3	0.0	899	9.2	0.0	2	17.75 .1	
1994	0			713	5.2	>0.1	1,456	8.1	>0.1	302	10.7	0.1	0		

Table 14. Sockeye salmon smolt estimates by age for each year for Akalura Lake, 1986-93.

		Ages					$95 \% \mathrm{CI}$	
Smolt		1	2	3	4	Total	Low	High
1990	\#	66,460	408,330	0	0	474,790	318,734	630,846
	\%	14.0	86.0	0.0	0.0	100.0		
1991	\#	9,086	299,591		0	309,928	237,981	381.875
	\%	2.9	96.7	0.04	0.0	100.0		
1992	\#	1,921	182,963	8,315	0	193,199	153,765	232.638
	\%	2.9	96.7	4.3	0.0	100.0		
1993	\#	3,259	73,062	12,315	238	88,873	35,943	141,802
	\%	3.7	82.3	13.9	0.1	100.0		
1994	\#	72,474	90,467	7,141	0	170,172	130,910	209.433
	\%	42.6	53.2	4.2	0.0	100.00		

Table 15. Sockeye salmon smolt estimates by age for each year and by brood year escapement for Frazer Lake, 1986-93.

		Ages					95\% CI	
Smolt a		1	2	3	4	Total	Low	High
1991	\#	2,552,835	3,777,426	3,786	0	6,334,047	2,128,460	10,539,634
	\%	40.3	59.6	0.1	0.0	100.0		
1992	\#	108,489	5,739,150	557,584	0	6,405,222	2,649,678	10,160.766
	\%	2.9	89.6	8.7	0.0	100.0		
1993	\#	23,496	5,077,865	4,687,084	612	9,789,057	3,309,885	16,268.229
	\%	0.2	51.9	47.9	0.0	100.0		
1994	\#	727,781	4,608,258	566,824	0	5,902,863	5,285,225	6,520,501
	\%	12.3	78.1	9.6	0.0	100.0		

Table 16. Tow net results from September, 1994 in Red and Frazer Lake, Kodiak

| Lake | Age | Length (mm) | | | Weight (g) | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Len | Sampled | Mean | SD | Mean SD | | |
| Red | 0 | 44 | 49 | 6.9 | 0.9 | 0.4 |
| | 1 | 7 | 81 | 7.1 | 4.9 | 1 |
| Frazer | 0 | 22 | 65 | 5.6 | 1.5 | 0.4 |
| | 1 | 2 | 97 | 7 | 6.1 | 1.1 |

Figure 1. Location of the Kenai and Kasilof Rivers, Upper Cook Inlet, Alaska.

Figure 2. Kodiak study lakes, Alaska.

Figure 3. Summary of sonar count sockeye salmon escapements and historical escapement goal ranges for the Kenai River. Data represent total cumulative daily apportioned sonar counts at mile 19 of the Kenai River. Height of bars represents maximum escapement goal with the bottom of the gray bar representing the minimum escapement goal.

Figure + Summary of sonar count sockeye salmon escapements and historical escapement goal ranges for the Kasilof River. Escapement data represent total cumulative daily apportioned sonar counts at mile 11 of the Kasilof River. Height of bars represents maximum escapement goal with the bottom of the gray bar representing the minimum escapement goal.

Figure 5. Relationship between the number of fall fry in Kenai and Skilak lakes and mainstem potential egg deposition. Vertical bars are standard errors of estimated fry abundance. Two models were used to assess the relationship: one with the constant term ($\mathrm{y}=7.32+$ $\left..010(\mathrm{x}) ; \mathrm{R}^{2}=.503 ; \mathrm{P}<.05\right)$ and one without the constant $\left(\mathrm{y}=.014(\mathrm{x}) ; \mathrm{R}^{2}=.390 ; \mathrm{P}<.05\right)$. 1993 data point preliminary and not included in the regression.

Figure 6. Relationship of Kenai River sockeye salmon spawning escapement to average weight of $0+$ fall fry in Skilak Lake, Alaska. Brood year is indicated by data point label (1993 Brood Year indicates weight of fall fry in 1994.

Figure 7. Seasonal turbidity fluctuations in Skilak Lake, Stations A, B and C. Station C was not sampled prior to 1990 . Ordinates are in nephelometric turbidity units (NTU).

Skilak Lake Copepod Biomass Trends

Figure 8. Inter-annual variation in Skilak Lake mean seasonal biomass. Error bars reflect one standard error of among sampling station variation.

Figure 9. The relationship of fall fry mean wet weight versus relative zooplankton biomass are compared for Tustumena (1986-94) and Skilak (1987-94) lakes.

APPENDIX A:

Kenai River Sockeye Salmon Smolt Studies, 1993 by Bruce E. King, Linda K. Brannian, and Kenneth E. Tarbox

KENAI RIVER SOCKEYE SALMON SMOLT STUDIES, 1993

Brace E. King
Linda K. Brannian
and
Kenneth E. Tarbox
Regional Information Report ${ }^{1}$ No. 2A94-41
Alaska Department of Fish and Game Commercial Fisheries Management and Development Division 333 Raspberry Road Anchorage, Alaska 99581

December 1994

[^0]
AUTHORS

Bruce E. King is an Assistant Research Project Leader for the Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Region II, Upper Cook Inlet, 34828 Kalifornsky Beach Road Suite B, Soldotna, AK 99669.

Linda K. Brannian is the Regional Biometrician for the Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Region II, 333 Raspberry Road, Anchorage, Alaska, 99518

Kenneth E. Tarbox is the Research Project Leader for the Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Region II, Upper Cook Inlet, 34828 Kalifornsky Beach Road Suite B, Soldotna, AK 99669.

ACKNOWLEDGEMENTS

We would like to acknowledge the permanent seasonal staff responsible for collecting the data: Dave Westerman (Crew Leader), Mark Schlenker, Bill Glick (Crew Leader), Dennis Beliveau, Stan Walker, Pako Lehtinen, Michael Houghton, Dave Gilleland, Jennifer Brannen and James Browning (Crew Leader). Stan Carlson provided biometric support and Stephen Fried reviewed the results and edited the text.

PROJECT SPONSORSHIP

This investigation was partially financed by Exxon Valdez Oil Spill Restoration funds under Restoration Science Study Number 93002 titled "Sockeye Salmon Overescapement".

TABLE OF CONTENTS

Page
LIST OF TABLES iii
LIST OF FIGURES v
ABSTRACT vi
INTRODUCTION 1
METHODS 2
Fishing Methods 2
Kenai River 2
Russian River 2
Estimating Smolt Abundance 3
Estimating Trap Efficiency 3
Estimating Sockeye Salmon Smolt Abundance 4
Run Timing 6
Age, Weight, and Length Sampling 6
Climatological and Hydrological Sampling 7
RESULTS 7
Km 31 Site 7
Russian River 10
DISCUSSION 11
LITERATURE CITED 15
TABLES 18
FIGURES 40

LIST OF TABLES

Table Page

1. Numbers of fish captured by trap 1 in the Kenai River, May 17 through July 5, 1993 18
2. Numbers of fish captured by trap 2 in the Kenai River,
May 17 through July 5, 1993 19
3. Numbers of fish captured by trap 3 in the Kenai River, May 17 through July 5, 1993 20
4. Numbers of fish captured by trap 4 in the Kenai River, May 17 through July 3, 1993 21
5. Numbers of fish captured by smolt traps $1-4$ at the Kenai River km 31 site, May 17 through July 5, 1993 22
6. Numbers of juvenile fish caught with inclined plane traps in the Kenai River, 1990-1993 23
7. Numbers of sockeye salmon smolt captured daily in the Kenai River, 1989-1993 24
8. Comparison of catches in Kenai River traps 1-6, 1993 25
9. Numbers of fish captured by trap 5 in the Kenai River, May 17 through July 2, 1993 26
10. Numbers of fish captured by trap 6 in the Kenai River, May 17 through July 2, 1993 27
11. Dyed Kenai River sockeye salmon smolt releases and recaptures by date, 1993 28
12. Results of sockeye salmon smolt dye tests conducted on the Kenai River, 1989-1993 29
13. Estimated daily sockeye salmon smolt seaward migration from the Kenai River, 1993 30
14. Cumulative proportion of sockeye salmon smolt seaward migration by day, 1989-1993 31

LIST OF TABLES (continued)

Table Page
15. Summary of Kenai River sockeye salmon smolt age composition, 1989-1993. Data collected at river km 31 32
16. Sockeye salmon smolt mean length and weight by age class and time strata, 1989-1993. Data collected at river km 31 33
17. Comparison of trap efficiency by length for Moose River coho salmon, 1993 34
18. Water parameters measured daily at the Kenai River km 31 smolt enumeration site, 1993 35
19. Sockeye salmon adult escapement and smolt production in the Kenai River, 1986-1993 36
20. Numbers of fish captured by smolt trap from the Russian River, May 18 through July 15, 1993 37
21. Results of sockeye salmon smolt dye experiments in the Russian River, 1993 38
22. Morphological information collected from sockeye salmon smolt captured in the Russian River, 1993 39

LIST OF FIGURES

Figure Page

1. Kenai River drainage 40
2. Top view, Kenai River km 31 sockeye salmon smolt enumeration project site 41
3. Cross section, Kenai River km 31 sockeye salmon smolt enumeration project site 42
4. Top view (top) and cross section (bottom) of the Russian River sockeye salmon smolt enumeration site 43
5. Daily numbers of sockeye salmon smolt, all ages (top) and by age class (bottom), migrating seaward from the Kenai River, 1993 44
6. Mean length and 95% confidence bounds for age-1. and -2. sockeye salmon sampled at the Kenai River km 31 smolt enumeration site, 1989-1993 45
7. Mean weights and 95% confidence bounds for age-1. and -2. sockeye salmon sampled at the Kenai River km 31 smolt enumeration site, 1989-1993 46
8. Length frequency distribution of coho salmon smolt (top) and sockeye salmon smolt (bottom) captured in the Kenai River drainage, 1993 47
9. Length frequency distribution of age-1. (bottom) and -2. (top) sockeye salmon smolt from the Kenai River drainage, 1993. Estimated numbers of smolt from weirs (Hidden Creek and Moose River) and dye studies (km 31 and Russian River) 48
10. Capture efficiency of km 31 traps for different length coho salmon smolt from the Moose River, 1993 49
11. Daily Kenai River discharge, 1989-1993 50
12. Daily physical parameters measured, and numbers of sockeye salmon smolt captured in the Kenai River, 1993. Y scales adjusted for graphing purposes 51

Abstract

Inclined plane traps were placed in the Kenai River to capture seaward migrating sockeye salmon Oncorhynchus nerka smolt. Only 3,200 sockeye smolt were captured, continuing a trend of decreasing total annual catches since the first year of the study, 1989, when 161,000 smolt were captured. Historic trap efficiency data were used to calculate a 1993 seaward migration estimate of approximately 486,000 smolt. The minimum migration, including Moose River and Hidden Creek smolt which were not sampled by our traps, was 833,000 smolt. Approximately 88.5% of the population was age-1. smolt and the remainder smolt were age-2. (3.0%) and -0 . (8.5%). Coho and sockeye salmon smolt length frequency data revealed decreased trap efficiency with increased smolt size. Age-0. smolt were not thought to be of Skilak Lake origin.

KEY WORDS: Sockeye salmon smolt, Oncorhynchus nerka, biological sampling, migratory timing, bismark brown dye, mark-recapture, population estimation, length frequency distribution

INTRODUCTION

The Kenai River (Figure 1) typically contributes more than 50% to annual Upper Cook Inlet (UCI) commercial harvests of sockeye salmon Oncorhynchus nerka (Ruesch and Fox 1993). Forecasting the return of this stock is important to the successful management of the fishery. Until 1993, forecasting was based on a combination of adult spawning escapements, age specific maturity schedules, and average numbers of returning adults per spawner. The 1993 forecast included adult sockeye salmon run estimates projected from the number and age composition of sockeye salmon smolt migrating out of the Kenai River.

The Kenai River smolt project has provided an estimate of the number and age composition of sockeye salmon smolt migrating out of the drainage since 1989 (King et al. 1990, 1991, 1994) This information has been used to evaluate sockeye salmon production in the Kenai River drainage in conjunction with estimates of spawners (Davis et al. 1993), juveniles rearing in Kenai and Skilak lakes (Tarbox and Brannian 1993), and adults passing weirs across Hidden Creek (Fandrei 1993) and Russian River (Marsh 1993a, 1993b) tributaries. Comparable production studies are being done in the Kasilof River drainage, the second largest producer of sockeye salmon in UCI (Kyle 1992).

Commercial fishing closures in UCI due to the 1989 Exxon Valdez oil spill resulted in an extremely large spawning escapement into the Kenai River. A suite of projects was designed to evaluate the effects of large spawning escapements on resulting progeny and lake rearing habitat. The Kenai River smolt project was a component of Natural Resource Damage Assessment Project No. 27, "Sockeye Salmon Overescapement", from 1990 to 1992 (Schmidt and Tarbox 1991, 1992).

Objectives of the 1993 Kenai River smolt project were to:

1. estimate the number of sockeye salmon smolt migrating seaward during the peak migration period from 15 May through 30 June;
2. determine the age composition, mean weight, and mean length of sockeye salmon smolt;
3. describe daily and seasonal migration timing of sockeye salmon smolt;
4. determine the number of sockeye salmon smolt migrating adjacent to the right bank; and
5. assess the feasibility of using inclined plane traps to enumerate sockeye salmon smolt migrating from Russian River.

METHODS

Fishing Methods

All traps were similar in design to those used to estimate smolt migrations from the Crescent and Kasilof Rivers of UCI (Kyle 1983). Each trap was 2.1 m long, 1.5 m wide, and tapered in height from 1.05 m at the mouth to 0.1 m at the outlet or downstream end. Trap frames were constructed of angle aluminum and the bottom covered with perforated aluminum plate with 13 mm holes. The sides and top were covered with vexar plastic netting with 13 mm square mesh. The outlet end emptied into a $1.5 \times 1.1 \times 0.6 \mathrm{~m}$ live box which contained one vertical baffle. The mouth and outlet ends of the trap could be adjusted vertically to control fishing depth and the amount of water which entered the live box. Traps typically fished to approximately 1.0 m below the surface. All traps were fished continuously throughout the study. Traps were monitored continuously and emptied at least twice between 0001 h and 0500 h . Traps were checked only sporadically through the remainder of the day, and generally emptied once more between 2200 and 2300 h . All captured juvenile salmonids were counted and recorded by species and stage of development.

Kenai River

Six stationary floating inclined plane traps were placed in the Kenai River approximately 31 km upriver from the mouth (Figure 2). The river was 105 m wide with a maximum water depth of 2.5 m at the km 31 trap location (Figure 3). The thalweg occurred $25-30 \mathrm{~m}$ from the left bank and both current velocity and water depth generally decreased as one moved toward the right bank. Four of the six traps at km 31 were anchored from the left (south) bank with steel cable, and held at $9,15,21$, and 24 m from shore with tubular aluminum booms. The inshore trap was designated trap 1. Traps on the left side of the river were placed in the area of highest surface water velocities and greatest flow volume, since we thought most smolt would travel downriver through this area (Hoar 1954, Foerster 1968, Bue et al. 1988). The remaining two traps, designated traps 5 and 6, were initially held 30 m offshore of the right bank using a similar cable and boom arrangement. On June 19 the right bank traps were moved closer to shore because increasing water velocity and debris load precluded continued deployment in the original location.

An additional two traps were placed in the river adjacent to the left bank at km 35 . The two traps were anchored and held offshore 6 m and 12 m using cables and booms.

Russian River

A single smolt trap was placed in the Russian River 200 m above the confluence with the Kenai River. The front of the trap was anchored to the river bottom with steel stakes and cabled to shore. The rear of the trap was suspended between the legs of a quadrapod. The quadrapod was outfitted with a cable winch to raise and lower the outlet end of the trap. This controlled the flow of water entering the live box.

The trap was centered approximately 6 m from the right bank (Figure 4). Weir panels extended from the front of the trap, increasing the opening width to approximately 4 m . The near shore panel was 4 m long and ended 4 m from the left bank. The off shore panel was 8 m long and ended 9 m from the left bank.

The Russian River was 28 m wide at the front end of the trap weir panels (Figure 4). The maximum water depth of 0.54 m occurred 6 m from the right bank. Water depth decreased erratically to the left bank.

Estimating Smolt Abundance

Estimating Trap Efficiency

Methods used to estimate trap efficiency were similar at the Kenai River km 31 and Russian River sites. Sockeye salmon smolt were dyed and released each day until a minimum sample size was attained. No new releases of dyed smolt were made during the next 48 hours to allow those released to pass the counting site. This provided trap efficiency data within time strata. Sample size for each stratum was 2800 dyed sockeye salmon smolt for the Kenai River and 500 dyed sockeye salmon smolt for the Russian River.

The km 35 site was established as a dye site only. By dyeing 2800 sockeye salmon smolt at this site, we hoped to preclude dyeing at the km 31 site and allow the crew there to focus on examining fish for dye. We also suspected that we were subjecting fish to additional stress at the km 31 site by first examining them for dye and then using the same fish for dyeing.

At the km 35 site, sockeye salmon smolt were dyed in a solution of 5 g Bismark Brown in 190 l of water (approximately $1: 36,000$) for twenty minutes. Dyeing was done in the morning, using the previous night's catch. As sockeye salmon smolt were removed from the trap, they were counted and immediately placed into a live tank mounted in a boat. The water in this tank was constantly replaced by fresh river water using a battery operated pump. Smolt were dyed, held in the live tank for at least 12 hours, and released at approximately $2200-2300 \mathrm{~h}$. After live smolt were released, dead smolt were counted to determine percent mortality from handling and dyeing. All smolt captured in the km 31 traps in the next 48 hours were examined for evidence of dye.

Russian River sockeye salmon smolt were dyed for 60 minutes in a $1: 75,000$ solution of neutral red. We used neutral red at this site to avoid including smolt dyed at the Russian River with dyed smolt recovered in the km 31 traps. Oxygen was pumped into the tank throughout the dyeing procedure. After 60 minutes in the dye, smolt were placed in perforated containers in the river and held until approximately 0500 h . Dyed smolt were then transported in buckets to a live box located approximately 0.8 km upstream of the trap for release the next evening at approximately 2200 h . Prior to release, we removed and counted any weak or dead smolt. We assumed that since dyed smolt were released in midstream at the onset of the nightly smolt migration, there would be adequate mixing of dyed
smolt and other migrating sockeye salmon smolt prior to arrival at the trap. All smolt captured in the trap were examined for evidence of dye.

The number of smolt dyed and released $\left(M_{\mathrm{i}}\right)$ each marking period at the km 35 site was set at 2,800 to obtain an estimate of abundance $\left(N_{\mathrm{i}}\right)$ with a relative error of $+/-25 \%$ for trap efficiencies equal to or greater than 2%. Trap efficiency was defined as the number of recaptures $\left(r_{i}\right)$ divided by the number of smolt dyed and released. Required M_{i} for a given trap efficiency varied only slightly with number of smolt caught $\left(\hat{C}_{i}\right)$, but increased dramatically with decreasing trap efficiency. A 2% trap efficiency was twice that seen in previous years, but sample size requirements for lower efficiencies would require handling more smolt than we thought we could capture and process. We also assumed that dye marking events could be pooled since trap efficiencies of adjacent time strata were not significantly different in 1989 and 1990 (χ^{2}-test with $\alpha=0.05$ critical level). Pooling just two adjacent strata would result in a sample size of 5,600 smolt, which would provide estimates with the desired relative error for trap efficiencies as low as 1%.

At the Russian River site, we thought that the trap efficiency could reach 15%. We therefore selected a minimum sample size of 500 sockeye smolt for each stratum. This would give a relative error of $+/ .25 \%$ for the estimate even if trap efficiency was as low as 10%.

Our estimator, like other mark-recapture estimates of population size, was biased when low numbers of dyed sockeye salmon smolt were recaptured (Seber 1982). To keep the level of bias below 10%, enough smolt had to be marked to ensure that at least 10 dyed smolt were recaptured within each time stratum. Fewer recaptures would result in a positive bias which would increase rapidly as recaptures fell below 10 smolt (King et al. 1994).

Analyses assi ned: (1) all released dyed sockeye salmon smolt moved past the trap site within 48 hours so dyed smolt from one time period would not be caught in another; (2) the probability of capture among traps at km 31 was the same for marked and unmarked smolt; (3) the probability of capture for each individual smolt was independent of that of other smolt.

Estimating Sockeye Salmon Smolt Abundance

Sockeye salmon smolt abundance (\hat{N}_{i}) was estimated from trap data collected at km 31 (traps 1 through 4 only) using LaPlace's ratio estimate (Cochran 1978) as adapted by Rawson (1984):

$$
\begin{equation*}
\hat{N}_{i}=\hat{C}_{i} \frac{M_{i}}{r_{i}}\left[1+\frac{M_{i}-r_{i}}{M_{i} r_{i}}\right] \tag{1}
\end{equation*}
$$

where:
$\hat{\mathbf{N}}_{\mathrm{i}}=$ number of undyed sockeye salmon smolt migrating past traps in period i
$\hat{C}_{i}=$ number of sockeye salmon smolt caught in traps in period i
$M_{\mathrm{i}}=$ number of sockeye salmon smolt dyed and released upstream in period i
$r_{\mathrm{i}}=$ number of dyed sockeye salmon smolt recaptured in traps in period i .
The variance of $\hat{\mathrm{N}}_{\mathrm{i}}$ was estimated as:

$$
\begin{equation*}
V\left(\hat{N}_{i}\right)=\hat{C}_{i}\left(\hat{C}_{i}+r_{i}\right) M_{i} \frac{\left(M_{i}-r_{i}\right)}{r_{i}^{3}} \tag{2}
\end{equation*}
$$

and the ($1-\alpha$) confidence interval as:

$$
\begin{equation*}
\hat{N}_{i} \pm z_{\alpha} \sqrt{V(\hat{N})} \tag{3}
\end{equation*}
$$

where $z_{\alpha}=$ the $(1-\alpha) / 2$ percentage point of the standard normal distribution.
Sockeye salmon smolt abundance in 1993 was also estimated with a resampling technique (Effron 1982) based on the number of smolt dyed and recovered each spring from 1989 through 1993. Data from each year were pooled when trap efficiencies were not significantly different (χ^{2} test, $p=0.05$) between time strata. Data for the entire season were pooled for 1989, 1991, 1992 and 1993, but had to be split into two strata for 1990. These six pairs of M_{i} and r_{i} values were randomly chosen with replacement to produce estimates of 1993 smolt abundance using equation 1. The mean of five hundred bootstrap replications was used to estimate smolt abundance in $1993\left(\mathrm{~N}_{93}\right)$:

$$
\begin{equation*}
N_{93}=\frac{\sum_{h=1}^{500} N_{b}}{500} \tag{4}
\end{equation*}
$$

Variance of N_{93} was then calculated as:

$$
\begin{equation*}
V\left(N_{92}\right)=\frac{\sum_{b=1}^{500}\left(N_{b}-N_{92}\right)^{2}}{500-1} \tag{5}
\end{equation*}
$$

A 95% confidence interval was approximated by ranking 500 estimates in ascending order and then using the 13th largest estimate (2.5 percentile) as the lower bound, and the 486th largest estimate (97.6 percentile) as the upper bound.

Migration timing was based on the proportion of the total catch made each day. We assumed that most smolt migrating from the Kenai River system passed the trap sites during the operational period. Therefore the mean date of the migration was the date when 50% of the total catch had occurred at the trap sites.

Age, Weight, and Length Sampling

Sockeye salmon smolt captured in km 31 and Russian River traps were sampled for age, weight, and length (AWL) information A scale smear from the preferred area (INPFC 1963) of each smolt was placed on a standard laboratory slide for age determination, and each smolt was weighed to the nearest 0.1 g and measured (fork length) to the nearest mm.

Because of low catches at both the km 31 and Russian River sites, desired sample sizes were not obtained for the any of the 5 day time strata originally set for AWL sampling. However, nearly all smolt not used for the mark-recapture experiment were sampled for AWL information. Sample periods were initially redefined as the number of days needed to collect at least 300 smolt. This sample size provides a binomial (two age classes) simultaneous 90% confidence interval of $+/-0.05$ when the proportion of the major age class in the population is at least 0.75 . No samples were taken at the km 31 site from 1 to 9 June, the period when most of the smolt migrated from the system, since all available smolt were dyed for trap efficiency tests. We also could not use the next 300 smolt sample to estimate the age composition of the early June migration. This sample was not representative of the early portion of the migration since half of the sample was obtained later in June when age-0. smolt were most abundant. Consequently, we divided this 300 smolt sample into two periods and used only smolt captured during $10-12$ June to represent the migration during 1-15 June.

AWL data were also collected from sockeye salmon smolt migrating from Moose River and Hidden Creek. We compared age composition, mean length and length frequencies for smolt from these tributaries to values from samples collected at the km 31 site to determine whether these substocks were represented in the km 31 trap catches. Age-specific mean lengths were compared among smolt samples from km 31 , Moose River, Hidden Creek, and Russian River sites using one-way ANOVA to determine whether differences could be detected. Contrast statements were used to determine which sites were different. All tests were conducted at the nominal $\mathrm{P} \leq .05$ level of significance. The same analyses were performed on mean lengths for age- 0 . smolt captured in the km 31 traps, 1992 age- 0 . fall fry captured in Skilak Lake, and 1993 age-0. summer fry captured in Skilak Lake.

We also examined length data from adipose fin clipped coho salmon smolt captured in the km 31 traps to provide another measure of trap efficiency. These marked coho salmon smolt were captured in the Moose River and marked by inserting a coded wire tag into the snout and removing the adipose fin (Carlon and Hasbrouck 1993). Nearly all coho salmon smolt passing the weir were tagged except a random sample preserved daily for collection of AWL
passing the weir were tagged except a random sample preserved daily for collection of AWL data. We assumed that the length frequency distribution of the AWL sample $(\mathrm{n}=1,217)$ accurately represented the distribution for marked migrants. We were therefore able to apportion the total Moose River coho salmon smolt migration and the total km 31 catch of marked coho salmon smolt into 5 mm length interval strata. We then calculated a trap efficiency for each length stratum.

Climatological and Hydrological Sampling

 whenever river depth rose or fell 0.3 m . Water depth (m), temperature $\left({ }^{\circ} \mathrm{C}\right.$), and turbidity (maximum depth in m a secchi disc was visible) were measured daily at this site. Kenai River daily discharge was calculated from stage height data gathered at river km 34 by the Alaska River Forecast Center (L. Rundquist, National Weather Service, NOAA, Anchorage, pers. comm.).

RESULTS

Km 31 site
Traps were fished from 17 May until 5 July 1993 at the km 31 site. Although we were prepared to subsample catches (King et al. 1991), the seaward migration was small enough to allow us to identify and count all fish captured.

A total of 105,229 fish were captured in traps 1-4 (Tables 1 through 5). Three percent $(3,200)$ of the total fish caught were sockeye salmon smolt. Captures of fry of all salmonid species exceeded those recorded in previous years (Table 6). The historical trend of increased numbers of smolt and decreased numbers of fry with distance from shore of all species continued. Sockeye salmon smolt captures have decreased each year since the inception of the project in 1989 (Table 7).

Traps 5 and 6 caught a combined total of 14,357 fish of which 670 , or 4.7% were sockeye salmon smolt (Tables 8-10). Most of the catch consisted of sockeye fry (36.7%), pink fry (20.9%), chinook fry (15.1%) and coho fry (10.8%). Catches of fry, except pink salmon, were proportionally higher than traps $1-4$ combined, and the proportions of each group were most similar to traps 1 and 2. Sockeye salmon smolt catches from traps 5 and 6 represented 17% of the total catch of all traps, roughly half of that expected if smolt were uniformly distributed in the river. One dyed sockeye salmon smolt was captured in trap 6 on 5 June. Over 75% of trap 5 and 6 sockeye salmon smolt captures occurred prior to moving the traps closer to shore on June 19. Approximately the same percentage of the catch of sockeye salmon smolt in traps 1-4 also occurred prior to that date.

A total of 1,934 sockeye salmon smolt were dyed and released upstream. Survival during the holding period between dyeing and release ranged from 0.905 to 0.969 and averaged 0.926 (Table 11). The high survival rate reflected changes in procedures instituted in 1992 to reduce handling stress (King et al. 1994).

Six of the dyed sockeye salmon smolt released were recaptured in traps 1 through 4, resulting in a total trap efficiency of 0.003 . This compares with trap efficiencies for the years 1989 through 1992 of 0.007 to 0.021 (Table 12). The ratio of dyed to undyed smolt was the same among traps 1 through $4\left(x^{2}=3.38, p=0.337,3 \mathrm{df}\right)$. Using the $1993 M_{\mathrm{i}}$ and r_{i} values resulted in an estimate of migration of $1,202,844$ sockeye salmon smolt.

We chose to use the six pairs of M_{i} and r_{i} values from 1989-93 to generate 500 bootstrap estimates for 1993. The mean of 486,181 sockeye salmon smolt (Table 13) was used to estimate the 1993 smolt population. The 95% confidence bounds ranged from 163,998 to 1,202,844 smolt.

Sixty-three percent of the measured sockeye salmon smolt seaward migration occurred between 1 and 8 June, although within that time frame there were three distinct peaks in the daily passage rate (Figure 5). Only 1.0% of the migration occurred within the first 8 days of counting, and a relatively steady daily migration which constituted 20% of the total occurred during the last two weeks of the project. Age-2 sockeye smolt left the drainage earlier than age-1 smolt (Table 14).

An estimated 88.5% of the sockeye salmon smolt sampled at the km 31 site were age 1. (Table 15). There was a significant ($\chi^{2}=37.06, p=0.05,1 \mathrm{df}$) decrease in the proportion of age-2. smolt in period 2. In addition, there was a significant ($\chi^{2}=99.07, p=0.05,1 \mathrm{df}$) decrease in age-1. and increase in age- 0 migrants in period 3.

Age-0. sockeye salmon smolt, which comprised 8.5% of the estimated migration, have not been captured in the traps in previous years. These smolt were first captured on 19 June. The mean length for the first time stratum after their initial appearance was 51 mm (Table 16). Analysis of variance indicated that the mean length of the age- 0 . smolt captured at km 31 was smaller ($\mathrm{P}<0.0001$) than that of the 1992 fall fry captured from Skilak Lake (Tarbox and Brannian 1993). Conversely, ANOVA revealed that the 1993 age- 0 . smolt were longer ($\mathrm{P}<0.0001$) than 1993 age-0. fry sampled in July in Skilak Lake (mean $=41 \mathrm{~mm} ; \mathrm{K}$. Tarbox, ADF\&G, Soldotna, pers comm.).

As in 1992, mean lengths and weights of sockeye salmon smolt were greater than in any of the previous years (Table 16; Figures 6 and 7). In 1993 the mean length of age-1. sockeye salmon smolt from the km 31 (mainstem) traps and from samples collected in the Moose, Hidden, and Russian tributaries were, respectively, $77.9 \mathrm{~mm}, 114.2 \mathrm{~mm}, 130.1 \mathrm{~mm}$, and 80.9 mm . The mean length of the km 31 age-1. smolt was significantly less than each of the substocks ($\mathrm{P}<001$ in all cases). Mean length of age- 2 . sockeye smolt from the km 31 traps and from samples collected in Hidden, and Russian tributaries were, respectively, 98.2 mm , 187.4 mm , and 93.7 mm . The mean length of km 31 age- 2 . smolt was significantly different than Hidden Creek $p<0.001$), and Russian River ($p=0.008$) substocks.

In general, Hidden Creek sockeye salmon smolt appeared to be missing from the km 31 trap catches (Figure 8). There was some overlap in the length frequency distribution of km 31 and Moose River age-2. smolt, and the length frequency distributions of age-1. and -2. sockeye salmon smolt captured in the Russian River were very similar to that for the km 31 trap captures. Weighting the length frequency distributions by estimated smolt abundance from each of the tributaries and km 31 again showed that Hidden Creek age-1. smolt were not captured by the mainstem traps, and that Moose River age-2. sockeye smolt were partially available to the gear (Figure 9). Inclined plane traps at km 31 probably also missed most of the age-2. smolt exiting the Russian River. Conversely, the mainstem traps appeared to have captured a representative sample of the Russian River age-1. smolt.

Our analysis of length frequency data for Moose River marked coho salmon smolt (Carlon and Hasbrouck 1993) captured at km 31 indicated that trap efficiency decreased with increased length (Figure 10). Coho salmon smolt in the 100 to 114 mm length range had an equal probability ($\chi^{2}=0.101, p<0.05,2 \mathrm{df}$) of capture (approximately 1.6 to 1.7%; Table 17). Significant differences ($p=0.05$) in trap efficiency were detected at 5 to 10 mm intervals in length frequency for other smolt size ranges. The lowest calculated trap efficiency, 0.17%, was for coho smolt from 155 to 159 mm long (based on only one recovery), and none of the estimated 415 tagged fish larger than 160 mm were captured at km 31.

Seasonal trends in hydrological parameters were similar to previous years. Water level increased daily until mid-June, while temperature fluctuated between 7 and $13^{\circ} \mathrm{C}$ at the km 31 site throughout the study (Table 18). Total discharge was the second highest on record for May (Figure 11). Changes in water clarity were significantly correlated ($\mathrm{r}=0.136, \mathrm{p}=$ $0.01,48 \mathrm{df}$) with changes in discharge (Figure 12).

The 1993 adult sockeye salmon return provided the first opportunity to evaluate the accuracy of smolt estimates based on adult returns of all age classes. The 1987 parent year escapement of $1,408,000$ adult spawners (Table 19), produced approximately $37,000,000$ age0 . fry which reared in the two major lakes in the drainage (Tarbox and King 1989). This was a minimum estimate of fry production since Russian River, Hidden Lake, and Moose River were not included. However, these systems were thought to produce only a small portion of the production that year. The 1987 parent year spawning escapement produced $30,224,000$ smolt. Most of these smolt $(24,416,000)$ migrated to sea at age-1. Some $(5,807,000) 1987$ brood year juveniles remained in freshwater and left as age-2. smolt the next spring. The age-1. smolt brought back $7,793,000$ age-1.2 and -1.3 adults giving an age -1 : smolt to adult survival of 31.9%. The return of $2,017,000$ age- 2.2 and -2.3 adults in 1992 and 1993 gave an age-2. smolt-to-adult survival rate of 34.7%. The total smolt to adult survival rate for the 1987 brood year was 32.5\%: Survival of Tustumena Lake (Kasilof River) 1987 brood year sockeye smolt from smolt to adult was approximately 15%.

The 1988 adult spawning escapement of 910,000 produced $5,249,000$ age-1. smolt and 431,000 age-2. smolt for a total smolt production of $5,680,000$. Survival of age-1. smolt from the 1988 brood year was similar to 1987 with relatively few (1.9\%) returning as age-1.2
adults and more (22.8%) returning as age- 1.3 adults for a total survival of 1 freshwater smolt to adult of $\mathbf{2 4 . 7 \%}$.

The 1989 parent year adult spawning escapement of $1,379,000$ produced 2,776,000 age-1. smolt and 312,000 age-2. smolt. The 1990 adult spawning escapement of 519,000 produced only 253,000 age -1 . and 36,000 age- 2 . smolt. The 1991 spawning escapement of 431,000 fish has to date produced 797,000 smolt (age-1. only). The age-2. component of the 1991 brood year will migrate to sea in 1994.

Russian River

The Russian River inclined plane trap collected 43,791 fish from 18 May through 15 July 1993 (Table 20). Sockeye salmon fry comprised 76.1% of the catch. A total of 8,425 sockeye salmon smolt, making up 19.2% of the total, were also captured.

Dyed sockeye salmon smolt were released on 20 nights. Recapture data for these dates were grouped into seven time strata, each with a minimum of 475 released dyed sockeye salmon smolt (Table 21). Trap efficiencies by stratum ranged from 0.011 to 0.152 , and were not significantly different between strata 1 and $2\left(\chi^{2}=0.59, p=0.44,1 \mathrm{df}\right)$, and among strata 4,5 and $6\left(\chi^{2}=4.36, p=0.11,2 \mathrm{df}\right)$. By combining data from statistically similar strata, we established three periods with distinct trap efficiencies. Using these data we estimated 222,024 smolt with a 95% confidence interval of 119,485 to 324,562 . However, this estimate was used only for comparison of weighted length frequency distributions of various Kenai River substocks because of uncertainties in the dye and recovery process.

There were two sockeye salmon smolt migration peaks during May and June. Approximately one-fourth of the trap captures occurred between 18 May and 6 June, followed by a period of 18 days in which our maximum daily catch was 46 smolt (Table 18). The latter period accounted for less than 5% of the total catch. On 25 June, 5 days before the project was scheduled to end, catches again increased, and between that date and 15 July we counted 69.2% of the catch total for the season. The catch on the last day of operation was 1.4% of the total.

Age-2. sockeye salmon smolt were numerically dominant in the catch from mid-May until early June (Table 22). After 2 June, age-1. sockeye smolt were the most abundant age class collected. There was a significant difference ($\left(\chi^{2}=1021.14, \mathrm{p}<0.001,15 \mathrm{df}\right)$ in age class composition of the smolt captured each period except for those sampled from 1 through 15 July. Mean length and weight of age-1. smoit was at least 10 mm and 2.0 grams smaller than age-2. smolt during each of the time strata sampled.

DISCUSSION

From the beginning of the season through the time period when most of the sockeye salmon smolt migration occurred in past years, the right and left bank traps were separated by approximately 25 m . The traps closest to the middle of the river, traps 4 and 5 , were approximately equidistant from their respective banks. Catches from traps placed adjacent to the shallower right bank, traps 5 and 6, contained proportionally fewer sockeye salmon smolt than those on left bank. In addition, catches of other age classes and species, especially fry, were very similar to those of the left bank near shore traps 1 and 2. Nearshore distribution of fry was also observed by Clark and Smith (1972). This catch information suggests that traps 5 and 6 were placed in areas not preferred by sockeye salmon smolt, and that large numbers of smolt were not migrating past the right bank. These data, along with the high proportion of the total sockeye salmon smolt catch in trap 3 , however did not provide sufficient evidence that few smolt migrate in the section of the river between the two sets of traps.

The high relative proportion of the sockeye salmon smolt catch (48.9%) from trap 3 was not observed in previous years. Historically, traps 3 and 4 have had approximately equal seasonal catch totals. The only other year when the proportion of the catch in trap 3 exceeded that of trap 4 was 1990 when the two traps captured 46% and 33% of the total sockeye salmon smolt, respectively. Both 1990 and 1993 also had greater daily and total discharge rates for May than other study years. Since surface velocities measured at the mouth of traps 3 and 4 were essentially the same, it did not appear that the relatively high proportion of sockeye salmon smolt catches in trap 3 was solely a function of flow regime.

We decided to exclude the data from traps 5 and 6 in this year's estimate so that it would be comparable with previous years. Traps 5 and 6 accounted for 17% of all sockeye salmon smolt and 14% of the dyed smolt caught, and the ratios of dyed to undyed smolt were not different among traps 1 through 6 ($\chi^{2}=w .74, p=0.59,5 \mathrm{df}$). When these data were included in the bootstrap model, the estimate of migrants was 548,746 smolt, an increase of 12.9% over our chosen best estimate.

Numbers of sockeye salmon smolt continued a downward trend in catch from the 161,111 in 1989, the initial year of the study. In contrast, the numbers of smolt and fry of other species have either remained relatively constant or increased. Several questions, however, remain to be answered about our estimates of trap efficiency and smolt behavior before we feel comfortable with our smolt estimates.

An important assumption underlying the population estimate is that marked and unmarked smolt behave similarly. A violation of this assumption would be apparent if we obtained very different marked to unmarked ratios among traps. Since no differences were detected among traps 1-4, we had no evidence to suggest that marked and unmarked fish behaved differently. Differences were found in previous years, so our ability to detect differences this year may have been hampered by the small number of dyed smolt recovered in 1993.

As in 1992, the minimum sample size for a single dye event was not attained. The small sample size released on any given day also precluded examination of changes in trap efficiency over time. In addition, since fewer than 10 dyed smolt were recaptured, the markrecapture estimate could be biased (Seber 1982). Finally, the minimum number of dyed smolt needed each period was based on the assumption that trap efficiency would either equal 2%, or be consistent over time if less than 2%. Sample sizes greater than 5,700 were needed to ensure a relative error of less than 25% for efficiencies equal to or less than 1%. Since we could not meet these requirements, our estimate had very wide confidence intervals. Although neither 1992 or 1993 dyed smolt sample sizes met the sampling objectives, we elected to include both in the bootstrap procedure because the range in trap efficiencies and subsequent confidence intervals reflected the uncertainty of our estimate.

The lack of sockeye smolt captures and increase in smolt size in 1992 and 1993 have led us to seriously question the validity of our population estimator. The bootstrap technique helped alleviate some sample concerns, but since smolt were larger in 1992 and 1993 than in previous years, it is possible that the mean bootstrap estimate is conservative because larger smolt may have been able to better avoid capture. Despite these potential problems, we think that the decrease in total smolt catch relative to 1989 supports our conclusion that the 1993 seaward migration was very low.

In 1992, we were concerned that larger smolt may have a different probability of capture in our traps than smaller smolt (King et al. 1994). Prior to 1992, age-2. sockeye smolt lengths from traps samples appeared to be normally distributed (King et al. 1991) which suggested that size selectivity did not occur. We assumed that length frequency distributions would be truncated at larger values or be skewed toward smaller sizes if larger smolt were better able to evade capture. Length frequency data for Russian River, Moose River, and Hidden Creek sockeye smolt, first collected in 1992, suggested that Hidden Creek (age-1.) and Moose River (age-2.) sockeye smolt were not represented in mainstem trap catches. Their length frequency distribution had little overlap with that measured for mainstem trap smolt samples, and the corresponding mean lengths were different. In contrast, there was sufficient overlap between the mainstem and Russian River age-2. length frequency distributions to infer that Russian River smolt were at least partially represented in mainstem catches. These results were duplicated in 1993. In addition, the length frequency distribution of Russian River age-1. sockeye salmon smolt very closely resembled that of the km 31 catch age-1.

Most surprising was the low abundance of age-1. sockeye salmon smolt in the $60-70 \mathrm{~mm}$ size range, the size of migrants we expected to leave Skilak Lake. It is unlikely that these juveniles grew from a mean length of 59 mm measured as age-0. fry in December 1992 to a mean length of 78 mm as age-1. smolt by May 1993, since fry only grew an average 5 mm in the 2.5 months prior to the December 1992 sampling period (Tarbox and Brannian 1993). Also, sockeye salmon fry in Skilak Lake in November 1993 were 97.7% age-0. (K. Tarbox, ADF\&G, Soldotna, pers comm.), eliminating holdover as a possible reason for the apparent lack of age-1. migrants from Skilak Lake. Three explanations for their absence in the trap catches can be put forward. First, smolt may have migrated out of the system during a time frame, or in an area of the river not monitored by the project. Second, the estimated 9.5
million fry inhabiting Kenai and Skilak Lakes the previous fall may have survived at a very low rate. Third, trap avoidance may have been much greater than we suspected which would have violated the assumption that probability of capture was the same for marked and unmarked smolt.

The presence of age- 0 . sockeye salmon smolt in the migration was unusual since we have not captured this age group in previous years. These smolt first appeared in the traps after $80-90 \%$ of the total migration had occurred. The 51 mm mean length of this age class was nearly 10 mm smaller than the average for any smolt age group we have documented in any year of the study. In addition, age- 0 . fry captured in the traps were uniformly $25-35 \mathrm{~mm}$ in length.

We examined the possibility that the age-0. sockeye salmon smolt were of Skilak Lake origin. One hypothesis was that they were actually misaged age-1. smolt. If this were true, then the age-0. smolt would not have been smaller than the 1992 age-0. Skilak Lake fall fry, unless the spring smolt were all that remained of the smallest size of the Skilak Lake 1992 fall fry, implying that only the smallest fall fry survived until spring. A second hypothesis was that these age- 0 . sockeye salmon were identified as smolt, but were merely 1993 recruitment that had washed out of the lake as a result of the relatively high flow rates which occurred in May. This does not appear to be the case since 1993 age-0. smolt were larger than 1993 age-0. fry sampled in July in Skilak Lake. A third hypothesis, is that the age -0 . migrants came from a lake in the drainage in which age- 0 . fry responded to higher than average spring temperatures by smolting. No sockeye juveniles of this description were observed in the Moose River in 1993, although the weir was dismantled three days prior to the first capture at km 31 . Fandrei (1993) did not report atypically small fish leaving Hidden Creek in 1993.

A comparison of length frequency distributions for coho salmon captured in Moose River, Hidden Creek and the mainstem Kenai River suggested size selectivity in trap catches (Figure 10). Carlon and Hasbrouck (1993) found a significant ($\mathrm{p}<0.001$) difference in mean length between coho tagged in the Moose River and those recovered in the traps, and stated that traps could not be used to estimate the number of coho salmon migrating seaward from that drainage. We found that trap efficiency could be estimated for coho salmon smolt of various size ranges, and that smolt from 100-114 mm were caught at a rate of slightly less than 2%. Since we were unable to capture Moose River and Hidden Creek sockeye salmon smolt which had similar lengths to the coho salmon smolt captured at km 31, it appears that trap efficiency differed among species as well as within a species. Similar results were reported by Thedinga et al. (1993) for screw traps used on the Situk River in Southeastern Alaska.

Mean smolt length and weight have increased dramatically since 1989. However, fry to smolt survival experienced declines of a similar or greater level during the same time period. The relationship of increased smolt size with decreased numbers has been observed in other sockeye systems (Macdonald et al. 1987). The trend in fry to smolt survival seems counter intuitive; we would expect that larger smolt to have survived at a higher rate. That the opposite has been observed suggests two possible causes: there was less competition for
food in the lake after most of the overwintering fry died which allowed the survivors to grow more rapidly; or, there was a change from earlier years of the project in the relative magnitude of the tributary populations being measured at the km 31 smolt enumeration site.

The sockeye salmon smolt estimate for 1993 was considerably less than that expected from fall fry estimates adjusted for average winter survival. Fall 1992 lake surveys produced estimates of 9,506,000 age-0. and 102,300 age-1. fry in Kenai and Skilak Lakes (Tarbox and Brannian 1993). If winter survival was average (75\%), approximately 7,000,000 age-1. and 77,000 age-2. smolt should have migrated from Kenai and Skilak Lakes, in addition to smolt from Hidden Lake, Moose River, and Russian River.

If our estimates were reasonably accurate, our data suggest that sockeye salmon smolt production from the 1987-1991 parent years varied considerably despite record large escapements achieved in most of those years (Table 22). The numbers of smolt per spawner declined rapidly from over 20 to less than 1, even with the production from Moose River and Hidden Lake added to the smolt estimated at km 31.

We used the estimate of Russian River sockeye salmon smolt abundance in 1993 as an index of the order of magnitude of the migration. We encountered several problems which could affect the accuracy of the estimate, and decided to alter the program in 1994 prior to generating an estimate of migration. The primary area of concern was variation in trap efficiency through time. During the period 18 May through 29 June, the trap efficiency of 0.05 was much less than expected if trap catch was proportional to area of the river sampled. Large age-2. smolt made up at least 57.0% of the migrants prior to 2 June and were absent from the samples by 30 June. During the last three weeks of the project, the migration was nearly all age-1. smolt with a mean length 11 to 17 mm less than the age- 2 smolt which migrated in May and June. The age-1. smolt were recaptured at a rate of 0.13 . Only if the dyed age-2. smolt were able to avoid recapture completely during the last three weeks, could we have approached the trap efficiency recorded for the early period. During the middle period, 30 June through 3 July, only 8 of 760 dyed fish were recovered. Using that trap efficiency (0.01), and the numbers of smolt captured, resulted in half the total estimated migration occurring during that period. Clearly there were enough uncertainties in the recapture results to question migration estimates. In 1994 we intend to increase the number of traps to two and weir most of the river except for a small migratory channel for adults. We hope that this will increase trap efficiency, and provide us with a clearer understanding of trap avoidance.

LITERATURE CITED

Bue, B.G., D.L. Bill, W.A. Bucher, S.M. Fried, H.J.Yuen, and R.E. Minard. 1988. Bristol Bay sockeye salmon studies for 1986. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 88-15, Juneau.

Carlon, J. and J.J. Hasbrouck. 1993. Marking juvenile coho salmon in the Kenai River with coded, microwire tags. Alaska Department of Fish and Game Division of Sport Fisheries Fishery Data Series No. 93-52, Anchorage.

Cochran, W.G. 1978. LaPlace's ratio estimator. In Contributions to survey sampling and applied statistics, edited by H.A. David, Academic Press, New York, pp. 3-10.

Clark, W.C. and H.D. Smith. 1972. Observations on the migration of sockeye salmon fry (Oncorhynchus nerka) in the lower Babine River. Journal of the Fisheries Research Board of Canada 29.

Davis, R.Z., B.E. King, and K.E. Tarbox. 1993. Upper Cook Inlet salmon escapement studies, 1992. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report (94-15), Juneau.

Effron, B. 1982. The jackknife, the bootstrap and other resampling plans. CBMS-NSF Regional Conference Series in Applied Mathematics 38, Society for Industrial and Applied Mathematics, Philadelphia.

Fandrei, G. 1993. Hidden Lake sockeye salmon enhancement progress report 1993. Cook Inlet Aquaculture Association, Soldotna.

Foerster, R.E. 1968. The sockeye salmon, Oncorhynchus nerka. Fisheries Board of Canada Bulletin 162. Ottawa.

Hoar, W.S. 1954. The behavior of juvenile pacific salmon, with particular reference to the sockeye (Oncorhynchus nerka). Journal of the Fisheries Research Board of Canada 11(1).

INPFC (International North Pacific Fisheries Commission). 1963. Annual Report 1961. Seattle, Washington.

King, B.E., L.K. Brannian, and K.E. Tarbox. 1990. Kenai River sockeye salmon smolt studies, 1989. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2S90-5, Anchorage.

King, B.E., L.K. Brannian, and K.E. Tarbox. 1991. Kenai River sockeye salmon smolt studies, 1990-91. Alaska Department of Fish and Game Division of Commercial Fisheries Regional Information Report No. 2S91-8, Anchorage.

LITERATURE CITED (continued)

King, B.E., L.K. Brannian, and K.E. Tarbox. 1994. Kenai River sockeye salmon smolt studies, 1992. Alaska Department of Fish and Game Division of Commercial Fisheries Regional Information Report No. 2A93-28, Anchorage.

Kyle, G.B. 1983. Crescent Lake sockeye salmon smolt enumeration and sampling, 1982. Alaska Department of Fish and Game, Fisheries Rehabilitation, Enhancement and Development Division Report Series No. 17, Juneau.

Kyle, G.B. 1992. Summary of sockeye salmon (Oncorhynchus nerka) investigations in Tustumena Lake, 1981-1991. Alaska Department of Fish and Game, Division of Fisheries Rehabilitation, Enhancement and Development Division Report No. 122, Juneau.

Macdonald, P.D.M., H.D. Smith and L Jantz. 1987. The utility of Babine smolt enumerations in management of Babine and other Skeena River sockeye salmon (Oncorhynchus nerka) stocks. In: H.D. Smith, L. Margolis, and C.C. Wood. Editors. Sockeye salmon (Oncorhynchus nerka) population biology and future management. Canadian Special Publications in Fisheries and Aquatic Sciences 96.

Marsh, L. 1993a. Catch and effort statistics for the sockeye salmon sport fishery during the early run to the Russian River with estimates of escapement. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 93-28, Juneau.

Marsh, L. 1993b. Catch and effort statistics for the sockeye salmon sport fishery during the late run to the Russian River with estimates of escapement. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 93-35, Juneau.

Nelson, D.C. 1980. Russian River sockeye salmon study. Alaska Department of Fish and Game. Anadromous Fish Studies, Annual Performance Report, 1980-1981, Project AFS-44, 22 (AFS-44-7):1-48, Juneau.

Rawson, K. 1984. An estimate of the size of a migratory population of juvenile salmon using an index of trap efficiency obtained by dye marking. Alaska Department of Fish and Game, Division of Fisheries Rehabilitation, Enhancement and Development Report 28, Juneau.

Ruesch, P.H. and J. Fox. 1993. Upper Cook Inlet Commercial Fisheries Annual Management Report, 1992. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 2A93-17, Anchorage.

LITERATURE CITED (continued)

Schmidt, D. and K.E. Tarbox. 1991. Sockeye salmon overescapement. Fish/Shellfish Study No. 27. State/Federal Natural Resource Damage Assessment Draft Preliminary Status Report, Soldotna.

Schmidt, D. and K.E. Tarbox. 1992. Sockeye salmon overescapement. Fish/Shellfish Study No. 27. State/Federal Natural Resource Damage Assessment Draft Preliminary Status Report, Soldotna.

Seber, G.A.F. 1982. The estimation of animal abundance and related parameters. second edition. Macmillan Publishing Co., New York.

Tarbox, K.E. and B.E. King. 1989. An estimate of juvenile fish densities in Skilak and Kenai Lakes, Alaska through the use of dual beam hydroacoustic techniques in 1988. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 2S89-07, Anchorage.

Tarbox, K.E. and L.K. Brannian. 1993. An estimate of juvenile fish densities in Skilak and Kenai Lakes, Alaska through the use of dual beam hydroacoustic techniques in 1992. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fisheries Report (in progress), Juneau.

Thedinga, J.F., S.W. Johnson, M.L. Murphy, J.M. Lorenz, and K.V.Koski. 1993. Salmonid smolt yield determined with cotary screw traps in the Situk River, Alaska to predict effects of glacial flooding.

Table 1. Numbers of fish captured by trap 1 in the Kenai River, May 17 through July 5, 1993.

Date	Numbers of Fish ${ }^{2}$								
	Sockeye Smolt	Sockeye Fry	Chinook Smolt	Chinook Fry	Coho Smolt	Coho Fry	Pink Fry	Other	Total
17-May	0	9	0	24	0	2	21	1	57
18-May	0	4	0	11	0	0	44	0	59
19-May	0	10	8	24	1	9	9	4	65
20-May	0	20	2	31	0	0	30	2	85
21-May	0	0	10	0	0	0	72	8	90
22-May	0	11	3	22	1	6	79	2	124
23-May	0	10	8	37	0	3	194	9	261
24-May	0	0	17	37	4	2	146	6	212
25-May	0	21	6	17	2	31	56	2	135
26-May	2	1	16	10	3	4	151	6	193
27-May	5	21	18	20	0	2	46	5	117
28-May	1	8	5	12	1	1	123	5	156
29-May	0	25	2	12	0	4	544	0	587
30-May	0	7	1	5	1	2	158	5	179
31-May	1	5	6	6	2	1	140	4	165
01-Jun	4	55	2	16	1	2	135	6	221
02-Jun	3	128	17	13	1	2	119	8	291
03-Jun	4	328	4	15	1	12	128	7	499
04-Jun	5	274	1	1	0	1	152	3	437
05-Jun	2	215	0	4	0	0	135	5	361
06-Jun	1	99	0	2	0	2	128	5	237
07-Jun	11	48	2	2	3	1	213	4	284
08-Jun	2	70	1	3	7	4	155	5	247
09-Jun	2	1	1	1	1	0	125	3	134
10-Jun	1	43	3	1	0	0	41	1	90
11-Jun	0	18	3	0	0	1	85	4	111
12-Jun	1	10	0	0	2	5	80	3	101
13-Jun	1	7	1	1	5	3	50	1	69
14-Jun	0	8	0	13	0	1	120	2	144
15-Jun	0	33	3	3	0	0	50	0	89
16-Jun	0	20	4	4	0	0	25	2	55
17-Jun	0	3	8	4	1	8	60	2	86
18-Jun	0	1	5	6	0	4	40	0	56
19-Jun	0	8	1	28	1	11	50	2	101
20-Jun	0	33	2	35	1	4	140	4	219
21-Jun	1	24	2	13	1	3	80	1	125
22-Jun	0	0	2	32	0	0	90	2	126
23-Jun	0	44	5	15	0	8	30	0	102
24-Jun	2	45	0	26	1	12	20	3	109
25-Jun	1	40	10	21	1	14	20	0	107
26-Jun	1	0	6	32	1	1	20	1	62
27-Jun	1	30	18	15	0	3	30	1	98
28-Jun	1	35	3	6	0	4	20	2	71
29-Jun	2	18	7	32	1	5	3	0	68
30-Jun	5	25	5	6	3	27	5	0	76
01-Jul	3	71	15	43	0	3	10	1	146
02-Jul	4	70	20	70	1	25	1	4	195
03-Jul	7	27	43	34	0	26	6	4	147
$\begin{aligned} & 04-\mathrm{Jul} \\ & 05-\mathrm{Jul} \end{aligned}$	0	56	44	32	0	19	0	6	157
Total	74	2,039	340	797	48	278	4,179	151	7,906

[^1]Table 2. Numbers of fish captured by trap 2 in the Kenai River, May 17 through July 5, 1993.

Date	Numbers of Fsh ${ }^{2}$								
	Sockeye Smolt	Sockeye Fry	Chinook Smolt	Chinook Fry	Coho Smolt	$\begin{aligned} & \text { Coho } \\ & \text { Fry } \end{aligned}$	Pink Fry	Other	Total
17-May	1	2	3	4	0	0	162	1	173
18-May	2		2	0	0	1	479	2	486
19-May	0	7	1	17	2	4	576	11	618
20-May	1	0	6	2	1	0	258	9	277
21-May	3	0	5	3	1	1	493	7	513
22-May	0	1	3	0	13	4	396	7	424
23-May	0	0	3	1	2	2	529	2	539
24-May	5	0	9	6	4	1	406	1	432
25-May	2	0	10	2	7	7	94	7	129
26-May	2	1	23	10	7	2	329	6	380
27-May	3	4	21	0	1	3	205	8	245
28-May	4	15	6	6	3	0	675	4	713
29-May	1	3	5	11	6	3	610	27	666
30-May	1	8	2	6	5	3	639	6	670
31-May	2	0	2	4	3	0	770	6	787
01-Jun	17	3	6	5	0	0	255	13	299
02-Jun	24	183	20	12	11	4	755	11	1,020
03-Jun	23	370	5	4	10	13	1032	10	1,467
04-Jun	38	196	2	0	2	0	750	7.	995
05-Jun	11	175	4	3	9	2	1330	4	1,538
06-Jun	12	89	3	1	8	3	601	8	725
07-Jun	33	52	8	0	6	0	734	1	834
08-Jun	33	27	4	0	28	1	600	1	694
09-Jun	6	0	1	2	7	0	300	4	320
10-Jun	2	5	1	0	2	0	355	0	365
11-Jun	2	20	2	0	3	3	355	1	386
12 -Jun	3	10	1	0	15	0	240	3	272
13-Jun	1	1	3	1	20	2	34	8	70
14-Jun	0	0	4	7	5	2	390	2	410
15-Jun	1	7	9	4	5	2	240	4	272
16-Jun	1	5	9	4	2	0	160	2	183
17-Jun	1	2	24	5	15	17	110	2	176
18-Jun	1	0	14	6	6	4	200	2	233
19-Jun	1	0	8	15	6	11	300	2	343
20-Jun	0	17	4	14	4	10	510	2	561
21-Jun	6	28	4	21	1	5	290	0	355
22-Jun	4	0	17	8	0	6	150	1	186
23-Jun	5	41	29	23	2	14	150	6	270
24-Jun	4	26	15	18	4	21	140	3	231
25-Jun	4	21	42	44	3	42	7	3	166
26-Jun	5	0	26	32	1	5	60	1	130
27-Jun	12	3	45	19	0	5	200	3	287
28-Jun	6	7	14	15	2	13	90	3	150
29-Jun	6	15	46	35	2	3	5	6	118
30-Jun	14	21	88	51	7	19	25	3	228
01-Jul	7	41	55	67	2	2	10	2	186
02-Jul	4	62	108	30	3	35	32	3	277
03-Jul	12	42	97	36	2	37	30	3	259
04 - Jul									0
05-Jul	3	48	84	44	4	16	1	2	202
Total	329	1,558	903	598	252	328	17,062	230	21,260

[^2]Table 3. Numbers of fish captured by trap 3 in the Kenai Riva, May 17 through July 5, 1993.

Date	Numbers of Fish ${ }^{2}$								
	Sockeye Smolt	Sockeye Fry	Chinook Smolt	Chinook Fry	Coho Smolt	$\begin{aligned} & \text { Coho } \\ & \text { Fry } \end{aligned}$	Pink Fry	Other	Total
17-May	0	1	0	1	0	0	376	5	383
18-May	1	0	2	0	0	0	501	6	510
19-May	2	1	2	6	1	0	364	7	383
20-May	2	1	0	0	2	2	1024	5	1,036
21-May	0	0	0	0	11	0	646	3	660
22-May	0	1	2	2	15	0	1089	2	1,111
23-May	3	2	2	1	9	3	1543	3	1,566
24-May	9	0	19	1	13	0	641	4	687
25-May	5	0	8	1	5	8	473	3	503
26-May	26	3	35	4	10	4	1425	5	1,512
27-May	47	20	20	19	7	0	1920	10	2,043
28-May	39	4	12	2	18	0	2140	9	2,224
29-May	5	6	3	8	11	0	1793	15	1,841
30-May	11	13	1	19	22	0	2720	5	2,791
31-May	39	7	4	6	16	0	1520	10	1,602
01-Jun	253	2	7	2	15	0	757	7	1,043
02-Jun	168	75	19	17	45	5	1680	11.	2,020
03-Jun	77	321	16	11	41	5	2565	6	3,042
04-Jun	332	165	7	1	17	0	1280	4	1,806
05-Jun	59	130	3	4	13	2	2110	2	2,323
06-Jun	89	52	7	4	26	1	1685	5	1,869
07-Jun	251	7	11	4	36	4	2090	6	2,409
08-Jun	121	16	3	2	98	1	2385	7	2,633
09-Jun	52	0	1	0	20	0	915	2	990
10-Jun	12	2	0	0	8	0	1145	3	1,170
11-Jun	8	2	3	0	13	0	680	2	708
12-Jun	9	10	6	0	13	0	550	4	592
13-Jun	0	1	0	0	5	0	60	0	66
14-Jun	3	0	8	2	11	3	1245	3	1,275
15-Jun	2	4	7	3	7	1	450	0	474
16-Jun	3	0	25	1	15	0	360	3	407
17-Jun	5	0	29	5	64	8	250	2	363
18-Jun	7.	0	25	10	27	8	670	4	751
19-Jun	14	0	22	23	16	16	580	1	672
20-Jun	1	9	11	7	3	6	790	0	827
21-Jun	7	50	4	3	7	1	1220	5	1,297
22-Jun	24	1	54	5	9	8	200	3	304
23-Jun	15	41	59	19	11	23	920	6	1,094
24-Jun	34	47	72	18	10	22	570	8	781
25-Jun	45	5	94	42	8	50	280	3	527
26-Jun	95	5	50	55	3	13	230	2	453
27-Jun	24	4	60	12	2	34	550		687
28-Jun	30	14	40	16	2	16	310	1	429
29-Jun	40	14	84	22	9	29	13	3	214
30-Jun	31	4	112	36	5	38	20	1	247
01-Jul	34	62	126	56	3	9	2	3	295
02-Jul	17	43	116	48	7	19	6	1	257
$03-\mathrm{Jul}$ $04-\mathrm{Jul}$	92	44	171	13	7	23	72	2	424 0
05-Jul	3	26	98	21	7	12	0	0	167
Total	2,146	1,215	1,460	532	723	374	44,815	203	51,468

[^3]Table 4. Numbers of fish captured by trap 4 in the Kenai River, May 17 through July 3, 1993.

Date	Numbers of Fish ${ }^{\text {a }}$								
	Sockeye Smolt	Sockeye Fry	Chinook Smolt	Chinook Fry	Coho Smolt	Coho Fry	Pink Fry	Other	Total
17-May	0	1	0	1	0	0	296	5	298
18-May	1	0	3	0	4	0	370	5	378
19-May	0	0	0	0	2	0	237	4	239
20-May	0	2	2	2	5	0	550	7	561
21-May	0	0	1	1	4	1	560	15	567
22-May	0	1	0	3	28	0	817	4	849
23-May	3	0	2	0	7	0	781	6	793
24-May	0	0	8	0	15	1	339	10	363
25-May	4	0	3	0	9	0	88	3	104
26-May	8	0	26	2	9	0	276	8	321
27-May	19	6	22	7	10	0	290	8	354
28-May	4	1	3	2	10	0	440	9	460
29-May	4	1	3	7	30	0	510	10	555
30-May	6	0	2	8	13	0	710	13	739
31-May	20	0	3	4	15	0	750	7	792
01-Jun	96	9	12	0	8	0	312	10	437
02-Jun	60	21	13	6	32	27	971	11	1,130
03-Jun	34	141	8	0	25	5	755	5	968
04-Jun	98	108	6	2	7	0	838	3	1,059
05-Jun	15	50	2	7	20	2	1,110	3	1,206
06-Jun	24	10	4	3	23	1	830	11	895
07-Jun	81	62	2	0	38	0	1,065	5	1,248
08-Jun	22	13	2	1	52	16	1,360	4	1,466
09-Jun	6	0	3	0	16	2	576	3	603
10-Jun	6	10	0	1	3	0	808	1	828
11-Jun	4	0	2	0	17	3	460	4	486
12-Jun	2	10	1	0	23	2	400	1	438
13-Jun	0	0	3	1	46	1	185	5	236
14-Jun	1	0	4	0	16	3	630	3	654
15-Jun	1	0	13	2	17	0	220	1	253
16-Jun	0	0	21	3	16	1	180	2	221
17-Jun	2	0	33	6	59	9	120	1	229
18-Jun	3	1	28	11	30	6	230	4	309
19-Jun	2	0	17	0	11	8	440	0	478
20-Jun	2	2	9	5	5	4	700	4	727
21-Jun	6	10	11	8	4	1	420	1	460
22-Jun	16	10	27	9	5	6	120	3	193
23-Jun	8	0	45	29	5	18	50	3	155
24-Jun	8	8	54	18	1	29	120	1	238
25-Jun	9	22	80	26	5	52	220	3	414
26-Jun	24	10	26	43	1	1	30	1	135
27-Jun	8	0	46	16	0	18	350	1	438
28-Jun	7	10	32	31	2	16	150	4	248
29-Jun	8	2	86	12	3	7	6	4	124
30-Jun	4	7	75	14	10	28	20	4	158
01-Jul	5	22	88	53	3	10	10	1	191
02-Jul	6	15	63	36	3	33	5	1	161
03-Jul	14	20	113	16	2	19	29	1	213
Total	651	585	1,007	396	669	330	20,734	223	24.372

${ }^{2}$ No traps were fished on July 4.

Table 5. Numbers of fish captured by smolt traps 1-4 at the Kenai River km 31 site, May 17 through July 5, 1993.

Date	Numbers of Fish ${ }^{2}$								
	Sockeye Smolt	Sockeye Fry	Chinook Smolt	Chinook Fry	Coho Smolt	Coho Fry	Pink Fry	Other	Total
17-May	1	13	3	30	0	2	855	12	916
18-May	4	4	7	11	4	1	1394	13	1,438
19-May	2	18	11	47	6	13	1186	26	1,309
20-May	3	23	10	35	8	2	1862	23	1,966
21-May	3	0	16	4	16	2	1771	33	1,845
22-May	0	14	8	27	57	10	2381	15	2,512
23-May	6	12	15	39	18	8	3047	20	3,165
24-May	14	0	53	44	36	4	1532	21	1,704
25-May	11	21	27	20	23	46	711	15	874
26-May	38	5	100	26	29	10	2181	25	2,414
27-May	74	51	81	46	18	5	2461	31	2,767
28-May	48	28	26	22	32	1	3378	27	3,562
29-May	10	35	13	38	47	7	3457	52	3,659
30-May	18	28	6	38	41	5	4227	29	4,392
31-May	62	12	15	20	36	1	3180	27	3,353
01-Jun	370	69	27	23	24	2	1459	36	2,010
02-Jun	255	407	69	48	89	38	3525	41	4,472
03-Jun	138	1160	33	30	77	35	4480	28	5,981
04-Jun	473	743	16	4	26	1	3020	17	4,300
05-Jun	87	570	9	18	42	6	4685	14	5,431
06-Jun	126	250	14	10	57	7	3244	29	3,737
07-Jun	376	169	23	6	83	5	4102	16	4,780
08-Jun	178	126	10	6	185	22	4500	17	5,044
09-Jun	66	1	6	3	44	2	1916	12	2,050
10-Jun	21	60	4	2	13	0	2349	5	2,454
11-Jun	14	40	10	0	33	7	1580	11	1,695
12-Jun	15	40	8	0	53	7	1270	11	1,404
13-Jun	2	9	7	3	76	6	329	14	446
14-Jun	4	8	16	22	32	9	2385	10	2,486
15-Jun	4	44	32	12	29	3	960	5	1,089
16-Jun	4	25	59	12	33	1	725	9	868
17-Jun	8	5	94	20	139	42	540	7	855
18-Jun	11	2	72	33	63	22	1140	10	1,353
19-Jun	17	8	48	66	34	46	1370	5	1,594
20-Jun	3	61	26	61	13	24	2140	10	2.338
21-Jun	20	112	21	45	13	10	2010	7	2,238
22-Jun	44	11	100	54	14	20	560	9	812
23-Jun	28	126	138	86	18	63	1150	15	1,624
24-Jun	48	126	141	80	16	84	850	15	1,360
25-Jun	59	88	226	133	17	158	527	9	1,217
26-Jun	125	15	108	162	6	20	340	5	781
27-Jun	45	37	169	62	2	60	1130	6	1.511
28-Jun	44	66	89	68	6	49	570	10	902
29-Jun	56	49	223	101	15	44	27	13	528
30-Jun	54	57	280	107	25	112	70	8	713
01-Jul	49	196	284	219	8	24	32	7	819
02-Jul	31	190	307	184	14	112	44	9	891
03-Jul	125	133	424	99	11	105	137	10	1,044
$04-\mathrm{Jul}$ $05-\mathrm{Jul}$	6	130	226	97	11	47	1	8	0 526
Total	3,200	5,397	3,710	2,323	1,692	1,310	86,790	807	105.229

[^4]Table 6. Numbers of juvenile fish caught with inclined plane traps 1-4 in the Kenai River, 1990-1993.

Trap No.	Numbers of Fish								
	Sockeye Smolt	Sockeye Fry	Chinook Smolt	Chinook Fry	Coho Smolt	Coho Fry	Pink Fry	Other	Total
1990									
1	8,708	481	861	300	a	87	23	148	10,608
2	18,132	180	1,168	239	a	69	17	134	19,939
3	59,528	631	2,776	232	a	106	100	184	63,557
4	43,499	43	3,114	68	2	58	44	272	47,098
Total	129,867	1,335	7,919	839		320	184	738	141,202
1991									
1	1,758	62	451	131	93	27	2	177	2,699
2	3,291	30	918	97	224	31	a	161	4,752
3	10,540	23	1,526	62	775	10	a	200	13,136
4	10,239	17	1,697	57	832	9	2	182	13,033
Total	25,828	132	4,592	347	1,924	77		720	33,620
1992									
1	47	1,594	500	944	141	117	23	183	3,549
2	189	306	598	274	338	44	23	159	1,931
3	1,205	223	1,198	229	1,021	46	32	179	4,133
4	1,725	82	1,544	136	1,968	45	17	269	5,786
Total	3,166	2,205	3,840	1,583	3,468	252	95	790	15,399
1993									
1	74	2,039	340	797	48	278	4,179	151	7,906
2	329	1,558	903	598	252	328	17,062	230	21,260
3	2,146	1,215	1,460	532	723	374	44,815	203	51,468
4	651	585	1,007	396	669	330	20,734	223	24,595
Total	3,200	5,397	3,710	2,323	1,692	1,310	86,790	807	105,229

a No counts conducted

Table 7. Numbers of sockeye salmon smoit captured daily in the Kenai River, 1989-1993.

Date	Year					Date	Year				
	$1989{ }^{2}$	1990	1991	1992	1993		$1989{ }^{\text {a }}$	1990	1991	1992	1993
15-May		8				16-Jun	2,197	165	279	100	4
16-May	348	5	4	0		17-Jun	1,369	123	182	99	8
17-May	155	34	4	0	1	18-Jun	607	17	24	49	11
18-May	204	376	1	1	4	19-Jun	972	36	658	57	17
19-May	195	507	1	0	2	20-Jun	952	186	2,252	94	3
20-May	454	3,159	8	0	3	21-Jun	1,036	168	1,971	16	20
21 -May	271	4,760	13	0	3	22-Jun	639	108	2,446	3	44
22-May	716	2,690	36	0	0	23-Jun	2,835	37	923	14	28
23-May	1,546	414	680	0	6	24-Jun	1,833	20	407	5	48
24-May	1,184	282	389	0	14	25-Jun	660	56	377	2	59
25-May	988	1,645	319	2	11	26-Jun	679		2,972	2	125
26-May	785	16,411	622	1	38	27-Jun	486		263	6	45
27-May	2,699	8,057	306	0	74	28-Jun			320	40	44
28-May	2,056	1,903	151	1	48	29-Jun			213	18	56
29-May	1,532	1,745	414	1	10	30-Jun			122	31	54
30-May	2,268	9,578	502	2	18	01-Jul			517		49
31-May	6,257	9,878	494	5	62	02-Jul			19		31
01 -Jun	8,221	3,305	284	1	370	03-Jul			239		125
02-Jun	2,697	2,587	904	9	255	04 -Jul			494		
03-Jun	4,350	8,037	459	9	138	05-Jul			10		6
04-Jun	10,170	10,182	414	56	473	06-Jul			32		
05-Jun	17,579	14,143	440	35	87	07-Jui			30		
06-Jun	49,451	8,931	262	144	126	08-Jul			40		
07-Jun	16,276	8,337	579	69	376	09-Jul			33		
08-Jun	3,482	4,430	633	28	178	10-Jul			6		
09-Jun	3,271	6,336	492	94	66						
10-Jun	2,188	429	699	69	21	TOTAL	161,111	129.868	28,173	3,166	3,200
11-Jun	988	261	525	250	14						
12-Jun	1,656	248	825	329	15						
13-Jun	1,044	93	1,296	300	2						
14-Jun	3,052	51	934	101	4						
15-Jun	763	131	654	1,123	4						

${ }^{2}$ Three traps were fished in 1989; fnur traps were fished in the remaining years.

Table 8. Comparison of catches in Kenai River traps 1-6, 1993.

Trap No.	Numbers of Fish								
	Sockeye Smolt	Sockeye Fry	Chinook Smolt	Chinook Fry	Coho Smolt	Coho Fry	Pink Fry	Other	Total
1	74	2039	340	797	48	278	4179	151	7755
2	329	1558	903	598	252	328	17062	230	21030
3	2146	1215	1460	532	723	374	44815	203	51265
4	651	585	1007	396	669	330	20734	223	24372
Total 1-4	3200	5397	3710	2323	1692	1310	86790	807	104422
5	322	2612	681	863	188	780	1739	169	7185
6	348	26.50	397	1304	102	767	1267	168	6835
Total 5-6	670	5262	1078	2167	290	1547	3006	337	14020
Total	3,870	10,659	4,788	4,490	1,982	2,857	89,796	1,144	118,442
	Percent of Individual Trap Catch								
1	1.0	26.3	4.4	10.3	0.6	3.6	53.9	1.9	100.0
2	1.6	7.4	4.3	2.8	1.2	1.6	81.1	1.1	100.0
3	4.2	2.4	2.8	1.0	1.4	0.7	87.4	0.4	100.0
4	2.7	2.4	4.1	1.6	2.7	1.4	85.1	0.9	100.0
Total 1-4	3.1	5.2	3.6	2.2	1.6	1.3	83.1	0.8	100.0
5	4.5	36.4	9.5	12.0	2.6	10.9	24.2	2.4	100.0
6	5.1	38.8	5.8	19.1	1.5	11.2	18.5	2.5	100.0
Total 5-6	4.8	37.5	7.7	15.5	2.1	11.0	21.4	2.4	100.0
Total	3.3	9.0	4.0	3.8	1.7	2.4	75.8	1.0	100.0
Percent of Total Catch									
1	0.1	1.7	0.3	0.7	0.0	0.2	3.5	0.1	6.5
2	0.3	1.3	0.8	0.5	0.2	0.3	14.4	0.2	17.8
3	1.8	1.0	1.2	0.4	0.6	0.3	37.8	0.2	43.3
4	0.5	0.5	0.9	0.3	0.6	0.3	17.5	0.2	20.6
Total 1-4	2.7	4.6	3.1	2.0	1.4	1.1	73.3	0.7	88.2
5	0.3	2.2	0.6	0.7	0.2	0.7	1.5	0.1	6.1
6	0.3	2.2	0.3	1.1	0.1	0.6	1.1	0.1	5.8
Total 5-6	0.6	4.4	0.9	1.8	0.2	1.3	2.5	0.3	11.5
Total	3.3	9.0	4.0	3.8	1.7	2.4	75.8	1.0	100.0

Table 9. Numbers of fish captured by trap 5 in the Kenai River, May 17 through July 2, 1993.

Date	Numbers of Fish								
	Sockeye Smolt	Sockeye Fry	Chinook Smolt	Chinook Fry	Coho Smolt	$\begin{gathered} \text { Coho } \\ \text { Fry } \end{gathered}$	Pink	Other	Total
17-May	0	0	0	0	0	0	11	0	11
18-May	1	2	2	46	1	0	66	4	122
19-May	1	8	1	24	0	3	43	0	80
20-May	0	2	0	19	1	1	68	0	91
21-May	2	2	1	39	7	0	32	2	85
22-May	0	6	0	32	1	6	28	2	75
23-May	1	10	8	20	0	3	80	0	122
24-May	5	1	7	32	4	9	120	1	179
25-May	6	29	2	15	3	15	43	2	115
26-May	18	2	28	46	2	3	41	9	149
27-May	32	35	25	6	2	1	10	12	123
28-May	10	8	6	13	3	3	59	7	109
29-May	5	47	2	14	3	23	28	3	125
30-May	2	54	3	19	7	3	39	3	130
31-May	5	2	4	11	4	8	47	9	90
01-Jun	16	58	14	71	9	6	131	3	308
02-Jun	15	73	8	75	6	27	173	9.	386
03-Jun	24	585	4	28	11	19	58	10	739
04-Jun	48	362	0	1	5	3	172	8	599
05-Jun	14	590	3	8	1	2	55	5	678
06-Jun	5	115	3	13	9	8	48	11	212
07-Jun	5	6	0	1	0	1	36	0	49
08-Jun	20	134	2	10	11	2	131	15	325
09-Jun	11	37	1	3	5	3	38	3	101
10-Jun	9	46	1	1	6	0	15	2	80
11-Jun	0	21	6	0	4	5	3	3	42
12-Jun	0	10	3	1	4	12	20	3	53
13-Jun	1	18	3	0	6	17	16	4	65
14-Jun	0	10	1	8	0	10	3	1	33
15-Jun	1	9	24	9	2	2	4	0	51
16-Jun	1	9	46	14	8	1	2	1	82
17-Jun	0	1	45	11	25	34	0	1	117
18-Jun	3.	8	29	10	5	24	30	2	111
19-Jun	2	27	22	6	3	15	3	3	81
20-Jun	2	19	4	23	4	21	50	1	124
21-Jun	14	20	16	24	5	17	2	2	100
22-Jun	1	51	8	3	6	46	2	5	122
23-Jun	4	26	24	13	3	32	0	2	104
24-Jun	7	31	35	13	4	90	5	2	187
25-Jun	5	11	67	31	0	35	0	1	150
26-Jun	5	3	23	35	0	20	2	2	90
27-Jun	6	15	22	10	1	28	10	2	94
28-Jun	1	9	12	14	1	44	0	3	84
29-Jun	2	12	26	15	0	33	5	1	94
30-Jun	3	10	31	12	3	35	0	2	96
01-Jul	7	22	93	27	2	46	10	2	209
02-Jul	2	56	16	37	1	64	0	6	182
Total	322	2,612	681	863	188	780	1,739	169	7,354

Table 10. Numbers of fish captured by trap 6 in the Kenai River, May 17 through July 2, 1993.

Date	Numbers of Fsh								
	Sockeye Smolt	Sockeye Fry	Chinook Smolt	Chinook Fry	Coho Smolt	$\begin{gathered} \text { Coho } \\ \text { Fry } \end{gathered}$	$\begin{gathered} \hline \text { Pink } \\ \text { Fry } \end{gathered}$	Other	Total
17-May	0	0	0	0	0	0	4	0	4
18-May	0	0	0	23	0	0	26	0	49
19-May	0	3	0	13	4	2	15	3	37
20-May	0	6	1	12	0	0	22	0	41
21-May	0	1	0	31	1	0	16	2	49
22-May	0	22	0	42	0	5	13	4	82
23-May	1	10	1	27	0	0	18	2	57
24-May	3	0	1	24	1	1	30	2	60
25-May	2	19	0	15	0	9	3	1	48
26-May	12	3	2	53	0	0	45	4	115
27-May	39	39	3	12	1	7	11	4	112
28-May	7	13	8	34	2	0	58	12	122
29-May	3	49	3	21	1	7	34	5	118
30-May	2	27	0	9	4	5	1	2	48
31-May	1	0	1	15	0	4	31	3	52
01-Jun	7	39	1	53	2	2	120	4	224
02-Jun	12	92	4	42	2	5	140	17	297
03-Jun	11	596	7	442	6	25	34	9	1,121
04-Jun	53	272	1	0	1	10	148	4	485
05-Jun	8	270	2	11	1	1	50	1	343
06-Jun	5	176	2	14	0	8	48	6	253
07-Jun	50	148	5	1	5	11	45	8	265
08-Jun	22	100	9	14	3	4	105	7	257
09-Jun	7	60	2	0	2	1	50	3	122
10-Jun	5	103	0	3	2	0	13	0	126
11-Jun	1	25	2	0	8	2	11	3	49
12-Jun	3	13	1	1	7	7	23	1	55
13-Jun	0	17	2	0	3	9	12	4	43
14-Jun	0	30	0	3	5	17	1	2	56
15-Jun	1	8	14	3	4	1	0	4	31
16-Jun	3	16	38	8	0	4	0	2	69
17-Jun	3	23	33	10	12	27	30	1	138
18-Jun	2	6	18	14	4	14	30	4	88
19-Jun	3	39	13	4	5	8	5	4	77
20-Jun	2	31	1	32	2	11	30	4	109
21-Jun	19	13	0	29	1	14	11	2	87
22-Jun	2	55	9	7	1	38	3	.	115
23-Jun	11	46	11	24	2	59	5	$\dot{0}$	158
24-Jun	4	25	39	22	4	98	0	4	192
25-Jun	7	16	54	34	1	53	10	3	175
26-Jun	7	14	12	50	0	2	0	0	85
27-Jun	10	49	22	30	0	10	0	3	121
28-Jun	4	14	10	19	0	25	5	1	77
29-Jun	4	25	7	25	1	49	0	2	111
30-Jun	6	31	14	14	0	80	1	2	146
01-Jul	3	42	31	34	3	62	10	5	185
02-Jul	3	64	13	30	1	70	0	4	181
Total	348	2,650	397	1,304	102	767	1,267	168	6,835

Table 11. Dyed Kenai River sockeye salmon smolt releases and recaptures by date, 1993.

Date	Number of Fish Dyed	Numbers of Dyed Fish Reieased	Capture to Release Survival ${ }^{\text {a }}$	Number of Dyed Fish Recovered	Trap Efficiency
02-Jun	313	291	0.930	0	
03-Jun	179	162	0.905	0	
04-Jun	678	632	0.932	4	
05-Jun	112	107	0.955	0	
06-Jun	137	124	0.905	0	
07-Jun	446	402	0.901	2	
08-Jun	223	216	0.969	0	
Total		1934	0.926	6	0.003

${ }^{\text {a }}$ Number of dyed fish released/Number of dyed fish.

Table 12. Results of sockeye salmon smolt dye tests conducted on the Kenai River, 1989-1993.

Date	Number of Fish Dyed	Number of Dyed Fish Recovered	Trap Efficiency
1989 total	12,599	86	0.007
1990 period 1	2,793	21	0.008
1990 period $2-4$	8,409	109	0.013
1991 total	1,923	19	0.010
1992 total	926	19	0.021
1993 total	1,934	6	0.003

Table 13. Estimated daily sockeye salmon smolt seaward migation from the Kenai River, 1993.

Date	Daily Sockeye Smolt Trap Catch	Estimate of Sockeye Smoit Migration ${ }^{2}$				
		Daily	Cumulative	Age-0.	Age-1.	Age-2.
17-May	1	152	152	0	118	34
18-May	4	608	760	0	471	137
19-May	2	304	1,064	0	235	68
20-May	3	456	1.519	0	353	103
21-May	3	456	1,975	0	353	103
22-May	0	0	1,975	0	0	0
23-May	6	912	2,887	0	706	205
24-May	14	2,127	5,014	0	1,648	479
25-May	11	1,671	6,685	0	1,295	376
26-May	38	5,773	12,458	0	4,473	1,300
27-May	74	11,243	23,701	0	8,711	2,532
28-May	48	7,293	30,994	0	5,650	1,642
29-May	10	1,519	32.513	0	1,177	342
30-May	18	2,735	35,248	0	2,119	616
31-May	62	9,420	44,668	0	7,299	2,121
01-Jun	370	56,215	100,883	0	55,525	690
02-Jun	255	38,743	139,625	0	38,267	475
03-Jun	138	20.967	160,592	0	20,709	257
04-Jun	473	71,864	232,455	0	70,982	882
05-Jun	87	13,218	245,673	0	13,056	162
06-Jun	126	19,143	264,817	0	18,908	235
07-Jun	376	57,126	321,943	0	56,425	701
08-Jun	178	27,044	348,987	0	26,712	332
09-Jun	66	10,027	399,014	0	9,904	123
10-Jun	21	3,191	362,205	0	3,151	39
11-Jun	14	2,127	364,332	0	2,101	26
12-Jun	15	2,279	366,611	0	2,251	28
13-Jun	2	304	366,915	0	300	4
14-Jun	4	608	367,522	0	600	7
15-Jun	4	608	368,130	0	600	7
16-Jun	4	608	368,738	281	326	0
17-Jun	8	1,215	369,953	563	653	0
18-Jun	11	1,671	371,625	774	898	0
19-Jun	17	2,583	374,207	1,196	1,387	0
20-Jun	3	456	374,663	211	245	0
21-Jun	20	3,039	377,702	1,407	1,632	0
22-Jun	44	6,685	384,387	3,095	3,590	0
23-Jun	28	4,254	388,641	1,969	2,285	0
24-Jun	48	7,293	395,934	2,094	5,152	47
25-Jun	59	8,964	404,898	2,574	6,333	58
26-Jun	125	18.991	423,889	5,452	13,417	123
27-Jun	45	6,837	430,726	1,963	4,830	44
28-Jun	44	6,685	437,411	1,919	4,723	43
29-Jun	56	8,508	445,919	3,135	5,346	28
30-Jun	54	8,204	454,123	3,023	5,155	27
01-Jul	49	7,445	461,568	2,743	4,677	24
O2-Jul	31	4,710	466,278	1,735	2,959	15
03-Jul	125	18,991	485,269	6,997	11,932	62
04-Jul	b					
05-Jul	6	912	486,181	336	573	3
Total	3,200	486,181		41,465	430,213	14.503

[^5]Table 14．Oumulative proportion of sockeye salmon smok seaward migration by day，1989－1993．

Date	Age－1．					Age－2．				
	1989	1990	1991	1992	1993	1989	1990	1991	1992	1993
15－May		0.000					0.000			
16－May	0.002	0.000	0.000	0.000		0.002	0.000	0.001	0.000	
17－May	0.003	0.000	0.000	0.000	0.000	0.003	0.001	0.002	0.000	0.002
18－May	0.004	0.004	0.000	0.000	0.001	0.004	0.007	0.002	0.000	0.012
19－May	0.006	0.008	0.000	0.000	0.002	0.006	0.015	0.002	0.000	0.017
20－May	0.008	0.036	0.000	0.000	0.003	0.008	0.067	0.004	0.000	0.024
21－May	0.010	0.078	0.000	0.000	0.004	0.010	数等等炧	0.007	0.000	0.031
22－May	0.015	0.101	0.000	0.000	0.004	0.015	0.190	0.015	0.000	0.031
23－May	0.024	\％\％絞新	0.003	0.000	0.005	0.024	0.197		0.000	0.045
24－May	0.031	0.106	0.005	0.000	0.009	0.031			0.000	0.078
25－May	0.038	0.112	0.007	0.001	0.012	0.038	0.217		0.001	
26－May	0.042	0.169	0.010	0.001	0.022	0.042			0.001	0.193
27－May	0.059	0.197	0.011	0.001	0.043	0.059			0.001	
28－May	0.072	\％ 8 \％ 214	0.015	0.001	0.056	0.072	0.490	0.550	0.002	
29－May	0.082	0.216	0.027	0.002	0.059	0.082		0.583	0.002	\％
30－May	0.096	0.282	0.041	0.002	0.063	0.096	0.574		0.003	0.547
31－May	413 4 \％		0.055	0.004	0.080			0.664	0.004	\％
01－Jun	0.185	0.373	0.063	0.004		0.185	0.672	0.687	0.004	
02－Jun	＋124＊＊	0.391	0.089	0.007	0.298		0.691		0.007	0.774
03－Jun	0.229			0.009		0.229		0.797	0.010	0.792
04－Jun	0.292	\％\％\％	0.113	0.026		0.292	0.781		0.028	
05－Jun	\％ 1.414		0.126	0.036	0.542			0.865	0.039	0.864
06－Jun	\％ 98.9	0.793	0.133	0.079	0.586		0.895	0.887	0.086	0.880
07－Jun	\％$\%$ \＆ $8 *$	\％\％	0.155	0.099				0.898		
08－Jun	0.831	\％ 9 a 48	0.179		0.779	0.831	0.958		0.117	0.951
09－Jun	0.851	0.979	0.198	0.135		0.851	0.989	0.919	0.147	0.960
10－Jun	0.865	0.983		0.155	0.809	0.865	0.992	0.933	0.169	0.962
11－Jun	0.871	0.986	0.245		0.814	0.871	0.993	0.943		0.964
12－Jun	0.881	0.988	0.277	0.272	0.820	0.881	0.994	0.950	䋱从約緒	0.966
13－Jun	0.888	0.989			0.820	0.888	0.995	0.962		0.966
14－Jun		0.990	0.366	0.352	0.822		0.995	0.970		0.967
15－Jun	0.9 .1	0.991	0.392		0.823	0.911	0.995	0.976		0.967
16－Jun	0.925	0.993			0.824	0.925	0.996	0.979		0.967
17－Jun	0.934	0.994	0.411		0.825	0.934	0.997	0.980	0.927	0.967
18－Jun	0.937	0.994	0.412	0.773	0.827	0.937	0.997	0.980	0.937	0.967
19－Jun	0.943	0.994	0.438		0.831	0.943	0.997	0.983	0.950	0.967
20－Jun	0.949	0.996		0.892	0.831	0.949	0.998	0.991	0.970	0.967
21－Jun	0.956	0.998			0.835	0.956	0.999	0.998	0.974	0.967
22－Jun	0.960	0.999	烟的絃	0.907	0.843	0.960	0.999	0.998	0.974	0.967
23－Jun	0.977	0.999	0.749	0.918	0.849	0.977	1.000	0.999	0.977	0.967
24－Jun	0.989	0.999	0.766	0.922	0.861	0.989	1.000	0.999	0.978	0.970
25－Jun	0.993	1.000	0.781	0.924	0.875	0.993	1.000	0.999	0.979	0.974
26－Jun	0.997			0.925		0.997		0.999	0.979	0.983
27－Jun	1.000		0.914	0.930	0.918	1.000		1.000	0.981	0.986
28－Jun			0.928	0.961	0.929			1.000	0.989	0.989
29－Jun			0.936	0.976	0.941			1.000	0.993	0.991
30－Jun			0.941	1.000	0.953			1.000	1.000	0.993
01－Jul			0.963		0.964			1.000		0.994
02－Jul			0.964		0.971			1.000		0.995
03－Jul			0.973		0.999			1.000		1.000
04－Jul			0.994		0.999			1.000		1.000
05－Jul			0.994		1.000			1.000		1.000
06－Jul			0.996					1.000		
07－Jul			0.997					1.000		
08－Jul			0.998					1.000		
09－Jul			1.000					1.000		
10－Jul			1.000					1.000		

[^6]Table 15. Summary of Kenai River sockeye salmon smolt age composition, 1989-1993. Data collected at river km 31.

Sample Period	Percent of Seaward Migration				Sample Size
	Age - 0	Age -1.	Age - 2.	Age -3.	
5/15-5/23/90	0.0	31.9	68.1	0.0	756
5/24-5/28/90	0.0	22.8	76.7	0.5	427
5/29-6/2/90	0.0	45.0	54.7	0.3	424
6/3-6/25/90	0.0	63.4	36.6	0.0	1,815
5/16-5/27/91	0.0	113	88.5	0.2	425
5/28-6/6/91	0.0	68.4	31.6	0.0	850
6/7-6/11/91	0.0	92.5	7.5	0.0	425
6/12-6/17/91	0.0	96.5	3.5	0.0	425
6/18-6/21/91	0.0	98.6	1.4	0.0	425
6/22-7/15/91	0.0	99.9	0.1	0.0	1,190
5/16-6/10/92	0.0	16.1	83.9	0.0	348
6/11-6/15/92	0.0	11.0	89.0	0.0	319
6/16-6/30/92	0.0	43.0	57.0	0.0	314
5/17-5/31/93	0.0	77.4	22.6	0.0	262
6/1-6/15/93	0.0	98.8	1.2	0.0	163
6/16-6/23/93	46.3	53.7	0.0	0.0	162
6/24-6/28/93	28.7	70.6	0.6	0.0	310
6/29-7/6/93	36.8	62.8	0.3	0.0	304
Season Summary					
1989	0.0	99.7	0.3	0.0	3,557
1990	0.0	46.7	53.1	0.2	3,422
1991	0.0	86.1	13.9	0.0	3,740
1992	0.0	17.3	82.7	0.0	981
1993	8.5	88.5	3.0	0.0	1,200

Table 16. Sockeye salmon smolt mean length and weight by age class and time strata, 1989-1993. Data collected at river km 31.

Year	Time Period	Age	Length						Weight					
			N	Mean	Min.	Max.	Var.	Stand. Dev.	N	Mean	Min.	Max.	Var.	Stand. Dev.
93	6/1-23	0.	75	51	44	78	25	5	75	1.4	0.9	4.2	0.2	0.5
93	6/24-28	0.	89	52	41	64	18	4	89	1.4	0.7	2.5	0.1	0.4
93	6/29-7/6	0.	112	54	43	74	27	5	112	1.7	0.9	3.9	0.2	0.5
89	5/16-20	1.	413	60	46	80	19	4	413	1.9	0.8	4.3	0.18	0.42
89	5/21-25	1.	338	61	60	72	22	5	338	2.1	1.2	3.3	0.13	0.38
89	5/26-30	1.	421	60	53	77	17	4	421	1.9	1.2	3.8	0.15	0.39
89	5/31-6/04	1.	424	59	49	70	13	4	424	1.8	1.0	3.4	0.13	0.36
89	6/06-09	1.	423	59	46	73	15	4	424	1.8	0.8	3.7	0.15	0.39
89	6/10-14	1.	425	58	49	74	14	4	425	1.8	1.1	3.5	0.12	0.35
89	6/15-6/19	1.	429	58	46	75	17	4	429	1.8	0.2	4.0	0.20	0.45
89	6/20-27	1.	679	60	19	85	19	4	679	2.1	1.0	5.4	0.26	0.51
90	5/15-23	1.	241	65	48	82	30	5	241	2.2	1.0	4.2	0.34	0.59
90	5/24-28	1.	97	63	52	78	25	5	97	2.0	1.0	3.8	0.27	0.52
90	5/29-6/02	1.	191	61	47	90	25	5	191	1.9	0.8	5.3	0.28	0.53
90	6/03-25	1.	1,150	70	52	138	53	7	1,150	3.1	1.0	23.8	2.17	1.47
91	5/23-27	1.	48	73	52	110	92	10	48	3.4	1.8	10.4	2.15	1.47
91	5/28-6/01	1.	292	65	52	89	41	6	292	2.3	1.1	5.5	0.55	0.74
91	6/02-06	1.	289	67	55	100	44	7	289	2.5	1.3	7.4	0.75	0.86
91	6/07-11	1.	393	64	50	79	16	4	393	2.4	1.2	4.8	0.22	0.46
91	6/13-17	1.	410	65	49	84	16	4	410	2.7	1.2	5.9	0.31	0.56
91	6/18-21	1.	419	65	50	79	21	5	419	2.8	1.3	5.6	0.40	0.63
91	6/22-25	1.	340	66	50	84	19	4	340	2.9	1.3	5.6	0.34	0.58
91	6/26-30	1.	424	65	50	75	11	3	424	2.7	1.2	4.3	0.21	0.46
91	7/01-05	1.	425	67	54	80	13	4	425	3.1	1.5	5.9	0.31	0.55
92	6/05-10	1.	56	74	60	90	54	7	28	3.9	2.5	6.3	1.21	1.10
92	6/11-15	1.	35	78	66	95	35	6	17	5.1	3.2	10.7	3.03	1.74
92	6/16-29	1.	135	78	58	130	86	9	97	4.7	1.9	22.0	5.33	2.31
93	5/17-31	1.	203	76	59	124	81	9	145	4.4	2.0	19.7	3.5	1.9
93	6/1-23	1.	248	77	60	93	45	7	248	4.2	1.8	7.4	1.4	1.2
93	6/24-28	1.	219	80	62	90	18	4	219	4.9	2.3	8.2	0.7	0.8
93	6/29-7/6	1.	191	79	65	90	17	4	191	5.0	2.9	6.6	0.4	0.7
90	5/15-23	2.	515	74	62	123	21	5	515	3.2	1.9	13.4	0.55	0.74
90	5/24-28	2.	326	74	61	115	35	6	326	3.2	1.8	8.8	0.68	0.82
90	5/29-6/02	2.	232	74	62	104	43	7	232	3.2	1.2	8.9	1.12	1.06
90	6/03-25	2.	665	75	60	102	28	5	665	3.7	1.8	7.8	0.71	0.84
91	5/23-27	2.	376	80	71	108	29	5	376	4.2	2.8	10.7	1.07	1.03
91	5/28-6/01	2.	133	79	70	101	32	6	133	4.1	3.0	8.9	1.01	1.01
91	6/02-06	2.	136	79	68	110	41	6	136	4.2	2.5	10.1	1.30	1.14
91	6/07-11	2.	32	78	70	91	25	5	32	4.1	2.4	6.3	0.85	0.92
91	6/13-17	2.	15	76	68	86	20	4	15	4.0	3.3	5.2	0.29	0.54
92	6/05-10	2.	292	97	71	117	62	8	151	7.7	3.3	11.2	2.73	1.65
92	6/11-15	2.	284	89	76	110	22	5	156	6.9	4.3	10.4	1.08	1.04
92	6/16-29	2.	179	89	69	111	20	4	134	6.5	3.2	12.0	1.16	1.08
93	5/17-31	2.	59	99	86	115	47	7	33	8.5	6.1	14.0	3.6	1.9

Table 17. Comparison of trap efficiency by length for Moose River coho salmon, 1993.

${ }_{a}$ We assumed that the length frequency distribution of coho smolt sampled at the weir were representative of all iagged smolt.
b Trap efficiency of the km 31 traps for moose river tagged coho smolt. Defined as the trap catch divided by the estimated total number of smolt tagged at the weir.

Table 18. River characteristics measured daily at the Kenai River km 31 smolt enumeration site, 1993.

Date	Leve!		Turbidity		Temp. (${ }^{\circ} \mathrm{C}$)	Trap 1	Trap 2	Velocity (fps) Trap 3 Trap 4		Trap 5	Trap 6
	Reading (cm)	Change (cm)	Reading (cm)	Change (cm)							
17-May	3	-	76		7						
18-May	6	3	76	0	8						
19-May	9	1	81	5	8	3.1	3.4	3.4	3.5	3.3	3.8
20-May	10	5	84	3	8						
21-May	15	9	81	-3	8						
22-May	24	2	71	-10	10						
23-May	26	4	66	-5	8	3.8	3.8	3.9	3.8	3.7	3.8
24-May	30	3	61	-5	8						
25-May	34	6	61	0	10						
26-May	40	0	56	-5	8	3.2	3.8	3.8	4.0	4.2	3.0
27-May	40	3	61	5	7						
28-May	43	0	99	38	8						
29-May	43	6	135	36	10						
30-May	49	1	102	-33	10						
31-May	49	5	107	5	11						
01-Jun	55	6	94	-13	7						
02-Jun	61	6	64	-30	9						
03-Jun	67	12	81	18	10						
04-Jun	79	12	66	-15	12	3.8	4.1	4.0	3.9	3.8	3.8
05-Jun	91	12	89	23	9						
06-Jun	104	-21	84	-5	13						
07-Jun	82	0	86	3	9						
08-Jun	82	-3	107	20	8						
09-Jun	79	-3	119	13	9						
10-Jun	76	3	132	13	9						
11-Jun	79	-3	130	-3	8						
12-Jun	76	3	137	8	8						
13-Jun	79	-3	135	-3	9						
14-Jun	76	0	140	5	9						
15-Jun	76	-3	137	-3	8						
16-Jun	73	-3	137	0	8						
17-Jun	70	3	140	3	8						
18-Jun	73	0	152	13	9						
19-Jun	73	0	157	5	11						
20-Jun	73	3	157	0	13						
21-Jun	76	-3	135	-23	12						
22-Jun	73	6	135	0	13						
23-Jun	79	3	147	13	11						
24-Jun	82	-3	91	-56	10						
25-Jun	79	0	102	10	12						
26-Jun	79	0	112	10	13						
27-Jun	79	0	112	0	13						
28-Jun	79	3	91	-20	13						
29-Jun	82	3	107	15	12						
30-Jun	85	0	122	15	12						
01-Jul	85	0	107	-15	12						
02-Jul	85	1	107	0	12						
03-Jul	86	1	91	-15	12						
04-Jul	87	2	91	0	10						
05-Jul	88	2	81	-10	10						
06-Jul	90	2	99	18	13						

Table 19. Sockeye salmon adult excapement and smolt production in the Kenai River, 1986-1993.

$\begin{aligned} & \text { Brood } \\ & \text { Year } \end{aligned}$	Total Spawning Escapement	Number of Smolt Produced				Smolt per Spawner
		Age-1.	Age - 2 .	Age -3.	Total	
1986	422.000	a	$115,000^{6}$	16.000		
1987	1,408,000	24,416.000 ${ }^{\text {b }}$	$5,807,000^{\text {b }}$	1,000	30,224.000	21.5
1988	910.000	$5,249.000{ }^{\text {b }}$	$431,000^{\text {b }}$	0	5,680,000	6.2
1989	1,379,000	2,776,000 ${ }^{\text {b }}$	$312.000^{\text {c }}$	0	3,088,000	2.2
1990	519.000	$253,000^{\text {c }}$	$36.000^{\text {c }}$	d	289.000	0.0
1991	431,000	$797.000^{\text {c }}$	d			
1992	807.000					
1993	697,000					

a No data collected.
b Includes Hidden Lake migration not thought to be captured by the km 31 inclined plane traps.
c Includes Hidden Lake (Fandrei 1993) and Moose River migration not thought to be captured by the km 31 inclined plane traps.
d Migrate as smolt in 1994.

Table 21. Results of sockeye salmon smolt dye experiments in the Russian River, 1993.

Period(s)	Date(s)	Number of Fish Dyed	Number of Dyed Fish Recovered	Trap Efficiency	Calculated Chi Square Value	Table Chi Square Value	Rejea Hypothesis? ${ }^{2}$
	5/26	89	1				
	5/28	100	10				
	5/29	100	0				
	6/1	95	1				
	$6 / 2$	111	10				
	$6 / 3$	110	6				
	6/5	61	5				
	6/6	189	5				
	6/8	44	1				
	6/10	31	2				
	$6 / 27$	201	16				
	7/1	363	,				
	$7 / 3$	397	7				
	7/4	225	44				
	77	250	24				
	78	250	31				
	7/10	275	24				-
	7/11	258	32				
	7/14	112	23				
	7/15	123	20				
1	5/18-6/2	495	22	0.044			
2	6/3-6/29	636	35	0.055			
3	$6 / 30-7 / 3$	760	8	0.011			
4	7/4-7/7	475	68	0.143			
5	78-7/10	525	55	0.105			
6	7/11-7/15	493	75	0.152			
1-6	5/18-7/15				112.29	11.07	yes
1-2	5/18-6/29				0.59	3.84	no
1-3	$5 / 18-7 / 3$				21.33	5.99	yes
3-4	$6 / 30-7 / 3$				76.78	3.84	yes
4-6	7/4-7/15				4.36	5.99	по
1-2	5/18-6/29		57	0.050			
3	6/30-7/3	760	8	0.011			
4-6	7/4-7/15	1493	198	0.133			

${ }^{2}$ Hypothesis: Trap efficiency was independant of dye date; reject at alpha $=0.05$.

Figure 1. Location of the Kenai River and other noted rivers and lakes in Upper Cook Inlet, Alaska.

Figure 3. Cross section, Kenai River km 31 sockeye salmon smolt enumeration project site.

APPENDIX B

Year	Time Period	Age	Length						Weight					
			N	Mean	Min	Max	Var.	Stand. Dev.	N	Mean	Min	Max	Var.	Stand. Dev.
93	6/16-23	0	75	51	44	78	25	5	75	1.4	0.9	4.2	0.2	0.5
93	6/24-28	0	89	52	41	64	19	4	89	1.4	0.7	2.5	0.1	0.4
93	6/29-7/6	0	112	54	43	74	27	5	112	1.7	0.9	3.9	0.2	0.5
94	5/17-21	0	6	45	43	48	3	2	1					
94	527-31	0	9	49	44	59	18	4	5	1.0	0.9	1.3	0.0	0.1
89	5/16-20	1	413	60	46	80	19	4	413	1.9	0.8	4.3	0.18	0.42
89	5/21-25	1	338	61	60	72	22	5	338	2.1	1.2	3.3	0.13	0.38
89	526-30	1	421	60	53	77	17	4	421	1.9	1.2	3.8	0.15	0.39
89	5/31-04	1	424	59	49	70	13	4	424	1.8	1.0	3.4	0.13	0.36
89	6106-09	1	423	59	46	73	15	4	424	1.8	0.8	3.7	0.15	0.39
89	6/10-14	1	425	58	49	74	14	4	425	1.8	1.1	3.5	0.12	0.35
89	6/15-19	1	429	58	46	75	17	4	429	1.8	0.2	4.0	0.20	0.45
89	620-27	1	679	60	19	85	19	4	679	2.1	1.0	5.4	0.26	0.51
90	5/15-23	1	241	65	48	82	30	5	241	2.2	1.0	4.2	0.34	0.59
90	5/24-28	1	97	63	52	78	25	5	97	2.0	1.0	3.8	0.27	0.52
90	5/29-6/02	1	191	61	47	90	25	5	191	1.9	0.8	5.3	0.28	0.53
90	6,03-25	1	1150	70	52	138	53	7	1150	3.1	1.0	23.8	2.17	1.47
91	5/23-27	1	48	73	52	110	92	10	48	3.4	1.8	10.4	2.15	1.47
91	5/28-6/01	1	292	65	52	89	41	6	292	2.3	1.1	5.5	0.55	0.74
91	602-06	1	289	07	55	100	44	7	289	2.5	1.3	7.4	0.75	0.86
91	607-11	1	393	64	50	79	16	4	393	2.4	1.2	4.8	0.22	0.46
91	6/13-17	1	410	65	49	84	16	4	410	2.7	1.2	5.9	0.31	0.56
91	6/18-21	1	419	65	50	79	21	5	419	2.8	1.3	5.6	0.40	0.63
91	6/22-25	1	340	66	50	84	19	4	340	2.9	1.3	5.6	0.34	0.58
91	626-30	1	424	65	50	75	11	3	424	2.7	1.2	4.3	0.21	0.46
91	701-05	1	425	67	54	80	13	4	425	3.1	1.5	5.9	0.31	0.55
92	605-10	1	56	74	60	90	54	7	28	3.9	2.5	6.3	1.21	1.10
92	6/11-15	1	35	78	66	95	35	6	17	5.1	3.2	10.7	3.03	1.74
92	6/16-29	1	135	78	58	130	86	9	97	4.7	1.9	22.0	5.33	2.31
93	5/17-31	1	203	76	59	124	81	9	145	4.4	2.0	19.7	3.5	1.9
93	001-15	1	161	76	60	93	46	7	161	4.1	1.8	7.1	1.4	1.2
93	6/10-23	1	87	79	65	91	38	6	87	4.5	2.2	7.4	1.2	1.1
93	624-28	1	219	80	62	90	18	4	219	4.9	2.3	8.2	0.7	0.8
93	6/29-7/06	1	191	79	65	90	17	4	191	5.0	2.9	6.6	0.4	0.7
94	5/17-21	1	261	63	45	81	36	6	104	2.2	0.7	3.5	0.3	0.5
94	522-26	1	292	61	50	75	15	4	144	1.9	1.1	3.0	0.1	0.3
94	527-31	1	258	61	48	77	23	5	79	2.1	0.8	5.1	0.4	0.6
94	601-05	1	280	64	53	96	21	5	96	2.3	1.5	7.3	0.4	0.6
94	6/06-10	1	292	64	50	76	17	4	93	2.3	1.4	3.4	0.2	0.4
94	0/11-15	1	300	65	55	76	12	3	100	2.6	1.8	3.2	0.1	0.4
94	6/16-20	1	297	65	S0	126	47	7	99	2.7	1.4	19.3	2.9	1.7
94	621-25	1	296	66	52	76	12	3	99	2.7	1.6	4.1	0.2	0.5
94	626-30	1	275	67	54	79	8	3	100	2.8	1.4	3.7	0.1	0.3
90	5/15-23	2	515	74	62	123	21	5	515	3.2	1.9	13.4	0.55	0.74
90	5/24-28	2	326	74	61	115	35	6	326	3.2	1.8	8.8	0.68	0.82
90	5/29-6/02	2	232	74	62	104	43	7	232	3.2	1.2	8.9	1.12	1.06
90	603-25	2	665	75	60	102	28	5	665	3.7	1.8	7.8	0.71	0.84
91	5/23-27	2	376	80	71	108	29	5	376	4.2	2.8	10.7	1.07	1.03
91	5/28-6/01	2	133	79	70	101	32	6	133	4.1	3.0	8.9	1.01	1.01
91	6,02-06	2	136	79	68	110	41	6	136	4.2	2.5	10.1	1.30	1.14
91	6,07-11	2	32	78	70	91	25	5	32	4.1	2.4	6.3	0.85	0.92
91	6/13-17	2	15	76	68	86	20	4	15	4.0	3.3	5.2	0.99	0.54
92	6.05-10	2	292	97	71	117	62	8	151	7.7	3.3	11.2	2.73	1.65
92	6/11-15	2	284	89	76	110	22	5	156	6.9	4.3	10.4	1.08	1.04
92	6/16-29	2	179	89	69	111	20	4	134	6.5	3.2	12.0	1.16	1.08
93	5/17-31	2	59	99	86	115	47	7	33	8.5	6.1	14.0	3.60	1.90
94	5/17-21	2	56	81	67	90	20	4	24	4.4	2.7	5.6	0.5	0.7
94	5/22-26	2	17	79	65	87	31	6	7	3.8	2.1	5.5	1.1	1.0
94	527-31	2	33	78	67	84	14	4	17	4.0	2.7	5.1	0.3	0.6
94	601-05	2	20	80	71	99	46	7	4					

FILENAME: A WLHIST. WK3

Figure . Mean lengths and 95% confidence bounds for age-1. sockeye salmon smolt sampled at the Kenai River km 31 smolt enumeration site, 1989-1994.

Figure . Mean lengths and 95% confidence bounds for age-2. sockeye salmon smolt sampled at the Kenai River km 31 smolt enumeration site, 1989-1994.

igure . Mean weights and 95% confidence bounds for age-1. sockeye salmon smolt sampled at the Kenai River km 31 smolt enumeration site, 1989-1994.

Figure . Mean weights and 95% confidence bounds for age-2. sockeye salmon smolt sampled at the Kenai River km 31 smolt enumeration site, 1990-1994.

Table. Sockeye salmon smolt mean length and weight by age class and time strata, 1994. Data collected at river km 31.

				Length					Weight Stand					
Year	Time Period	Age	N	Mean	Min.		Var.	Stand. Dev.	N	Mean		Max.	Var.	Stand. Dev.
94	5/17-21	1	261	63	45	81	36	6	104	2.2	0.7	3.5	0.3	0.5
94	5/22-26	1	292	61	50	75	15	4	144	1.9	1.1	3.0	0.1	0.3
94	5/27-31	1	258	61	48	77	23	5	79	2.1	0.8	5.1	0.4	0.6
94	6/01-05	1	280	64	53	96	21	5	96	2.3	1.5	7.3	0.4	0.6
94	6/06-10	1	292	64	50	76	17	4	93	2.3	1.4	3.4	0.2	0.4
94	6/11-15	1	300	65	55	76	12	3	100	2.6	1.8	3.2	0.1	0.4
94	6/16-20	1	297	65	50	126	47	7	99	2.7	1.4	19.3	2.9	1.7
94	6/21-25	1	296	66	52	76	12	3	99	2.7	1.6	4.1	0.2	0.5
94	6/26-30	1	275	67	54	79	8	3	100	2.8	1.4	3.7	0.1	0.3
94	5/17-21	2	56	81	67	90	20	4	24	4.4	2.7	5.6	0.5	0.7
94	5/22-26	2	17	79	65	87	31	6	7	3.8	2.1	5.5	1.1	1.0
94	5/27-31	2	33	78	67	84	14	4	17	4.0	2.7	5.1	0.3	0.6
94	6/01-05	2	20	80	71	99	46	7	4					

Table. Numbers of fish captured by smolt traps at the Kenai River km 31 site, May 12 through June $30,1994$.

May 12-trap 6 too shallow to fish.
May 13 - trap 3 lost fish when funnel cable failed.
May 25 -trap 4 lost fish when livebox flooded.
June 24-trap 6 did not fish due to breakdown.
filename: SPTRPALL.WK3
B-8

Table . Estimated Russian River sockeye salmon smolt seaward migration, 1994.

File name: RRDAYEST XLS

Figure . Estimated daily sockeye salmon smolt migration from the Russian river, 1994.

		Time Period		Length						Weight					
			Age	N	Mean	Min.	Max.	Var.	Stand. Dev.	N	Mean	Min.	Max.	Var.	Stand Dev.
	Year														
	1993	May 18-27	1	122	83	57	92	29	5	84	4.7	2.0	6.7	0.7	0.8
	1993	May 28-Jun 2	1	157	81	62	95	39	6	133	4.5	2.3	6.8	0.7	0.8
	1993	Jun 3-23	1	197	84	65	99	31	6	189	5.5	2.2	8.7	0.9	0.9
	1993	June 24-30	1	458	80	65	98	15	4	294	5.8	3.1	10.4	0.7	0.8
	1993	Jul 1-15	1	871	80	69	100	14	4	711	5.8	3.8	10.7	0.8	0.8
	1994	May 11-13	1	1						1					
	1994	May 18	1	3						3					
	1984	May 22 \& 28	1	3						3					
	1984	May 28 \& 29	1	12	82	74	97	40	6	12	4.6	3.2	6.9	1.0	1.0
	1994	June 2-3	1	29	78	67	92	59	8	29	4.4	2.5	7.4	1.6	1.3
	1894	June 5-6	1	24	82	69	98	47	7	24	4.7	2.7	5.9	0.8	0.9
	1984	June 9, 10,12	1	28	89	75	97	21	5	28	6.1	3.8	8.1	0.8	0.9
	1994	June 18-19	1	80	86	72	98	23	5	80	6.3	3.9	8.4	0.8	0.9
	1984	June 25, 26, 28	1	182	85	74	100	16	4	182	6.2	3.9	9.4	0.6	0.8
	1994	Juty 2-3	1	260	85	73	122	18	4	260	6.1	3.5	13.7	0.7	0.9
$\frac{1}{1}$	1895														
N	1995														
	1993	May 18-27	2	253	97	75	117	67	8	193	7.6	3.1	12.9	3.0	1.7
	1993	May 28-Jun 2	2	208	91	78	108	36	6	192	6.4	4.2	11.0	1.4	1.2
	1993	Jun 3-23	2	132	93	80	130	48	7	123	7.1	3.6	20.1	3.2	1.8
	1993	June 24-30	2	14											
	1993	Jul 1-15	2	6											
	1994	May 11-13	2	285	111	90	125	34	6	285	11.6	6.2	17.0	3.1	1.8
	1994	May 18	2	297	103	80	117	47	7	297	9.2	4.5	14.1	3.1	1.7
	1994	May 22 \& 28	2	295	100	75	115	55	7	295	8.4	3.8	13.4	3.3	1.8
	1994	May 28 \& 29	2	285	96	71	115	64	8	285	7.5	3.8	12.5	2.8	1.7
	1994	June 2-3	2	267	90	71	114	62	8	267	6.6	2.9	12.4	2.4	1.6
	1994	June 5-6	2	272	93	77	115	50	7	272	6.9	3.9	12.6	2.5	1.6
	1994	June 9, 10,12	2	269	96	79	118	34	6	269	7.4	4.3	14.1	1.7	1.3
	1994	June 18-19	2	218	90	79	101	18	4	218	7.1	5.0	10.3	0.8	0.9
	1994	June 25, 26, 28	2	115	91	80	102	20	4	115	7.5	5.0	10.7	1.0	1.0
	1994	July 2-3	2	37	89	80	97	15	4	37	6.9	5.4	9.3	0.8	0.9
	$\begin{aligned} & 1995 \\ & 1995 \end{aligned}$														

Period		1	2	3	4	5	6	7	8	9	10
Date		May 11-13	May 18	May 22 \& 28	May 28 \& 29	June 2 \& 3	June 5 \& 6	June 91012	June 18-19	June 252628	July 2 \& 3
AGE 0	$N=$	0	0	0	1	0	0	0	0	0	0
	Percent	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000
AGE 1	$N=$	1	3	3	12	29	24	28	80	182	260
	Percent	0.003	0.010	0.010	0.040	0.097	0.081	0.093	0.268	0.613	0.875
AGE 2	$\mathrm{N}=$	285	297	295	285	267	272	269	218	115	37
	Percent	0.950	0.990	0.990	0.953	0.896	0.919	0.897	0.732	0.387	0.125
AGE 3	$N=$	14	0	0	1	2	0	3	0	0	0
	Percent	0.047	0.000	0.000	0.003	0.007	0.000	0.010	0.000	0.000	0.000
		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
total		300	300	298	299	298	296	300	298	297	297

Figure 5. Daily numbers of sockeye salmon smolt, all ages (top) and by age class (bottom), migrating seaward from the Kenai River, 1993.

Figure 7. Mean weights and 95% confidence bounds for age-1. and -2 . sockeye salmon sampled at the Kenai River km 31 smolt enumeration site, 1989-1993.

Figure 9. Length frequency distribution of age-1 (bottom) and -2 (top) sockeye salmon smolt from theKenai River drainage, 1993. Estimated numbers of smolt from weirs (Hidden Creek and Moose River), and dye studies (km 3 land Russian River).

Figure 11. Daily Kenai River discharge, 1989-1993.

The Alaska Department of Fish and Game conducts all programs and activities free from discrimination on the basis of sex, color, race, religion, national origin, age, marital status, pregnancy, parenthood or disability. For information on alternative formats available for this and other Department publications, please contact the Department ADA Coordinator at (voice) 907-465-4120, (TDD) 1-800-478-3648, or (fax) 907-586-6596. Any personal who believes she has been discriminated against should write to: ADF\&G, P.O. Box 25526, Juneau, AK. 99802-5526; or O.E.O., U.S. Department of the Interior, Washington, DC 20240.

APPENDIX C

An Estimate of Juvenile Fish Desitites in Skilak and Kenai Lakes, Alaska through the Use of Dual-Beam Hydroacoustic Techniques in 1993-1994 by Kenneth E. Tarbox and Linda K. Brannian

Kenneth E. Tarbox

and

Linda K. Brannian

Regional Information Report ${ }^{1}$ No. 2A95-31

Alaska Department of Fish and Game Commercial Fisheries Management and Development Division 333 Raspberry Road Anchorage, Alaska 99518

August 1995

[^7]
AUTHORS

Kenneth E. Tarbox is the Research Project Leader for the Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Region II, Upper Cook Inlet, 34828 Kalifornsky Beach Road, Suite B, Soldotna, AK 99669.

Linda K. Brannian is the Regional Biometrician for the Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Region II, 333 Raspberry Road, Anchorage, AK 99518.

ACKNOWLEDGMENTS

The authors would like to thank Dave Waltemyer, Morris Lambdin, Randall Davis, Dave Westerman, Dennis Beliveau, Jim Cofske, and Jennifer Brannen for assisting during the field operations. Special thanks go to Sandi Seagren for helping prepare the report. Finally, recognition is due to Joe Sullivan, Steve Fried, and John Hilsinger for supporting the project through budget and scheduling decisions.

TABLE OF CONTENTS

Page
LIST OF TABLES iii
LIST OF FIGURES v
LIST OF APPENDICES vii
ABSTRACT viii
INTRODUCTION 1
METHODS 1
RESULTS 6
May 1993 Hydroacoustic and Tow Net Surveys 6
September/October 1993 Night Hydroacoustic and Day Tow Net Surveys 6
November 1993 Night Hydroacoustic and Day Tow Net Survey 7
April 1994 Hydroacoustic and Tow Net Surveys 8
September/October 1994 Night Hydroacoustic and Day Tow Net Survey 8
DISCUSSION 9
LITERATURE CITED 11
TABLES 13
FIGURES 30
APPENDIX 46

LIST OF TABLES

Table Page

1. Estimated number of fish in Skilak Lake, Alaska, on 5 May 1993 13
2. Areas, volume and fish estimates (\%) in Skilak Lake, Alaska, day survey, 5 May 1993 14
3. Estimated number of fish available to the hydroacoustic techniques in Skilak Lake, Alaska, 8 May 1993 15
4. Estimated number of fish in Skilak and Kenai Lakes, Alaska, in September 1993 16
5. Areas, volume and fish estimates (\%) in Kenai and Skilak Lakes, Alaska, night survey, September/October 1993 17
6. Estimated contribution of age-0 and age-1 sockeye salmon to the total fish population in Kenai and Skilak Lakes, Alaska, night survey, September/ October 1993 18
7. Kenai Peninsula lakes' fall fry sockeye mean fork length and weight data 19
8. Estimated number of fish in Skilak Lake, Alaska, on 16 November 1993 20
9. Areas, volume and fish estimates (\%) in Skilak Lake, Alaska, night survey, November 1993 21
10. Estimated contribution of age-0 and age-1 sockeye salmon to the total fish population in Skilak Lake, Alaska, night survey, November 1993 22
11. Estimated number of fish in Skilak Lake, Alaska, day survey, 25 April 1994 23
12. Areas, volume and fish estimates (\%) in Skilak Lake, Alaska, day survey, 25 April 1994 24
Table Page
13. Estimated number of fish in Skilak Lake, Area 1, Alaska, 29 April 1994 25
14. Estimated contribution of age-1 and age-2 sockeye salmon to the total fish population in Skilak Lake, Area 1, Alaska, night survey, 29 April 1994 26
15. Estimated number of fish in Skilak and Kenai Lakes, Alaska, September 1994 27
16. Areas, volume and fish estimates (\%) in Kenai and Skilak Lakes, Alaska, night survey, September/ October 1994 28
17. Estimated contribution of age-0 and age-1 sockeye salmon to the total fish population in Kenai and Skilak Lakes, Alaska, night survey, September/ October 1994 29

LIST OF FIGURES

Figure Page

1. Map of the Kenai River drainage 30
2. Hydroacoustic transects conducted in Skilak Lake, Alaska, on 5 May 1993 31
3. Hydroacoustic transects conducted in Skilak Lake, Alaska, on 8 May 1993. (Note: a single transect was repeated 16 times) 32
4. Hydroacoustic transects conducted in Skilak Lake, Alaska, on 26 September 1993 33
5. Hydroacoustic transects conducted in Kenai Lake, Alaska, on 4 October 1993 34
6. Hydroacoustic transects conducted in Skilak Lake, Alaska, on 16 \& 18 November 1993 35
7. Hydroacoustic transects conducted in Kenai Lake, Alaska, on 7 October 1994 36
8. Hydroacoustic transects conducted in Skilak Lake, Alaska, on 27 September 1994 37
9. Density of fish in Skilak Lake, Area 1, during a day survey on 5 May 1993 38
10. Density of fish in Skilak Lake, Areas 2 and 3, during a day survey on 5 May 1993 39
11. Density of fish in Skilak Lake, Area 1, runs 1-8, during diel studies conducted on 8 May 1993 40
12. Density of fish in Skilak Lake, Area 1, runs
9-16, during diel studies conducted on 8 May 1993 41
13. Fish target strength measured in Skilak Lake, Alaska, in September 1986-1994 42

LIST OF FIGURES (continued)

Figure Page
14. Relative distribution of juvenile sockeye in the Kenai River system, Alaska, 1986-1994 43
15. Relationship between the number of age-0 sockeye salmon fall fry in Kenai and Skilak Lakes and potential egg deposition by mainstem spawners. Values listed indicate brood year of the eggs and fry. Vertical bars are standard errors of estimated fry abundances 44

LIST OF APPENDICES

Page
A.1. Calibration and processing parameters used in collection and analysis of Kenai and Skilak Lake, Alaska, hydroacoustic data, 1993-1994 46
A.2. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 5 May 1993 47
A.3. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 8 May 1993 48
A.4. Average backscattering cross section (sigma) and target strength data by depth strata for Kenai Lake, Alaska, 4 October 1993 49
A.5. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 26 September 1993 50
A.6. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 16 November 1993 51
A.7. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 25 April 1994 52
A.8. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 29 April 1994 53
A.9. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 27 September 1994 54
A.10.Average backscattering cross section (sigma) and target strength data by depth strata for Kenai Lake, Alaska, 7 October 1994 55

Abstract

The number and distribution of sockeye salmon Onchorhynchus nerka rearing in two glacial lakes of the Kenai River drainage was estimated in 1993 and 1994 from hydroacoustic surveys. Using dual-beam acoustic techniques, mean in situ target strength ranged from -54.1 dB to -58.4 dB . Densities of fish estimated in May 1993 suggested a significant over-winter mortality of age-0 sockeye salmon. Surviving fish were concentrated at $20-40 \mathrm{~m}$ in May and showed indications of moving toward the surface with increasing darkness. In October 1993 the number of age-0 sockeye salmon in Kenai and Skilak Lakes was estimated at $35,687,400$. In November 1993, the number of age-0 sockeye salmon in Skilak Lake was estimated at 27,608,400. By April 1994 a minimum of $15,375,800$ age- 0 sockeye salmon had survived the winter in Skilak Lake. In September/October 1994 a total of $12,441,900$ sockeye were estimated in Kenai/Skilak Lakes. Age-0 sockeye salmon numbered 11,159,500 and age-1 were estimated at 1,282,500 fish. Age-0 sockeye salmon mean length and weight were measured for all sample periods. A linear relationship between potential egg deposition and fall fry numbers remained during this period though the residual for the 1992 brood year was one of the largest.

KEY WORDS: hydroacoustic survey, sockeye salmon, target strength, glacial lake, Alaska, Onchorhynchus nerka

INTRODUCTION

The Alaska Department of Fish and Game (ADF\&G) began investigations in 1972 to assess juvenile sockeye salmon Onchorhynchus nerka populations rearing in the major lakes of the Kenai River drainage (Figure 1; Davis et al. 1973). As part of these investigations, juvenile sockeye salmon were collected from Skilak and Kenai Lakes using tow nets to estimate relative abundance, age structure, and growth (Davis et al. 1974; Namtvedt and Friese 1976). However, the inefficiency of tow netting restricted the usefulness of these data for abundance estimates (Waltemyer 1981). Therefore, in 1986 ADF\&G began developing new methods to enumerate fry using hydroacoustic equipment (Tarbox and King 1988a, 1988b).

Annual fall hydroacoustic surveys have been conducted in Kenai and Skilak Lakes since 1986 to develop a time series of juvenile sockeye salmon population estimates. Program objectives for the 1993-94 field investigation were to (1) estimate the number and spatial distribution of sockeye salmon juveniles, (2) determine the target strength distributions using dual-beam hydroacoustic techniques, (3) document the condition of juvenile sockeye salmon using length and weight measurements, and (4) estimate the age composition of sockeye salmon in each lake.

Since the initiation of the project in 1986 the standard procedure for estimating juvenile sockeye salmon abundance in Kenai and Skilak Lakes has been to conduct night-time hydroacoustic surveys during September or October. While this procedure was followed in 1993-94, we also conducted hydroacoustic work in Skilak Lake during May and November 1993 and April 1994. The objective of these supplemental studies was to define the depth distribution of rearing sockeye salmon in spring and fall and to assess survival of rearing sockeye salmon during the fall to winter transition period. In addition, we conducted an extensive tow netting program in 1993-94 to assess potential bias in the age composition allocation. This information is reported in a separate document.

METHODS

The equipment used for data acquisition consisted of a Biosonics Inc. Model 105^{1} echo sounder with dual-beam receivers, a $420 \mathrm{kHz} 6^{\circ} / 5^{\circ}$ dual beam transducer mounted in a V -fin for towing, a Model 171 tape recorder interface, a Sony ${ }^{1}$ digital audio tape (DAT) player, a chart recorder, and an oscilloscope. The selected pulse width was 0.4 ms and the pulse repetition rate was 5 pulses/s. Additional acoustic parameters used during data collection and processing are presented in Appendix A.1. Biosonics, Inc. calibrated the system before and following the surveys. The entire system was powered by $12-\mathrm{V}$ batteries and carried in a $7.2-\mathrm{m}$ vessel powered by outboard motors. Vessel speed along each transect was estimated at 2.0 to $2.5 \mathrm{~m} / \mathrm{s}$. The transducer was

[^8]towed approximately 1 m below the water surface during surveys. Equipment procedures were outlined in King and Tarbox (1988).

Dual-beam data recorded on DAT were processed through a Biosonics, Inc. Model 281 Echo Signal Processor ${ }^{1}$ (ESP). A returning pulse was accepted as a valid target if the amplitude was below the bottom threshold of 7000 mV and above the counting threshold of 200 mV . Single targets were separated from multiple targets if the pulse width was within 20% of the transmitted pulse width at -6 dB and -18 dB . The maximum half-angle selected for data processing was 4°. Data were stratified in $5-\mathrm{m}$ increments for analysis starting 2 m below the transducer, or 3 m below the water surface. Only data collected at range less than 97 m were accepted for processing. Examination of oscilloscope traces and echograms indicated that few fish were present below this depth.

Data generated by the dual beam processor were transferred to computer data files for analysis using the Biosonics, Inc. software "Target Strength Post Processing Program ESPTS." Computations of mean target strength and backscattering cross section were made from individual echoes, and a hard copy of the results was printed for each $5-\mathrm{m}$ depth interval.

Estimates of fish density were made for each transect by echo integration using a Biosonics, Inc. ESP Model 221^{1} echo integrator. Correction from the $40 \log (R)$ setting used during data collection to the $20 \log (\mathrm{R})$ used for data processing was accomplished by adjusting the B constant value for each depth stratum.

The echo integrator compiled data in 1-min sequences along each transect and sent outputs to computer files for further reduction and analysis using the Biosonics, Inc. software "Echo Integration Post Processing Program ESPCRNCH." Raw integrator outputs were edited to remove data that resulted from false bottom echoes. Where this occurred, fish densities were usually estimated using the average densities of adjacent sequences at the same depth. Overall fish density was obtained by calculating the average edited integrator output value across the transect for each depth stratum. These averages were multiplied by the integrator scaling factor derived from the mean backscattering cross-section value obtained from the ESPTS program. Mean backscattering cross section values were calculated for each depth stratum using data from those transects where false bottom did not occur or did not influence the target strength data.

The total number of fish $\left(N_{i j}\right)$ for area stratum i based on transect j was estimated across depth stratum k. It consisted of the number of fish estimated by hydroacoustic gear in the midwater section ($M_{i j}$) plus an estimate of fish unavailable to the hydroacoustic gear because of their location near the surface ($S_{i j}$) or bottom ($B_{i j}$), or

$$
N_{i j}=S_{i j}+M_{i j}+B_{i j} .
$$

The midwater component was estimated as

$$
M_{i j}=\sum_{k=1}^{K} a_{i} w_{i j k} m_{i j k},
$$

where a_{i} represented the surface area $\left(m^{2}\right)$ of area stratum i which was estimated using a planimeter and USGS maps of Skilak and Kenai Lakes, and $w_{i j k}$ was the average depth (5 m) of depth stratum k measured along transect j in area i. This depth would be less than the maximum 5 m if the bottom was detected within depth stratum k anytime along the transect. The mean fish density in area i depth k across transect j was $m_{i j k}$ in number per m^{3}.

The estimated number of fish near the surface $(0-3 \mathrm{~m})$ in area i was

$$
S_{i j}=a_{i s} m_{i j l},
$$

where $a_{i s}$ was the estimated volume $\left(\mathrm{m}^{3}\right)$ of the surface area stratum $(0-3 \mathrm{~m})$, and $m_{\mathrm{ij} 1}$ was the mean fish density for the first ensonified depth strata ($2-7 \mathrm{~m}$ below transducer) of transect j.

The estimated number of fish near the bottom was

$$
B_{i j}=\sum_{k=1}^{K} b_{i j k} m_{i j k},
$$

where $b_{i j k}$ was the estimated volume $\left(\mathrm{m}^{3}\right)$ in area i of depth k that could not be ensonified due to the proximity of the bottom along transect j, and $m_{i j k}$ was the estimated fish density (number per m^{3}) along transect j in area i depth k that was ensonified. In cases where all of depth stratum k was along the bottom, the mean density $m_{i j k-I}$ from the next shallower depth strata $(k-I)$ was used.

The abundance in area $i\left(N_{i}\right)$ became the mean abundance estimated by each transect j, or

$$
N_{i}=J^{-1} \sum_{j=1}^{J} N_{i j},
$$

and its variance was estimated as

$$
V\left(N_{i}\right)=\sum_{j=1}^{J}\left(N_{i j}-N_{i}\right)^{2}(J-1)^{-1} J^{-1}
$$

Total abundance for each lake became the sum of its area estimates. Its variance became the sum of the area variances.

Age-specific estimates of the numbers of juvenile sockeye salmon $\left(\mathrm{N}_{a y i}\right)$ were estimated

$$
N_{a y i}=N_{y i} p_{a y i}
$$

where $p_{\text {avi }}$ was the proportion of fish caught in area $\mathrm{i}\left(\mathrm{n}_{y \mathrm{i}}\right)$ and year y of age a $\left(\mathrm{n}_{a y y}\right)$. Samples were pooled across areas not found to have significantly different age compositions (chi-square test). The pooled proportion for age a was then substituted for $p_{a y i}$ for the appropriate areas.

The variance for $\mathrm{N}_{\text {avi }}$ was estimated as the product of two random variables, $\mathrm{p}_{a y i}$ and $\mathrm{N}_{y y}$, as

$$
V\left(N_{a y i}\right)=N_{y i}^{2} V\left(p_{a y i}\right)+p_{a y i}^{2} V\left(N_{y i}\right)-V\left(p_{a y i}\right) V\left(N_{y i}\right) .
$$

The total estimate for the Kenai and Skilak Lakes system became

$$
N_{a y}=\sum_{a l l i} N_{a y i}
$$

and its variance was estimated as

$$
V\left(N_{a y}\right)=\sum_{\text {all } i} V\left(N_{a y i}\right) .
$$

We conducted a hydroacoustic survey during the day on 5 May 1993 to define fish abundance and depth distribution, in Skilak Lake (Figure 2). A second survey was conducted on 8-9 May to define diel vertical behavior of juvenile sockeye salmon. A single transect in Area 1 of Skilak Lake was replicated sixteen times in a 7 -h period (1842 to 0203 hours; Figure 3). Because of low densities of fish in the study area, mean target strength data by depth were calculated by pooling results from the two surveys.

We used a stratified random sampling design for 1993 fall night surveys to distribute sampling effort and provide an acceptable way of calculating sampling error. We divided each lake into areas or sub-basins and randomly established survey transects within each of these areas. The number of transects was chosen to reduce the relative error to 0.25 for Skilak Lake and 0.3 for Kenai Lake. Our sample size was based on the average coefficient of variation observed from 1986 to 1989. Because of the configuration of Skilak Lake, a total of 13 transects perpendicular to shore were surveyed within three sub-basins (Figure 4). In Kenai Lake a total of 27 transects were surveyed within five sub-basins (Figure 5). The Kenai Lake survey was conducted on 4 October 1993 and the Skilak Lake survey on 26 September 1993.

Following the regular night hydroacoustic survey of Skilak Lake on 26 September, we returned to Skilak Lake on the nights of 16 and 18 November 1993 to ascertain fish abundance in the late fall/early winter. A total of thirteen transects was completed (Figure 6).

To evaluate overwinter survival we conducted a day survey of Skilak Lake on 25 April 1994. However, during that survey we suspected that we may have missed fish because of nearsurface orientation. Therefore we returned to Skilak Lake on 29 April 1994 to conduct a night survey (the same transects used in November 1993 were resurveyed in April).

We returned in September/October 1994 to survey both Kenai and Skilak Lakes as part of our normal operational plan (Figures 7 and 8). The survey design proceedure was the same as for the 1993 fall survey. However, rough water kept us from completing Area 5 in Kenai Lake. We, therefore, expanded Area 4 surface area to include Area 5 in the density estimate.

To estimate species composition of the targets mid water trawling was conducted in both lakes. The sampling program was designed to collect a minimum of 300 fish from each area of each lake. All captured fish were enumerated, identified, and preserved in 10% formalin. In the laboratory juvenile sockeye salmon were measured to the nearest millimeter (fork length), weighed to the nearest 0.1 g , and an age determined from scale samples using criteria outlined by Mosher (1969). Differences in age and species composition between areas were tested with chi-square analysis. Detailed methods and results of this effort are reported in a separate document (Carlson et. al, in press).

RESULTS

May 1993 Hydroacoustic and Tow Net Surveys

Sixteen thousand five hundred and ninety three echoes were used to estimate target strength distributions in Skilak Lake on 5 May 1993. Mean target strength was -55.04 dB with a standard deviation of 4.76 dB (Appendix A.2). The estimated fish population was only 859,240 (Table 1). No apparent concentration of fish was observed as fish distribution was similar to the relative volume estimates for each area (Table 2). No species apportionment was made since tow netting resulted in insufficient catches. The depth distribution of targets indicated no obvious surface orientation as peak densities were typically in the 20-40 m range (Figures 9 and 10).

On 8 May 1993 population estimates for Area 1, Skilak Lake, ranged from 476,020 to 4,646,700 fish depending on when the transect was conducted. Early evening estimates (1842 to 2004 hrs) typically were the lowest with peak estimates made between 2200 and 2334 hrs (Table 3). Density estimates by depth indicated that fish were distributed at deeper depths during the early evening with higher densities recorded near surface as night advanced (Figures 11 and 12). Target strength measurements were essentially the same as the 5 May 1993 survey (mean value 54.09 dB , Appendix A.3).

September/October 1993 Night Hydroacoustic and Day Tow Net Surveys

A total of 44,813 echoes in Kenai Lake and 138,697 in Skilak Lake were used to estimate target strength distributions. As in past fall surveys, calculated mean target strengths decreased with depth (Figure 13). Mean target strength for Kenai Lake was -57.6 dB (Appendix A.4). Nearsurface measurements were -55.52 dB in contrast to -59.19 dB at a depth of $52-57 \mathrm{~m}$. In Skilak Lake the mean target strength was -56.68 dB . Mean target strength decreased from a near surface value of -54.47 dB to -57.21 dB at 37 m (Appendix A.5).

The total estimated number of fish in both lakes was $38,108,400$ (Table 4). Approximately 11%, or $4,355,300$ fish, were found in Kenai Lake and the remaining 33,753, 100 fish in Skilak Lake. An estimated 55.2\% of the fish in Skilak Lake were located in Area l, which comprised 28.9\% of the lake volume . Within Kenai Lake 31.5\% of the fish were located in Area 4, which composed 29.3% of the lake volume (Table 5).

The maximum fish density observed in Skilak Lake was 0.089 fish $/ \mathrm{m}^{3}$ between $22-27 \mathrm{~m}$ along Transect 6 of Area 1. Maximum densities of fish were recorded in the $17-22 \mathrm{~m}$ depth range for 6 of the 13 transects. Two transects had maximum densities deeper in the water column and five shallower.

The maximum density of fish observed in Kenai Lake was 0.011 fish $/ \mathrm{m}^{3}$ between $17-22 \mathrm{~m}$ along Transect 1 of Area 2. Maximum densities of fish at 12 transects was between $22-27 \mathrm{~m}$. Six transects had maximum densities at deeper strata and nine shallower.

Sockeye salmon were the predominant species in catches from both lakes, representing nearly 100% of the total catch for both lakes (Table 6). Age-1 sockeye salmon made up 0.1% and age0 composed 99.9% of the Kenai Lake juvenile sockeye estimate ($N=2.973$; Table 6). Within Skilak Lake, age-0 sockeye salmon comprised 94.8% of the estimate ($N=2,879$; Table 6).

After adjusting the total number of targets using species and age composition data from tow net samples, the number of juvenile sockeye salmon in both lakes was estimated at $37,420,000$. Of this total, $35,687,400$ were age-0 sockeye salmon produced by the 1992 spawning population, and $1,732,700$ were age-1 sockeye salmon produced by the 1991 spawning population (Table 6).

Mean length of age-0 sockeye salmon in Skilak Lake was 49 mm and mean weight was 1.2 g . Age-1 sockeye salmon in Skilak Lake had a mean length of 75 mm and weight of 4.5 g . Mean size and weight of age-0 sockeye salmon in Kenai Lake was 45 mm and 1.0 g . They were smaller (N.S.C.) in size than those collected in Skilak Lake (Table 7).

November 1993 Night Hydroacoustic and Day Tow Net Survey

As expected, Skilak Lake mean fish target strength measurements in November 1993 were within 0.14 dB of the September values (mean -56.54 dB). However, in contrast to the September survey no obvious trend of decreasing target strength measurements with depth were observed in the data set (Appendix A.6).

A total of 29,091,000 fish were estimated in Skilak Lake (Table 8). The majority of fish targets (48.6%) were observed in Area 3 which comprised only 23.1% of the lake volume (Table 9). Tow netting indicated that 98.1% of the fish were sockeye salmon. Age-0 sockeye salmon numbered $27,608,400$ while age-1 sockeye salmon comprised 1.9% of the sockeye population (527,000 fish; Table 10).

Comparing the mean size of age- 0 and age- 1 sockeye salmon indicated that no increase in length or weight took place between September and November (N.S.C.). Age-0 sockeye salmon were 48 mm (S.D. $=5 \mathrm{~mm}, \mathrm{~N}=1856$) and $1.0 \mathrm{~g}(\mathrm{~S} . \mathrm{D} .=0.3, \mathrm{~N}=1856)$ in November. Age-1 sockeye salmon were $75 \mathrm{~mm}(\mathrm{~S} . \mathrm{D} .=5, \mathrm{~N}=43)$ and $4.1 \mathrm{~g}(\mathrm{~S} . \mathrm{D} .=0.8, \mathrm{~N}=43)$.

April 1994 Hydroacoustic and Tow Net Surveys

A daylight survey on 25 April 1994 estimated 7,339,800 fish present in Skilak Lake (Table 11). Fish were concentrated in Area 1, with 80.9% of the population occupying 38.1% of the lake
volume (Table 12). Mean target strength was approximately 2 dB lower (mean -58.41 dB) than the previous November estimate (Appendix A.7).

In contrast, the night survey of Area 1, Skilak Lake, on 29 April 1994 produced an estimate of $18,178,000$ fish (Table 13), which was three times the daylight estimate. Mean target strength was -56.63 dB (Appendix A.8), which was within 0.09 dB of the November estimate and 1.78 dB of the April daylight estimate. Based on extensive tow netting, sockeye salmon comprised 98.1% of the fish population. Age-1 sockeye salmon contributed 86.2% ($15,375,800$ fish) of the total sockeye estimate (Table 14).

Mean size of sockeye salmon were as follows: 1) Age-0 were 28.7 mm (S.D. $=1.0 \mathrm{~mm}, \mathrm{~N}=10$) in length and weighted $0.215 \mathrm{~g}(\mathrm{~S} . \mathrm{D} .=0.4, \mathrm{~N}=10)$; 2) Age-1 were $53.3 \mathrm{~mm}(\mathrm{~S} . \mathrm{D} .=5.7 \mathrm{~mm}$, $\mathrm{N}=574$) and $1.7 \mathrm{~g}(\mathrm{~S} . \mathrm{D} .=0.5 \mathrm{~g}, \mathrm{~N}=574)$; and 3) Age- 2 were $76.9 \mathrm{~mm}(\mathrm{~S} . \mathrm{D} .=4.6 \mathrm{~mm}, \mathrm{~N}=$ $65)$ and $4.5 \mathrm{~g}(\mathrm{~S} . \mathrm{D} .=4.6 \mathrm{~g}, \mathrm{~N}=65)$.

September/October 1994 Night Hydroacoustic and Day Tow Net Survey

Mean fish target strength estimates for Skilak and Kenai Lakes were -54.14 and -54.44 dB, respectively (Appendix A. 9 and A.10). Decreasing fish target strengths with depth during the fall surveys was again observed in 1994. However, the magnitude of the decrease was less than previous years (Figure 13). Within Skilak Lake near surface fish target strength was measured at -53.12 dB and decreased to -54.83 dB at $37-42 \mathrm{~m}$. However, below this depth fish target strength increased slightly for a majority of the remaining depth strata (Appendix A.9). In Kenai Lake, except for the $2-7 \mathrm{~m}$ depth strata, target strength decreased from -53.71 dB at $7-12 \mathrm{~m}$ to 56.76 dB at $57-62 \mathrm{~m}$ (Appendix A.10).

The total number of fish in both Skilak and Kenai Lake was 12,514,000 (Table 15). Skilak Lake contributed 76.4% to the total population estimate ($9,567,400$ fish) which was the lowest on record (Figure 14). Distribution of fish in Skilak Lake was fairly evenly spread with Area 1 having 43.3% of the fish and 33.8% of the lake volume. Area 3 had slightly lower numbers (Table 16).

Sockeye salmon were the predominant species (99.3\%) captured in tow nets. Age-0 sockeye salmon were 87.8% of the Skilak Lake sockeye estimate ($8,353,900$ fish) while in Kenai Lake they contributed 95.7% ($2,805,600$ fish, Table 17).

Mean size of Skilak Lake sockeye salmon juveniles were similar to the 1993 measurements (Table 7). However, age-0 fish were 0.2 g heavier that the 1993 fish. In contrast, Kenai Lake fish were almost twice as heavy than the 1993 cohort (Table 7).

DISCUSSION

This is the eighth year of hydroacoustic work on Skilak Lake, and during that time several trends have become evident in the data set. Fish-target strength estimates by depth in 1993 and 1994 were within historical bounds (Figure 13), and the trend of decreasing target strength with depth continued. This phenomenon appears related to the use of 420 kHz in this glacial lake system. Tarbox et al. (1993) found no decrease in target strength with depth using a 120 kHz system in Skilak Lake.

Schmidt et al. (1993) noted a relationship between potential egg deposition (a function of the number of spawners) and fall fry numbers in Skilak and Kenai Lakes over the available time series (Figure 15). The 1992 brood year production was the second highest measured. Schmidt (ADF\&G, Soldotna, personal communication) has indicated that zooplankton abundance and behavior was abnormal and optimum for the 1993 rearing year in Skilak Lake. In contrast, the 1993 brood year production was 8 million fish below the regression model prediction.

The distribution of fish between Skilak and Kenai Lakes has also been very consistent: Skilak Lake generally produces between 80% and 90% of the counts (Figure 14). The relative abundance of fish in Skilak Lake in 1994 was the lowest on record and probably reflects reduced survival in Skilak Lake as opposed to increased production in Kenai Lake.

Overwinter survival of juvenile sockeye salmon in Skilak Lake is difficult to estimate since a number of variables are still unknown about juvenile sockeye salmon behavior in the Kenai River drainage. However, if one assumes that no immigration of juvenile sockeye into Skilak Lake took place between September 1993 and April 29, 1994 then the overwinter survival of age-0 juvenile sockeye was 49%. Because only Area 1 was surveyed at night in April the estimate is a minimum. If we assume that the distribution of fish between Areas on April 29th was the same as the day survey on April 25 th an adjusted population estimate would increase overwinter survival to 61%.

Age analysis of the tow net data indicated that age specific depth differences in juvenile salmon abundance can significantly influenced the estimates of the number of age-1 or age-2 sockeye salmon (Carlson, ADF\&G, Soldotna, personal communication). For example, in September and November 1993 the estimate of age-1 sockeye salmon in Skilak Lake was estimated at 1,726,000 and 527,000 fish respectively. In contrast, the age-2 estimate in April, 1994 was 2,456,600 fish or almost 4.7 times the November estimate. In September 1993 we collected data on age structure of the fish populations at various depths in Skilak Lake to evaluate this potential bias. Previous Skilak Lake investigations were limited to surface tows. In November 1993 we had not completed the analysis of the September data and were limited by time, weather, and gear to surface tows. By April 1994 we had completed the analysis of catch data and designed a program to collect age composition data at all depths as our hypothesis of depth age composition differences was not rejected (Carlson, ADF\&G, Soldotna, personal communication). Therefore,
the estimates for September 1993 and 1994 and April 1994 are probably more reflective of the true age composition of the juvenile salmon population than the November estimate.

LITERATURE CITED

Davis, A.S., T. Namtvedt, and B.M. Barrett. 1973. Cook Inlet sockeye forecast and optimum escapement studies. Alaska Department of Fish and Game, Annual Technical Report, Anadromous Fish Conservation Act, Project AFC-41-2, Juneau.

Davis, A.S., B.M. Barrett, and L.H. Barton. 1974. Cook Inlet sockeye forecast and optimum escapement studies. Alaska Department of Fish and Game, Annual Technical Report, Anadromous Fish Conservation Act, Project AFC-41-3. Juneau.

King, B.E., and K.E. Tarbox. 1988. Outline of instructions for field operation of Biosonics Inc. dual beam hydroacoustic equipment and analysis of collected data. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2S8814, Anchorage.

Mosher, K.H. 1969. Identification of Pacific salmon and steelhead trout by scale characteristics. U.S. Department of the Interior, Circular 317, Washington, D.C.

Namtvedt, T.B., and N.V. Friese. 1976. Investigations of Cook Inlet sockeye salmon. Annual Technical Report, Anadromous Fish Conservation Act, Project AFC-53-1, Juneau.

Schmidt, D., and 12 coauthors. 1993. Status report sockeye salmon overescapement, fish/shellfish study 27. Alaska Department of Fish and Game, State/Federal Natural Resource Damage Assessment studies.

Tarbox, K.E., and B.E. King. 1988a. An estimate of juvenile sockeye salmon (Oncorhynchus nerka) densities in Skilak and Kenai Lakes, Alaska through the use of dual beam hydroacoustic techniques. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2S88-2, Anchorage.

Tarbox, K.E., and B.E. King. 1988b. An estimate of juvenile fish densities in Skilak and Kenai Lakes, Alaska through the use of dual beam hydroacoustic techniques in 1987. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2S88-4, Anchorage.

Tarbox, K.E., B.E. King, and L.K. Brannian. 1993. An estimate of juvenile fish densities in Skilak and Kenai Lakes, Alaska, through the use of dual beam hydroacoustic techniques in 1991. Alaska Department of Fish and Game, Technical Fishery Report 93-01, Juneau.

LITERATURE CITED (continued)

Waltemyer, D.L. 1981. A summary of tow netting for juvenile sockeye salmon on three Kenai Peninsula Lakes, 1973 to 1979. Alaska Department of Fish and Game, Division of Commercial Fisheries, Cook Inlet Data Report 81-1, Soldotna.

Table 1. Estimated number of fish in Skilak Lake, Alaska, on 5 May 1993.

Lake	Area	Transect	Estimated Number of Fish				Area Mean	Variance
			Surface	Midwater	Bottom	Total		
Skitak	1	1	$1.9570 \mathrm{E}+03$	2.4694E+05	$3.1609 E+04$	$2.8051 \mathrm{E}+05$		
		2	8.4735E+03	$2.8523 E+05$	1.5436E+04	$3.0914 \mathrm{E}+05$		
		3	$1.9454 \mathrm{E}+04$	2.3779E+05	$2.4274 E+04$	$2.8152 \mathrm{E}+05$	$2.7675 E+05$	$7.0858 \mathrm{E}+08$
		4	$3.0749 \mathrm{E}+03$	$3.0480 \mathrm{E}+05$	$2.6689 \mathrm{E}+04$	$3.3456 E+05$		
		5	$1.2974 \mathrm{E}+03$	1.2890E+05	$4.7845 \mathrm{E}+04$	$1.7804 \mathrm{E}+05$		
	2	1	$0.0000 \mathrm{E}+00$	1.7673E+05	$1.3561 E+04$	1.9029E+05		
		2	$6.5056 \mathrm{E}+03$	$3.6209 \mathrm{E}+05$	$2.2847 E+04$	$3.9144 \mathrm{E}+05$	$3.5233 \mathrm{E}+05$	7.1496E+09
		3	$0.0000 \mathrm{E}+00$	$4.5222 \mathrm{E}+05$	2.3037E+04	$4.7526 \mathrm{E}+05$		
	3					$4.7265 E+05$		
		2	$0.0000 \mathrm{E}+00$	$2.0449 \mathrm{E}+05$	$3.0577 \mathrm{E}+04$	$2.3507 E+05$	$2.3015 \mathrm{E}+05$	$7.5193 E+09$
		3	$0.0000 E+00$	$1.1389 \mathrm{E}+05$	1.2535E+04	1.2643E+05		
		4	$0.0000 \mathrm{E}+00$	$8.0906 \mathrm{E}+04$	$5.5644 E+03$	$8.6470 E+04$		
	TOTAL						$8.5924 E+05$	$1.5377 E+10$

Table 2. Areas, volume and fish estimates (\%) in Skilak Lake. Alaska, day survey, 5 May 1993.

		Skilak Lake	
Area	Surface Area $\left(\mathrm{m}^{2} \times 10^{6}\right)$	Volume $\left(\mathrm{m}^{3} \times 10^{6}\right)$	Number of Fish $(\%)$
1	$43.03(43.5 \%)$	$1734.0(27.8 \%)$	26.8
2	$33.46(33.8 \%)$	$2782.0(44.6 \%)$	41.0
3	$22.50(22.7 \%)$	$1725.0(27.6 \%)$	32.2
Total	$98.99(100.0 \%)$	6241.0	(100.0%)

File: 2tab94.w51

Table 3. Estimated number of fish available to the hydroacoustic techniques in skilak Lake, Alaska, 8 May 1993.

Date	Area	Transect	Beginning Time	Estimated Number of Fish
May 8, 1993	1	1	1842	476,020
May 8, 1993		2	1908	972,920
		3	1935	684,610
		4	2004	581,980
		5	2033	1,220,300
		6	2119	1,075,500
		7	2143	1,145,600
		8	2207	4,646,700
		9	2232	2,548,200
		10	2311	2,679,400
		11	2334	1,579,800
May 9, 1993	1	12	0005	1,195,100
		13	0035	1,108,200
		14	0105	1,396,300
		15	0136	$1,529,300$
		16	0203	2,220,200

File:3tab94.w51

Table 4. Estimated number of fish in Skilak and Kemai Lakes, Alaska in September and October 1993.

			Estim	ated Number of	Fich			
Lake	Area	Transect	Surface	Midwater	Botrom	Total	Mean	Variance
Skilak	1	1	1.9286E +06	$1.5736 \mathrm{E}+07$	$3.6244 \mathrm{E}+06$	$2.1289 \mathrm{E}+07$		
		2	$2.7109 \mathrm{E}+06$	2.4576E+07	$2.6964 \mathrm{E}+06$	$2.9983 \mathrm{E}+07$		
		3	$7.6266 \mathrm{E}+05$	$1.5910 \mathrm{E}+07$	$1.2624 E+06$	$1.7935 E+07$	$1.8637 E+07$	$8.9830 \mathrm{E}+12$
		4	$1.7298 \mathrm{E}+06$	$1.7345 \mathrm{E}+07$	$1.8244 \mathrm{E}+06$	$2.0899 \mathrm{E}+07$		
		5	$2.6993 E+06$	4.8310E +06	1.4507E+06	$8.9810 \mathrm{E}+06$		
		6	$2.1816 \mathrm{E}+06$	$6.4490 \mathrm{E}+06$	4.1013E+06	$1.2732 \mathrm{E}+07$		
	2	1	$6.4042 \mathrm{E}+04$	$5.9890 \mathrm{E}+06$	$6.2774 \mathrm{E}+03$	$6.0593 \mathrm{E}+06$		
		2	1.6543E+05	$7.2300 \mathrm{E}+06$	1.4472E+05	$7.5402 E+06$	$7.4378 \mathrm{E}+06$	$3.9326 \mathrm{E}+11$
		3	7.3227E+04	$8.1650 \mathrm{E}+06$	4.7577E+05	$8.7140 \mathrm{E}+06$		
	3	1	$4.3268 \mathrm{E}+05$	$1.3678 \mathrm{E}+07$	$93483 \mathrm{E}+05$	$1.5046 \mathrm{E}+07$		
		2	$4.5779 \mathrm{E}+05$	$7.7010 \mathrm{E}+06$	$2.9387 E+05$	$8.4527 E+06$	$7.6783 \mathrm{E}+06$	$7.3499 \mathrm{E}+12$
		3	$1.4101 \mathrm{E}+05$	$3.0790 \mathrm{E}+06$	$8.6931 \mathrm{E}+04$	$3.3069 \mathrm{E}+06$		
		4	$8.6670 \mathrm{E}+04$	$3.7730 \mathrm{E}+06$	$4.8478 \mathrm{E}+04$	$3.9081 E+06$		
	TOTAL						$3.3753 E+07$	$1.6726 E+13$
Kenai	1	1	$1.3593 \mathrm{E}+02$	$2.2680 \mathrm{E}+05$	$7.4360 \mathrm{E}+03$	$2.3437 \mathrm{E}+05$		
		2	$3.4694 \mathrm{E}+02$	4.5853E+05	$5.8538 \mathrm{E}+04$	$5.1741 \mathrm{E}+05$		
		3	$3.5805 \mathrm{E}+03$	$2.9075 \mathrm{E}+05$	$7.3466 \mathrm{E}+04$	$3.6780 \mathrm{E}+05$	$3.7444 \mathrm{E}+05$	$2.6827 E+09$
		4	$0.0000 \mathrm{E}+00$	$2.4403 \mathrm{E}+05$	$2.5795 E+04$	$2.6983 \mathrm{E}+05$		
		5	$0.0000 \mathrm{E}+00$	$2.9858 \mathrm{E}+05$	$2.1498 \mathrm{E}+04$	$3.2008 E+05$		
		6	$6.2995 E+02$	$4.6830 \mathrm{E}+05$	$6.8273 \mathrm{E}+04$	$5.3715 E+05$		
	2	1	$7.3318 \mathrm{E}+02$	$1.9670 \mathrm{E}+06$	$0.0000 \mathrm{E}+00$	$1.9677 \mathrm{E}+06$		
		2	$0.0000 \mathrm{E}+00$	$9.6065 E+05$	$0.0000 E+00$	$9.6065 \mathrm{E}+05$		
		3	$9.1290 \mathrm{E}+03$	$7.0240 \mathrm{E}+05$	$0.0000 \mathrm{E}+00$	$7.1153 E+05$	$1.1073 \mathrm{E}+06$	$8.4964 \mathrm{E}+10$
		4	$3.8910 \mathrm{E}+02$	$7.8897 \mathrm{E}+05$	$0.0000 \mathrm{E}+00$	$7.8936 \mathrm{E}+05$		
	3	1	$5.5683 \mathrm{E}+03$	4.9268E+05	$0.0000 \mathrm{E}+00$	4.9825E+05		
		2	$0.0000 \mathrm{E}+\infty$	$2.8979 E+05$	$0.0000 E+00$	$2.8979 \mathrm{E}+05$		
		3	$0.0000 \mathrm{E}+\infty 0$	$4.9482 \mathrm{E}+05$	$0.0000 \mathrm{E}+00$	$4.9482 \mathrm{E}+05$	$3.8204 \mathrm{E}+05$	$2.6829 \mathrm{E}+09$
		4	$0.0000 \mathrm{E}+00$	$2.4448 \mathrm{E}+05$	$0.0000 \mathrm{E}+00$	2.4448E+05		
		5	$3.8798 \mathrm{E}+03$	$3.7900 \mathrm{E}+05$	$0.0000 \mathrm{E}+00$	$3.8288 E+05$		
	4	1	$1.1691 \mathrm{E}+05$	9.7567E+05	$0.0000 E+00$	$1.0926 \mathrm{E}+06$		
		2	$5.8630 \mathrm{E}+04$	1.9775E+06	$0.0000 \mathrm{E}+00$	$2.0361 E+06$		
		3	$3.9950 \mathrm{E}+04$	1.5705E+06	$0.0000 \mathrm{E}+00$	$1.6105 \mathrm{E}+06$	$1.3704 \mathrm{E}+06$	$4.9284 E+10$
		4	$1.8882 \mathrm{E}+04$	1.3618E+06	$0.0000 \mathrm{E}+00$	$1.3807 \mathrm{E}+06$		
		5	$1.4425 E+04$	7.1756E+05	$0.0000 \mathrm{E}+00$	$7.3199 \mathrm{E}+05$		
	5	1	$5.1579 \mathrm{E}+04$	3.2285E+05	$0.0000 \mathrm{E}+00$	$3.7443 E+05$		
		2	$1.1440 \mathrm{E}+05$	5.3571E+05	$0.0000 \mathrm{E}+00$	$6.5011 E+05$	$1.1212 \mathrm{E}+06$	$4.1647 \mathrm{E}+10$
		3	$2.5111 \mathrm{E}+05$	1.4519E+06	$0.0000 E+00$	$1.7030 \mathrm{E}+06$		
		4	$1.0149 \mathrm{E}+05$	1.0844E +06	$0.0000 E+\infty$	$1.1859 \mathrm{E}+06$		
		5	$7.1941 \mathrm{E}+04$	$7.1263 E+05$	$0.0000 \mathrm{E}+00$	$7.8457 \mathrm{E}+05$		
		6	$5.7546 \mathrm{E}+04$	$1.2922 \mathrm{E}+06$	$0.0000 \mathrm{E}+00$	$1.3497 \mathrm{E}+06$		
		7	$1.3421 E+05$	$1.6662 \mathrm{E}+06$	$0.0000 E+00$	$1.8004 \mathrm{E}+06$		
TOTAL							$4.3553 \mathrm{E}+06$	$1.8126 \mathrm{E}+11$
TOTAL FOR BOTH LAKES							$3.8108 \mathrm{E}+07$	$1.6907 \mathrm{E}+13$

Table 5. Areas, volume and fish estimates (\%) in Kenai and Skilak Lakes. Alaska, night survey, September/October 1993.

Area	Skilak Lake		
	Surface Area $\left(\mathrm{m}^{2} \times 10^{6}\right)$	$\begin{gathered} \text { Volume } \\ \left(\mathrm{m}^{3} \times 10^{6}\right) \end{gathered}$	Number of Fish (\%)
1	43.03 (43.5\%)	1808.0 (28.9\%)	55.2
2	33.46 (33.8\%)	2674.0 (42.8\%)	22.0
3	22.50 (22.7\%)	1768.0 (28.3\%)	22.8
Total	98.99 (100.0\%)	6250.0 (100.0\%)	100.0
	Kenai Lake		
Area	Surface Area $\left(m^{2} \times 10^{6}\right)$	$\begin{gathered} \text { Volume } \\ \left(\mathrm{m}^{3} \times 10^{6}\right) \end{gathered}$	Number of Fish (\%)
1	7.72 (13.9\%)	331.1 (8.0\%)	8.5
2	11.91 (21.5\%)	968.0 (23.5\%)	25.4
3	10.54 (19.0\%)	944.7 (23.0\%)	8.8
4	14.37 (25.9\%)	1205.0 (29.3\%)	31.5
5	10.93 (19.7\%)	666.0 (16.2\%)	25.7
Total	55.47 (100.0\%)	4114.8 (100.0\%)	100.0

File: 5tab94.w51

Table 6. Estimated contribution of age-0 and age-1 sockeye salmon to the total fish population in Kenai and Skilak Lakes. Alaska, night survey. September/October 1993.

| Location | Total Fish | Estimated Sockeye
 Salmon | Percent Age-0 | Total Age-0 | Percent Age-1 |
| :--- | :---: | ---: | :---: | :---: | :---: | :---: | :---: | Total Age-1

[^9]Table 7. Kenai Peninsula lakes' fall fry sockeye mean fork length and weight data.

Location	Year	Age-0					S.D.	$\begin{array}{r} \text { Length } \\ \text { (n) } \mathrm{mm}) \end{array}$		Age-1	Weight		S.D.
		Length			Weight								
		(n)	(mm)	S.D.	(D)	(g)				S.D.	(n)	(g)	
Skilak													
	1986	15	57	n/a				8	74				
	1988	109	50	5.3	109	0.9	0.4						
	1989	136	50	3.3	136	1.2	0.3	126	64	6.0	126	2.8	0.7
	1990	928	49	4.3	290	1.3	0.3	34	72.8	3.3	20	4.0	0.4
	1991	863	51	4.9	286	1.5	0.5	55	73.8	3.8	14	4.7	0.5
	1992	883	54	6.0	883	1.8	0.6	10		3.6	10	7.0	0.8
	1993	3652	42	5.0	3652	12	0.4	55	75	5.0	55	4.5	0.9
	1994	687	50	3.9	687	1.4	0.4	110.	68.3	3.7	110	3.6	0.6
Kenai													
	1986	227	52	n/a	227			2	77				
	1989	38	48	4.5	38	1.0	0.2	56	64	4.6	56	2.5	0.6
	1990	1484	52	4.6	1484	1.5	0.4	62	69.4	4.2	22	3.6	0.6
	1991	1364	53.5	6.5	1364	2.0	0.6	40	75.9	4.8	15	5.5	1.0
	1992	1492	56	7.3	1492	2.0	0.8	12	78	10.0	12	5.6	1.7
	1993	2969	45	4.0	2969	1.0	0.2	4	68	1.0	4	3.3	0.5
	1994	861	53.7	4.6	861	1.9	0.5	39	76.8	3.7	39	5.2	0.7
Tustumena													
	1980	222	59	6.1	222	2.3	0.7	20	80	3.5	20	5.7	0.7
	1981	197	55	5.1	197	1.6	0.4	21	73	4.6	21	3.8	0.7
	1982	194	54	5.1	194	1.8	0.5	17	74	3.9	17	4.0	0.9
	1983	562	60	6.1	562	2.5	0.7	55	80	5.0	55	5.8	1.1
	1984	388	61	4.6	388	2.5	0.6	186	79	3.7	186	5.3	0.8
	1985	173	56	5.6	173	2.1	0.6	52	78	5.0	52	5.6	1.2
	1986	156	50	6.4	156	1.3	0.5	92	73	4.5	92	4.1	0.7
	1987	143	53	5.9	143	1.8	0.6	50	71	3.8	50	4.2	0.6
	1988	303	55	5.3	303	1.8	0.5	89	75	3.6	89	4.5	0.6
	1989	47	52	5.7	47	1.9	0.6	18	74	4.6	18	5.1	0.9
	1990	200	57	5.5	200	1.5	0.4	50	75	2.9	50	3.4	0.5
	1991	202	57	5.4	202	2.0	0.5	47	78	6.5	47	5.1	1.2
	1992	323	59	4.4	323	2.0	0.4	21	79	4.1	21	4.52	0.7
	1993	417	63	6.7	417	2.9	0.8	46	81	3.0	46	6.18	0.7
	1994	318	64	5.0	318	2.6	0.6	76	82.7	3.0	76	5.5	0.5

Missing values indicate no data available. $\mathrm{n}=$ sample size; S. D. $=1$ standard deviation. File: 7tab94.w5l

Table 8. Estimated number of fish in Skilak Lake, Alaska, on 16 November 1993.

			Estim	ated Number of	Fish			
Lake	Area	Transect	Surface	Midwater	Botrom	Total	Mean	Variance
Skilak	1	1	$1.2320 \mathrm{E}+06$	$9.5400 \mathrm{E}+06$	$2.1745 E+06$	$1.2947 E+07$		
		2	$2.0409 \mathrm{E}+06$	$1.3407 \mathrm{E}+07$	$1.5619 \mathrm{E}+06$	$1.7010 \mathrm{E}+07$		
		3	$2.1635 \mathrm{E}+05$	$6.4590 \mathrm{E}+06$	$4.3184 \mathrm{E}+05$	7.1072E+06	$1.0211 \mathrm{E}+07$	$3.4067 \mathrm{E}+12$
		4	$4.0444 \mathrm{E}+05$	$1.0831 \mathrm{E}+07$	$8.9100 \mathrm{E}+05$	$1.2126 \mathrm{E}+07$		
		5	$3.8792 \mathrm{E}+05$	$4.6720 \mathrm{E}+06$	5.4768E+05	$5.6076 E+06$		
		1 A	$4.7983 \mathrm{E}+05$	$5.6140 \mathrm{E}+06$	$3.7533 \mathrm{E}+05$	6.4692E+06		
	2	1	$7.9611 \mathrm{E}+03$	$4.2100 \mathrm{E}+06$	$9.7858 \mathrm{E}+04$	$4.3158 \mathrm{E}+06$		
		2	$1.5077 \mathrm{E}+05$	$5.8360 \mathrm{E}+06$	2.7847E+05	6.2652E+06	$4.7344 \mathrm{E}+06$	$6.2598 \mathrm{E}+11$
		3	$1.6191 \mathrm{E}+05$	$3.2800 \mathrm{E}+06$	$1.8019 \mathrm{E}+05$	$3.6221 \mathrm{E}+06$		
	3	1	$9.9630 \mathrm{E}+05$	$1.5270 \mathrm{E}+07$	$3.4416 \mathrm{E}+06$	$1.9708 \mathrm{E}+07$		
		2	$2.3450 \mathrm{E}+05$	$1.8578 \mathrm{E}+07$	$1.7191 \mathrm{E}+06$	$2.0532 \mathrm{E}+07$	1.414SE+07	$1.4707 \mathrm{E}+13$
		3	$1.1900 \mathrm{E}+05$	$3.7400 \mathrm{E}+06$	$2.2750 \mathrm{E}+05$	$4.0865 \mathrm{E}+06$		
		4	$9.3690 \mathrm{E}+05$	$1.0632 \mathrm{E}+07$	$6.8514 \mathrm{E}+05$	$1.2254 E+07$		
	TOTAL						$2.9091 \mathrm{E}+07$	$1.8740 \mathrm{E}+13$

Table 9. Areas, volume and fish estimates (\%) in Skilak Lake, Alaska. night survey. November 1993.

	Skilak Lake		
Area	Surface Area $\left(\mathrm{m}^{2} \times 10^{6}\right)$	Volume $\left(\mathrm{m}^{3} \times 10^{6}\right)$	Number of Fish $(\%)$
1	$43.03(43.5 \%)$	$2217.0(34.8 \%)$	35.1
2	$33.46(33.8 \%)$	$2678.0(42.1 \%)$	16.3
3	$22.50(22.7 \%)$	$1470.0(23.1 \%)$	48.6
Total	$98.99(100.0 \%)$	6365.0	(100.0%)

File: 9tab94.w51

Table 10. Estimated contribution of age-0 and age-1 sockeye salmon to the total fish population in Skilak Lake, Alaska, night survey. November 1993.

Location	Total Fish	Estimated Sockeye Salmon	Percent Age-0 $0^{\text {d }}$	Total Age-0	Percent Age-1d Total Age-1	
Skilak Lake	29.091 .000	28.135 .400	98.1	27.608 .400	1.9	527.000
Variance	$1.8740 \mathrm{E}+13$	$1.7582 \mathrm{E}+13$		$1.6967 \mathrm{E}+13$	$4.360 \mathrm{E}+10$	

${ }^{\text {a }}$ Age composition sample size for Skilak Lake $=1.808$; species composition sample size $=3.035$
b Rounded to nearest 100 fish, file 10tab94.w51

Table 11. Estimated number of fish in Skilak Lake, Alaska, day survey, 25 April 1994.

			Estima	ted Number of	Fish			
Lake	Area	Transect	Surface	Midwater	Bottom	Total	Area Mean	Variance
Skilak	1	1	$5.2436 \mathrm{E}+05$	$2.5149 \mathrm{E}+06$	$0.0000 E+00$			
		2	$7.7196 E+05$	$7.0149 \mathrm{E}+06$	0.0000E + 00	$\text { 7.7869E + } 06$		
		3	$1.9092 \mathrm{E}+05$	$5.6623 E+06$	0.0000E + 00	$5.8532 \mathrm{E}+06$	$5.9415 E+06$	$5.5646 \mathrm{E}+11$
		4	$3.1046 \mathrm{E}+05$	$4.5780 \mathrm{E}+06$	0.0000E + 00	$4.8885 \mathrm{E}+06$		
		5	$1.4419 E+06$	$6.4150 E+06$	0.0000E + 00	7.8569E+06		
		1 A	$8.2863 E+04$	$6.1415 \mathrm{E}+06$	$0.0000 \mathrm{E}+00$	$6.2244 \mathrm{E}+06$		
	2	1	$2.5768 E+04$	$4.6104 \mathrm{E}+05$	$0.0000 E+00$	$4.8681 E+05$		
		2	$1.6814 E+04$	$4.3493 E+05$	$0.0000 E+00$	$4.5174 \mathrm{E}+05$	$6.5871 E+05$	$3.5987 E+10$
		3	$4.9106 \mathrm{E}+04$	9.8847E + 05	$0.0000 \mathrm{E}+00$	$1.0376 E+06$		
	3	1	$3.7253 \mathrm{E}+04$	6.0719E+05	O.0000E + 00	6.4444E + 05		
		2	$1.9359 \mathrm{E}+04$	7.8655E+05	0.0000E + 00	8.0591E+05	$7.3955 \mathrm{E}+05$	$7.9936 E+09$
		3	$4.4665 E+04$	9.1181E+05	0.0000E + 00	9.5648E + 05		
		4	$9.4703 \mathrm{E}+04$	$4.5665 E+05$	0.0000E + 00	$5.5135 E+05$		
	TOTA						$7.3398 \mathrm{E}+06$	$6.0044 E+11$

No bottom estimate was made; file: 11 tab94.w51

```
Table 12. Areas, volume and fish estimates (%) in
    Skilak Lake. Alaska, day survey, 25 April }1994
```

	Skilak Lake			
Area	Surface Area $\left(\mathrm{m}^{2} \times 10^{6}\right)$	Volume $\left(\mathrm{m}^{3} \times 10^{6}\right)$	Number of Fish $(\%)$	
1	$43.03(43.5 \%)$	2631.0	(38.1%)	
2	$33.46(33.8 \%)$	2712.0	(39.3%)	
3	$22.50(22.7 \%)$	1564.0	(22.6%)	
Total	$98.99(100.0 \%)$	6365.0	(100.0%)	
File:				

File: 12tab94.w51

Table 13. Estimated number of fish in Skilak Lake, Area 1, Alaska, on 29 Aprit 1994.

[^10]Table 14. Estimated contribution of age-1 and age-2 sockeye salmon to the total fish population in Skilak Lake, Area 1. Alaska, night survey. 29 April. 1994.

Location	Total Fish	Estimated Sockeye Salmon	Percent Age-1 ${ }^{\text {d }}$	Total Age-1	Percent Age-2d Total Age-2	
	$18,178,000$	$17,832,400$	86.2	$15.375,800$	13.8	2.456 .600
Variance	$7.0596 \mathrm{E}+12$	$6.7966 \mathrm{E}+12$		$5.1752 \mathrm{E}+12$	$2.5123 \mathrm{E}+11$	

${ }^{\text {a }}$ Age composition sample size for Skilak Lake $=306$; species composition sample size $=1,736$
${ }^{b}$ Rounded to nearest 100 fish. file 14tab94.w51

Table 15. Estimated number of fish in Skilak and Kenai Lakes, Alaska, September 1994.

File 15 tab 94.451

Table 16. Areas, volume and fish estimates (\%) in Kenai and Skilak Lakes, Alaska, night survey, September/October 1994.

	Skilak Lake		
Area	Surface Area $\left(\mathrm{m}^{2} \times 10^{6}\right)$	Volume $\left(\mathrm{m}^{3} \times 10^{6}\right)$	Number of Fish $(\%)$
1	$43.03(43.5 \%)$	2120.0	(33.8%)
2	$33.46(33.8 \%)$	$2666.0(42.5 \%)$	43.3
3	$22.50(22.7 \%)$	1491.0	(23.7%)
Total	$98.99(100.0 \%)$	6277.0	(100.0%)

	Kenai Lake			
Area	Surface Area $\left(\mathrm{m}^{2} \times 10^{6}\right)$	Volume $\left(\mathrm{m}^{3} \times 10^{6}\right)$	Number of Fish $(\%)$	
1	$7.72(13.9 \%)$	$316.0(7.3 \%)$	32.9	
2	$11.91(21.5 \%)$	951.0	(22.1%)	
3	$10.54(19.0 \%)$	888.0	(20.6%)	
4	$25.30(25.9 \%)$	2150.0	(50.0%)	
Total	$55.47(100.0 \%)$	4305.0	(100.0%)	

File: 16tab94.w51

Table 17. Estimated contribution of age-0 and age-1 sockeye salmon to the total fish population in Kenai and Skilak Lakes, Alaska, night survey. September/October 1994.

Location	Total Fish	Estimated Sockeye Salmon	Percent Age-0 ${ }^{\text {a }}$	Total Age-0	Percent Age-1 ${ }^{\text {a }}$	Total Age-1
Skilak Lake	9.567 .400	9,510.300	87.8	8,353,900	12.2	1.156 .500
Kenai Lake	$2,946.300$	2,931.600	95.7	2.805,600	4.3	126,000
Tota $7^{\text {b }}$ Variance	$\begin{gathered} 12,513,700 \\ 4.2101 \mathrm{E}+12 \end{gathered}$	$\begin{gathered} 12.441 .900 \\ 4.1604 \mathrm{E}+12 \end{gathered}$	89.7	$\begin{gathered} 11.159,500 \\ 3.2452 \mathrm{E}+12 \end{gathered}$	10.3	$\begin{gathered} 1.282 .500 \\ 7.4078 \mathrm{E}+10 \end{gathered}$

${ }^{\text {a }}$ Age composition sample size for Skilak Lake $=797$: for Kenai Lake $=900$. Species composition sample size for Skilak Lake = 2020
${ }^{-}$Rounded to nearest 100 fish. File 17tab94.w51

File: 1fig94.pre
Figure 1. Map of the Kenai River drainage

File: 2fig94.pre
Figure 2 . Hydroacoustic transects conducted in Skilak Lake, Alaska on 5 May 1993.

File: 3fig94.pre
Figure 3. Hydroacoustic transects conducted in Skilak Lake, Alaska on 8 May 1993. (Note : a single transect was repeated 16 times)

File: 4fig94.pre
Figure 4. Hydroacoustic transects conducted in Skilak Lake, Alaska on 26 September 1993.

File: 5fig94.pre

Figure 5 Indroacoustic transects condncted in Kenai I ake. Alaska on 4 October 15%.

File: 6fig94.pre
Figure 6. Hydroacoustic transects conducted in Skilak Lake, Alaska on 16 \& 18 November 1993.

File: 7fig94 pre

Figure 7. Hydmat. \because Mansects condncted in Kenai Iake, Alaska on 7 October 1994.

File: 8fig94.pre
Figure 8. Hydroacoustic transects conducted in Skilak Lake, Alaska on 27 September 1994.

Figure 9. Density of fish in Skilak Lake, Aıca 1 during a day survey on 5 May 1993.

Figure 10. Density of fish in Skilak Lake, Areas 2 and 3, during a day survey on 5 May 1993.

Figure 11. Density of fish in Skilak Lake, Area 1, runs 1-8, during diel studies conducted on 8 May 1993.

Figure 12. Density of fish in Skilak Lake, Area 1, runs 9-16, during diel studies conducted on 8 May 1993.

Target Strength in dB

Figure 13. Fish target strength measured in Skilak Lake, Alaska in September, 1986-1994.

Figure 14. Relative distribution of juvenile sockeye in the Kenai River system, Alaska 1986-1994.

Figure 15. Relationship between the number of age-0 sockeye salmon fall fry in Kenai and Skilak Lakes and potential egg deposition by mainstem spawners. Values listed indicate brood year of the eggs and fry. Vertical bars are standard errors of estimated fry abundances.

APPENDIX

Appendix A.1. Calibration and processing parametera used in collection and analysis of Kenai and Skilak Lake, Alaska hydroacoustic data, 1993-1994.

Appendix A.2. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska. 5 May 1993.

$\begin{aligned} & \text { Depth } \\ & \text { Stratum } \end{aligned}$ (m)	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Targets } \end{aligned}$	Sigma Mean	Sigma Standard Deviation	Target ${ }^{\text {© }}$ Strength Mean (dB)	Target Strength Standard Deviation (dB)
$2.0-7.0$	8	. $1672 \mathrm{E}-03$.1928E-03	-42.69	8.90
7.0 - 12.0	26	.1331E-03	. 3469 E-03	-48.92	10.21
12.0-17.0	21	.1317E-03	. $3027 \mathrm{E}-03$	-48.23	10.36
17.0-22.0	89	. $5326 \mathrm{E}-04$. $1248 \mathrm{E}-03$	-48.96	7.82
22.0-27.0	379	. $2058 \mathrm{E}-04$.5907E-04	-51.90	6.27
27.0 - 32.0	2500	.1249E-04	.8160E-04	-53.65	5.29
32.0-37.0	3475	.6944E-05	.2007E-04	-54.55	4.71
37.0 - 42.0	2389	.7069E-05	.6088E-04	-55.26	4.36
42.0-47.0	1298	.1546E-04	. $1241 \mathrm{E}-03$	-55.21	4.86
47.0 - 52.0	1261	. $4741 \mathrm{E}-05$.2143E-04	-56.17	3.93
52.0-57.0	2120	. $3206 \mathrm{E}-05$. $3563 \mathrm{E}-05$	-56.60	3.72
57.0-62.0	1849	. $3569 \mathrm{E}-05$. $4285 \mathrm{E}-05$	-56.37	3.98
62.0-67.0	893	. 5643 E-05	.6651E-05	-54.64	4.40
67.0-72.0	197	. $7019 \mathrm{E}-05$.8129E-05	-53.83	4.57
72.0 - 77.0	42	. $5159 \mathrm{E}-05$. $4050 \mathrm{E}-05$	-54.30	3.89
$77.0-82.0$	41	. $5239 \mathrm{E}-05$.5331E-05	- 55.08	4.88
82.0 - 87.0	2	.1197E-05	.8813E-05	-59.90	3.54
87.0 - 92.0	3	.2477E-05	.1283E-05	-56.42	2.09
92.0 - 97.0	0	.0000E-00	. $0000 \mathrm{E}-00$	-00.00	0.00
Total	16593	. $8556 \mathrm{E}-05$. $5848 \mathrm{E}-04$	-55.04	4.76

[^11]```
Appendix A.3. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 8 May 1993.
```

| Depth Stratum (m) | Number of Targets | Sigma Mean | Sigma Standard Deviation | Target ${ }^{0}$ Strength Mean (dB) | Target Strength Standard Deviation (dB) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2.0-7.0 | 301 | . 2332 E -04 | . $3785 \mathrm{E}-04$ | -49.45 | 5.75 |
| 7.0-12.0 | 1183 | .1868E-04 | . $5008 \mathrm{E}-04$ | -50.71 | 5.33 |
| 12.0-17.0 | 845 | . 2067E-04 | . 9690 -04 | -52.13 | 5.70 |
| 17.0-22.0 | 1480 | .1060E-04 | . $3701 \mathrm{E}-04$ | -53.38 | 5.17 |
| 22.0-27.0 | 2263 | .6761E-05 | .1002E-04 | -54.19 | 4.81 |
| 27.0 - 32.0 | 1528 | . $5628 \mathrm{E}-05$ | . 8322E-05 | -54.98 | 4.65 |
| 32.0-37.0 | 703 | . $4614 \mathrm{E}-05$ | . $5427 \mathrm{E}-05$ | -55.30 | 4.25 |
| 37.0-42.0 | 645 | .4540E-05 | . $4617 \mathrm{E}-05$ | -55.36 | 4.31 |
| 42.0-47.0 | 712 | . 3925 E-05 | . $6865 \mathrm{E}-05$ | -56.32 | 4.24 |
| 47.0-52.0 | 1088 | . $3367 \mathrm{E}-05$ | . $2986 \mathrm{E}-05$ | -56.18 | 3.66 |
| 52.0-57.0 | 600 | . $4214 \mathrm{E}-05$ | . $4396 \mathrm{E}-05$ | -55.69 | 4.19 |
| 57.0-62.0 | 161 | . 6920 -05 | .7092E-05 | -53.96 | 4.79 |
| 62.0-67.0 | 81 | . $5323 \mathrm{E}-05$ | . $4973 \mathrm{E}-05$ | -54.35 | 4.01 |
| 67.0-72.0 | 33 | . $4046 \mathrm{E}-05$ | . $28556 \mathrm{E}-05$ | -55.14 | 3.56 |
| 72.0-77.0 | 10 | . $4626 \mathrm{E}-05$ | .2205E-05 | -53.91 | 2.47 |
| 77.0-82.0 | 2 | . 2660E-05 | . $25855 \mathrm{E}-05$ | -57.14 | 5.18 |
| 82.0-87.0 | 0 | . 0000 E-00 | . $0000 \mathrm{E}-00$ | -00.00 | 0.80 |
| 87.0 - 92.0 | 0 | . 0000 E-00 | . 0000 E-00 | -00.00 | 0.00 |
| 92.0-97.0 | 0 | . 0000 E-00 | . $00000 \mathrm{E}-00$ | -00.00 | 0.00 |
| Total | 11635 | . $8858 \mathrm{E}-05$ | . 3493E-04 | -54.09 | 5.09 |

```
Appendix A.4. Average backscattering cross section (sigma)
 and target strength data by depth strata for
 Kenai Lake. Alaska, 4 October 1993.
```

| Depth Stratum (m) | Number <br> of <br> Targets | Sigma | Sigma Standard Deviation | Target ${ }^{0}$ Strength Mean (dB) | Target Strength Standard Deviation (dB) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2.0-7.0 | 198 | .1122E-04 | . 4837 E-04 | -55.52 | 7.32 |
| 7.0 - 12.0 | 541 | . $7691 \mathrm{E}-05$ | .1892E-04 | -56.54 | 7.24 |
| 12.0-17.0 | 2233 | . $5728 \mathrm{E}-05$ | .1919E-04 | -57.16 | 6.48 |
| 17.0-22.0 | 5501 | . 4197 E-05 | . 6045 E-05 | -57.13 | 5.93 |
| 22.0-27.0 | 9171 | . 3710 -05 | .4349E-05 | -57.32 | 5.61 |
| 27.0-32.0 | 9963 | . 3404 - 05 | . 3610 E-05 | -57.40 | 5.38 |
| 32.0-37.0 | 7885 | . 2917E-05 | .3935E-05 | -57.92 | 5.08 |
| 37.0-42.0 | 4362 | .2631E-05 | . 2526 E-05 | -57.96 | 4.78 |
| 42.0-47.0 | 2104 | .2518E-05 | .2551E-05 | -58.09 | 4.65 |
| 47.0-52.0 | 1184 | . 2153E-05 | . $1927 \mathrm{E}-05$ | -58.44 | 4.28 |
| 52.0-57.0 | 707 | .1798E-05 | .1532E-05 | -59.19 | 4.26 |
| 57.0 - 62.0 | 465 | . $1778 \mathrm{E}-05$ | -1822E-05 | -59.39 | 4.28 |
| 62.0-67.0 | 250 | .1790E-05 | .1565E-05 | -59.07 | 4.00 |
| 67.0 - 72.0 | 137 | .1511E-05 | . $1226 \mathrm{E}-05$ | -59.45 | 3.45 |
| 72.0 - 77.0 | 56 | .1666E-05 | .1151E-05 | -59.22 | 4.02 |
| 77.0-82.0 | 28 | .1598E-05 | .1191E-05 | -59.23 | 3.56 |
| 82.0 - 87.0 | 21 | . $1414 \mathrm{E}-05$ | .1971E-05 | -60.45 | 3.75 |
| 87.0 - 92.0 | 5 | . $6158 \mathrm{E}-04$ | . 9034E-04 | -52.55 | 13.29 |
| 92.0-97.0 | 2 | .1831E-05 | .8386E-06 | -57.61 | 2.06 |
| Total | 44813 | . 3476 E-05 | . 7090 E-05 | -57.60 | 5.41 |

- Target strength determined from duai-beam data collected in situ. File: 4aptab94.w51

Appendix A.5. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 26 September 1993.

| Depth Stratum (m) | Number of Targets | Sigma Mean | Sigma Standard Deviation | Target ${ }^{0}$ Strength Mean (dB) | Target Strength Standard Deviation (dB) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2.0 - 7.0 | 1438 | . 9673E-05 | . 2355E-04 | -54.47 | 6.67 |
| 7.0-12.0 | 5619 | . $7465 \mathrm{E}-05$ | . $1159 \mathrm{E}-04$ | -55.46 | 6.61 |
| 12.0-17.0 | 13195 | . $5427 \mathrm{E}-05$ | . 8170 E-05 | -56. 25 | 6.14 |
| 17.0-22.0 | 25486 | . $4469 \mathrm{E}-05$ | . $5374 \mathrm{E}-05$ | -56.69 | 5.83 |
| 22.0-27.0 | 30573 | . $4168 \mathrm{E}-05$ | . $5255 \mathrm{E}-05$ | -56.68 | 5.54 |
| 27.0-32.0 | 26860 | . $3846 \mathrm{E}-05$ | . $4472 \mathrm{E}-05$ | -56.80 | 5.29 |
| 32.0 - 37.0 | 17410 | . $3428 \mathrm{E}-05$ | .4083E-05 | -57.11 | 5.07 |
| 37.0 - 42.0 | 8279 | . $3301 \mathrm{E}-05$ | .4583E-05 | -57.21 | 4.95 |
| 42.0-47.0 | 3645 | . $3993 \mathrm{E}-05$ | . $1239 \mathrm{E}-04$ | -56.85 | 5.09 |
| 47.0-52.0 | 2817 | . $3735 \mathrm{E}-05$ | . $5015 \mathrm{E}-05$ | -56.89 | 5.04 |
| 52.0-57.0 | 1523 | .3992E-05 | . $5051 \mathrm{E}-05$ | -56.47 | 4.91 |
| 57.0 - 62.0 | 774 | . $3914 \mathrm{E}-05$ | . $4392 \mathrm{E}-05$ | -56.27 | 4.69 |
| 62.0-67.0 | 464 | . $4057 \mathrm{E}-05$ | . $4542 \mathrm{E}-05$ | -56.49 | 5.06 |
| 67.0 - 72.0 | 290 | . 4547E-05 | .4753E-05 | -55.63 | 4.72 |
| 72.0-77.0 | 134 | . 3985E-05 | . $3621 \mathrm{E}-05$ | -55.59 | 3.99 |
| 77.0 - 82.0 | 77 | . $4141 \mathrm{E}-05$ | . $4688 \mathrm{E}-05$ | -56.11 | 4.77 |
| 82.0-87.0 | 59 | . $2517 \mathrm{E}-05$ | . $2263 \mathrm{E}-05$ | -57.74 | 4.33 |
| 87.0 - 92.0 | 39 | . $3679 \mathrm{E}-05$ | . $4112 \mathrm{E}-05$ | -56.65 | 5.01 |
| 92.0 - 97.0 | 5 | . $8688 \mathrm{E}-06$ | . $5658 \mathrm{E}-06$ | -62.14 | 5.11 |
| Total | 138697 | . 4309 E -05 | .6501E-05 | -56.68 | 5.56 |

- Target strength determined from dual-beam data collected in situ. File: 5aptab94.w5I

Appendix A.6. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake. Alaska. 16 November 1993.

| Depth Stratum (m) | $\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Targets } \end{aligned}$ | Sigma | Sigma Standard Deviation | Target ${ }^{0}$ Strength Mean (dB) | Target Strength Standard Deviation (dB) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2.0-7.0$ | 547 | . $7928 \mathrm{E}-05$ | .1173E-04 | -55.29 | 6.44 |
| 7.0 - 12.0 | 2870 | .6346E-05 | . $9945 \mathrm{E}-05$ | -56.28 | 6.49 |
| 12.0-17.0 | 5770 | . $5229 \mathrm{E}-05$ | . $7589 \mathrm{E}-05$ | -57.01 | 6.32 |
| 17.0-22.0 | 12136 | . $4474 \mathrm{E}-05$ | .5433E-05 | -56.87 | 5.97 |
| 22.0-27.0 | 14149 | .4441E-05 | . $5270 \mathrm{E}-05$ | -56.57 | 5.74 |
| 27.0 - 32.0 | 13272 | . $4247 \mathrm{E}-05$ | .4717E-05 | -56.41 | 5.40 |
| 32.0 - 37.0 | 11717 | . $4063 \mathrm{E}-05$ | . $4345 \mathrm{E}-05$ | -56.41 | 5.19 |
| 37.0-42.0 | 8548 | .3810E-05 | . $3842 \mathrm{E}-05$ | -56.41 | 4.88 |
| 42.0-47.0 | 4430 | . $3606 \mathrm{E}-05$ | . $3536 \mathrm{E}-05$ | -56.49 | 4.70 |
| 47.0-52.0 | 2946 | . $3738 \mathrm{E}-05$ | .6482E-05 | -56.48 | 4.60 |
| 52.0-57.0 | 1687 | .3751E-05 | . $5372 \mathrm{E}-05$ | -56.45 | 4.53 |
| 57.0-62.0 | 1080 | . $3647 \mathrm{E}-05$ | . $3590 \mathrm{E}-05$ | -56.38 | 4.53 |
| 62.0-67.0 | 718 | . $3483 \mathrm{E}-05$ | . $3601 \mathrm{E}-05$ | -56.47 | 4.25 |
| 67.0-72.0 | 396 | . $3841 \mathrm{E}-05$ | . $3739 \mathrm{E}-05$ | -56.04 | 4.36 |
| 72.0-77.0 | 289 | .4015E-05 | . 3760 E-05 | -55.73 | 4.22 |
| 77.0 - 82.0 | 130 | . $5121 \mathrm{E}-05$ | . $4613 \mathrm{E}-05$ | -54.75 | 4.40 |
| 82.0-87.0 | 35 | . 2782E-05 | .2499E-05 | -57.16 | 3.60 |
| 87.0-92.0 | 28 | .2038E-05 | .1617E-05 | -58.44 | 4.09 |
| 92.0-97.0 | 0 | . 0000 E-00 | . $0000 \mathrm{E}-00$ | -00.00 | 0.00 |
| Total | 80748 | . $4316 \mathrm{E}-05$ | . $5428 \mathrm{E}-05$ | -56.54 | 5.48 |

```
Appendix A.7. Average backscattering cross section (sigma)
 and target strength data by depth strata for
 Skilak Lake. Alaska. 25 April }1994
```

| Depth Stratum (m) | Number of Targets | Sigma | Sigma Standard Deviation | Target ${ }^{\text {d }}$ Strength Mean (dB) | Target Strength Standard Deviation (dB) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2.0-7.0 | 91 | . $2145 \mathrm{e}-04$ | .4911E-04 | -53.26 | 8.13 |
| 7.0-12.0 | 502 | . 1290 -04 | . $2616 \mathrm{E}-04$ | -54.41 | 7.36 |
| 12.0-17.0 | 2575 | .7448E-05 | .1779E-04 | -55.94 | 6.41 |
| 17.0-22.0 | 4177 | .4823E-05 | .1448E-04 | -57.04 | 5.80 |
| 22.0-27.0 | 6136 | .2475E-05 | . $3310 \mathrm{E}-05$ | -59.20 | 5.40 |
| 27.0 - 32.0 | 5995 | .2165E-05 | . $3267 \mathrm{E}-05$ | -59.69 | 5.36 |
| 32.0-37.0 | 2195 | . 2128E-05 | . $3102 \mathrm{E}-05$ | -60.15 | 5.56 |
| 37.0-42.0 | 1151 | .2804E-05 | .4221E-05 | -59.19 | 5.83 |
| 42.0-47.0 | 865 | . $2754 \mathrm{E}-05$ | . $4043 \mathrm{E}-05$ | -58.87 | 5.65 |
| 47.0-52.0 | 665 | . $3142 \mathrm{E}-05$ | .4100E-05 | -58.44 | 5.82 |
| 52.0-57.0 | 853 | . $4075 \mathrm{E}-05$ | . $4344 \mathrm{E}-05$ | -56.50 | 5.37 |
| 57.0-62.0 | 418 | . 3615 -05 | . $3935 \mathrm{E}-05$ | -56.92 | 4.98 |
| 62.0-67.0 | 287 | . $3795 \mathrm{E}-05$ | . $4148 \mathrm{E}-05$ | -56.46 | 4.71 |
| 67.0 - 72.0 | 117 | .4817E-05 | . $5866 \mathrm{E}-05$ | -56.03 | 5.33 |
| 72.0 - 77.0 | 59 | . $3571 \mathrm{E}-05$ | . $2516 \mathrm{E}-05$ | -55.68 | 3.69 |
| 77.0 - 82.0 | 21 | . $2364 \mathrm{E}-05$ | . $1804 \mathrm{E}-05$ | -57.78 | 4.03 |
| $82.0-87.0$ | 6 | .8569E-06 | . $5824 \mathrm{E}-06$ | -61.82 | 3.89 |
| 87.0 - 92.0 | 2 | .6369E-06 | . $4249 \mathrm{E}-06$ | -62.51 | 3.15 |
| 92.0-97.0 | 2 | .6685E-06 | . $5678 \mathrm{E}-06$ | -62.72 | 4.26 |
| Total | 26117 | . 3645 E-05 | . 1002E-04 | -58.41 | 5.85 |

- Target strength determined from dual-beam data collected in situ. File 7aptab94.w51

Appendix A.8. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake, Alaska, 29 April 1994.

| Depth Stratum (m) | Number <br> of <br> Targets | Sigma | Sigma Standard Deviation | Target ${ }^{0}$ Strength Mean (dB) | Target Strength Standard Deviation (dB) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2.0-7.0 | 876 | . $1075 \mathrm{E}-04$ | . 1487E-04 | -53.85 | 6.76 |
| $7.0-12.0$ | 4799 | . $8236 \mathrm{E}-05$ | .1757E-04 | -54.83 | 6.22 |
| 12.0-17.0 | 9188 | . $5776 \mathrm{E}-05$ | . 8783E-05 | -55.81 | 5.93 |
| 17.0-22.0 | 9488 | .4493E-05 | .8667E-05 | -56.78 | 5.82 |
| 22.0-27.0 | 7011 | . $3677 \mathrm{E}-05$ | . 6489E-05 | -57.56 | 5.63 |
| 27.0 - 32.0 | 3142 | . 2787E-05 | . $3299 \mathrm{E}-05$ | -58.61 | 5.54 |
| 32.0 - 37.0 | 945 | .2495E-05 | . 2819E-05 | -58.94 | 5.41 |
| 37.0 - 42.0 | 319 | .1986E-05 | .2521E-05 | -60.18 | 5.44 |
| 42.0-47.0 | 175 | . $2132 \mathrm{E}-05$ | . $2686 \mathrm{E}-05$ | -59.80 | 5.38 |
| 47.0-52.0 | 151 | . $2053 \mathrm{E}-05$ | . $2315 \mathrm{E}-05$ | -59.41 | 4.89 |
| 52.0 - 57.0 | 66 | . $2238 \mathrm{E}-05$ | .2188E-05 | -58.74 | 4.90 |
| 57.0-62.0 | 48 | .2801E-05 | . 2164E-05 | -57.28 | 4.51 |
| 62.0-67.0 | 36 | .7845E-05 | . $7229 \mathrm{E}-05$ | -53.89 | 5.83 |
| 57.0-72.0 | 34 | . 2268E-05 | .1511E-05 | -57.71 | 3.72 |
| 72.0-77.0 | 23 | . 2692E-05 | . $2291 \mathrm{E}-05$ | -57.88 | 5.23 |
| 77.0 - 82.0 | 2 | . $5672 \mathrm{E}-05$ | . 5891E-05 | -54.15 | 5.76 |
| 82.0-87.0 | 0 | . 0000 E-00 | . $0000 \mathrm{E}-00$ | -00.00 | 0.00 |
| 87.0-92.0 | 7 | .2156E-05 | . $1249 \mathrm{E}-05$ | -57.49 | 3.14 |
| 92.0-97.0 | 0 | . 0000 E-00 | . 0000 E-00 | -00.00 | 0.00 |
| Total | 36310 | .5056E-05 | . 9911E-05 | -56.63 | 5.98 |

- Target strength determined from dual-beam data collected in situ. File 8aptab94.w51

Appendix A.9. Average backscattering cross section (sigma) and target strength data by depth strata for Skilak Lake. Alaska. 27 September 1994.

| Depth Stratum (m) | Number of Targets | Sigma Mean | Sigma Standard Deviation | Target ${ }^{0}$ Strength Mean (dB) | Target Strength Standard Deviation (dB) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2.0-7.0$ | 423 | . 1543E-04 | . 4321 E-04 | -53.12 | 6.98 |
| $7.0-12.0$ | 3096 | . $1216 \mathrm{E}-04$ | . $1979 \mathrm{E}-04$ | -53.16 | 6.61 |
| 12.0-17.0 | 8346 | . $9831 \mathrm{E}-05$ | . $1262 \mathrm{E}-04$ | -53.53 | 6.21 |
| 17.0-22.0 | 13057 | . $8209 \mathrm{E}-05$ | . $1005 \mathrm{E}-04$ | -54.02 | 5.98 |
| 22.0-27.0 | 13804 | .6953E-05 | .1122E-04 | -54.47 | 5.62 |
| 27.0-32.0 | 10873 | .6303E-05 | . 6162E-05 | -54.50 | 5.31 |
| 32.0 - 37.0 | 5256 | . $5938 \mathrm{E}-05$ | . $5980 \mathrm{E}-05$ | -54.48 | 5.01 |
| $37.0-42.0$ | 1701 | . $5764 \mathrm{E}-05$ | . $1885 \mathrm{E}-04$ | -54.83 | 4.91 |
| 42.0-47.0 | 445 | . $5643 \mathrm{E}-05$ | . $6458 \mathrm{E}-05$ | -54.78 | 4.94 |
| 47.0-52.0 | 397 | . $8674 \mathrm{E}-05$ | . $3072 \mathrm{E}-05$ | -53.99 | 5.39 |
| 52.0-57.0 | 449 | . $8343 \mathrm{E}-05$ | . $1067 \mathrm{E}-04$ | -53.72 | 5.50 |
| 57.0-62.0 | 481 | . $8123 \mathrm{E}-05$ | . $7896 \mathrm{E}-05$ | -53.17 | 5.11 |
| 62.0-67.0 | 317 | .6886E-05 | . $5823 \mathrm{E}-05$ | -53.31 | 4.31 |
| 67.0-72.0 | 190 | .6776E-05 | . 5952E-05 | -53.25 | 4.11 |
| 72.0 - 77.0 | 160 | . $7359 \mathrm{E}-05$ | . $5085 \mathrm{E}-05$ | -52.79 | 4.35 |
| $77.0-82.0$ | 83 | . $7352 \mathrm{E}-05$ | . $5286 \mathrm{E}-05$ | -53.39 | 5.59 |
| 82.0 - 87.0 | 30 | . $5997 \mathrm{E}-05$ | . $6670 \mathrm{E}-05$ |  | 7.41 |
| $87.0-92.0$ $92.0-97.0$ | 29 12 | . $7060 \mathrm{E}-05$ | . $4295 \mathrm{E}-05$ | -52.61 | 3.98 |
| 92.0 - 97.0 | 12 | .2928E-05 | . $4147 \mathrm{E}-05$ | -60.55 | 7.70 |
| Total | 59149 | .7747E-C5 | .1183E-04 | -54.14 | 5.73 |

```
Appendix A.10. Average backscattering cross section (sigma) and target strength data by depth strata for Kenai Lake. Alaska, 7 October 1994.
```

| Depth Stratum (m) | Number of <br> Targets | Sigma Mean | Sigma Standard Deviation | Target ${ }^{0}$ Strength Mean (dB) | Target Strength Standard Deviation (dB) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2.0-7.0 | 40 | . $9215 \mathrm{E}-05$ | .2490E-04 | -58.70 | 8.32 |
| $7.0-12.0$ | 312 | . $1235 \mathrm{E}-04$ | .1707E-04 | -53.71 | 7.39 |
| 12.0-17.0 | 1570 | .1033E-04 | . $1418 \mathrm{E}-04$ | -53.97 | 6.82 |
| 17.0 - 22.0 | 4462 | . $8254 \mathrm{E}-05$ | . $9306 \mathrm{E}-05$ | -54.25 | 6.27 |
| 22.0-27.0 | 6734 | . $7578 \mathrm{E}-05$ | . $8410 \mathrm{E}-05$ | -54.15 | 5.78 |
| 27.0-32.0 | 6729 | .6439E-05 | . $6675 \mathrm{E}-05$ | -54.66 | 5.54 |
| 32.0-37.0 | 3818 | . 5857E-05 | . $6062 \mathrm{E}-05$ | -54.75 | 5.24 |
| 37.0-42.0 | 998 | . 5339E-05 | . $5200 \mathrm{E}-05$ | -55.14 | 5.18 |
| 42.0-47.0 | 140 | . $5274 \mathrm{E}-05$ | .4891E-05 | -55.04 | 5.01 |
| 47.0-52.0 | 65 | . $4433 \mathrm{E}-05$ | . $5466 \mathrm{E}-05$ | -55.82 | 4.69 |
| 52.0-57.0 | 24 | . 3200E-05 | . $3155 \mathrm{E}-05$ | -56.75 | 4.07 |
| 57.0-62.0 | 4 | .2422E-05 | .1173E-05 | -56.76 | 2.96 |
| 62.0-67.0 | $\frac{1}{3}$ | . $5676 \mathrm{E}-05$ | . $0000 \mathrm{E}-00$ | -52.46 | 0.00 |
| 67.0-72.0 | 3 | . $1723 \mathrm{E}-05$ | . 1880E-05 | -59.40 | 4.70 |
| 72.0-77.0 | 3 | . $5876 \mathrm{E}-06$ | . $5324 \mathrm{E}-06$ | -63.42 | 3.66 |
| $77.0-82.0$ | 0 | . 0000 E-00 | . 0000 E-00 | - 00.00 | 0.00 |
| 82.0-87.0 | 0 | . $0000 \mathrm{E}-00$ | . $00000 \mathrm{E}-00$ | -00.00 | 0.00 |
| $87.0-92.0$ | 2 | . $8069 \mathrm{E}-06$ | $.7969 E-06$ $.1481 E-06$ | -62.38 | 5.31 3.76 |
| 92.0-97.0 |  | . ${ }^{\text {chat }}$ |  |  |  |
| Total | 24907 | .7245E-05 | .8527E-05 | -54.44 | 5.81 |

The Alaska Department of Fish and Game conducts all programs and activities free from discrimination on the basis of sex, color, race, religion, national origin, age, marital status, pregnancy, parenthood or disability. For information on alternative formats available for this and other Department publications, please contact the Department ADA Coordinator at (voice) 907-465-4120, (TDD) 1-800-478-3648, or (fax) 907-586-6596. Any personal who believes s/he has been discriminated against should write to: ADF\&G, P.O. Box 25526, Juneau, AK 99802-5526; or O.E.O., U.S. Department of the Interior, Washington, DC 20240.

## APPENDIX D

D-1

```
 E SIMEAD EPS-50C
HP Paintuet zrini utility (Lda)
```



File marameters for $\mathrm{A}=$ Vo7272233.dt3

Date : 27/07/93
Time: 22:33: 21 :0 22:42:24
MinTS: -65 dB
Pings: 1369
Size : 409078 bypes
Store under botrom data
Qtore botiom expansion data

Survey area : SKILAK LAKE
Transect: HORIZ LOOK
Trs file name: ES120 (Split) Angle $=4.5 \mathrm{deg}$
Su threshold : -70 dB $<-100$ to 0 dB$)$
TS threshold: -65 dB $(-100$ to 0 dB)
Su color min : -70 dB ( -100 to 0 dB$)$

Figure 2. Prior to dusk

E SIMRAD EPS-500
he PaintJez print utilitiy (Lda)


Figure 3. Aक dusk


APPENDIX E

| Date | Time | SKILAK LAKE FEED STUDY |  |  |  |  | Sample <br> Size |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Daylight <br> Factor | Age | Fish Length (mm) | Fish Weight (g) | Dried <br> Gut Wt <br> (mg) |  |
| 8-Aug | 18:14-18:44 | Daylight | 0 | 46.3 | 1.0 | 1.26280 | 43 |
| 3-Aug | 21:40-22:10 | Dusk | 0 | 43.7 | 0.9 | 2.47364 | 23 |
|  | 22:25-22:55 | Dusk | 0 | 43.7 | 0.8 | 1.64215 | 41 |
| 4-Aug | 20:54-21:24 | Dusk | 0 | 47.6 | 1.1 | 2.40000 | 7 |
|  | 21:38-22:08 | Dusk | 0 | 47.7 | 1.1 | 2.68333 | 6 |
|  | 22:21-22:51 | Dusk | 0 | 43.1 | 0.8 | 1.18248 | 38 |
| 4-Aug | 00:20-00:50 | Dark | 0 | 43.2 | 0.8 | 2.06742 | 139 |
|  | 01:09-01:39 | Dark | 0 | 42.3 | 0.8 | 1.70036 | 66 |
|  | 01:56-02:26 | Dark | 0 | 43.1 | 0.8 | 2.00546 | 84 |
|  | 02:47-03:17 | Dark | 0 | 44.7 | 1.0 | 2.01810 | 30 |
| 5-Aug | 00:16-00:46 | Dark | 0 | 44.8 | 0.9 | 1.67580 | 60 |
|  | 01:01-01:31 | Dark | 0 | 43.7 | 0.8 | 1.42157 | 51 |
|  | 01:47-02:17 | Dark | 0 | 44.9 | 0.9 | 1.69808 | 52 |
|  | 02:29-02:59 | Dark | 0 | 43.7 | 0.8 | 1.30417 | 48 |
| 30-Aug | 09:50-10:20 | Daylight | 0 | 47.8 | 1.1 | 1.26320 | 38 |
| 31-Aug | 19:38-20:08 | Dusk | 0 | 50.5 | 1.3 | 2.61014 | 148 |
|  | 20:24-20:54 | Dusk | 0 | 49.2 | 1.3 | 2.85723 | 159 |
| 31-Aug | 22:45-23:15 | Dark | 0 | 48.8 | 1.2 | 3.08942 | 189 |
|  | 23:29-23:59 | Dark | 0 | 48.5 | 1.2 | 3.24000 | 45 |

## APPENDIX F

## MEMORANDUM <br> Limnology Section Soldoraz

TO: Ken Tarbox Area Biologist

Brace King Research Biologist

FROM: Stan Carlson Biometrician

SUBJECT: 1993 Skilak Lake Townee Analyses
This memo is a brief summary of results of statistical analyses that I conduced to evaluate sockeye salmon fry sampling techniques in Skilak Lake. The overall goal was to develop recommendations that would help improve the sampling design of the fry townetting program. Throughout the 1993 field season a variety of towing methods were undertaken. These included tows at various depths (surface tows, $10 \mathrm{~m}, ~ e t c$.$) , by area (strata), at different$ times (day versus night), and using two types of gear ( 2 -boat versus boomboat). We identified the following objectives: (1) compare sockeye age composition between the different towing methods; (2) compare length and weight of age -0 and (where possible) age-1 fry between methods; (3) compare the proportion of sockeye fry captured between methods; and (4) summarize catch rates (CPUE) for each sampling period and rowing method.

Sockeye age composition, species composition, size data (length and weight), and catch rates were obtained for each of the following sets of tows. Note that some depths are rounded and/or pooled together and date is the start date.


Additionally, all species composition and CPUE information was stored in the file SKO3SPP.

Statistical analyses were generally conducted by date, except for September data which was combined in one analysis. In the case of the discrete data (age classes and species composition), I took the approach of analyzing sets of contingency tables, stratified by area or depth where appropriate. Species composition data were simplified to sockeye and 'other' since non-sockeye species were very rare. Three test statistics were calculated: the standard Chi-Square, ${ }^{2}$ (likelihood ratio chi-square), and Fisher's Exact Test (after relaxing the assumption of fixed marginal totals). I used the three

Note: Backup dutu available on request.

$$
\mathrm{F}-2
$$

statistics in conjunction since there is some controversy over appropriate testing for sparse tables with small expected values (the case here since age0 sockeye dominate the samples). Disparate results were obcained in only 1 out of 52 tests (when the nominal $P=.05$ level of significance was applied). In the case of the continuous data (length and weight), I used standard anova procedures for completely randan designs followed by pair-wise contrasts of sigmificant factors. Tests were conducted at the $\mathrm{ps}_{\mathrm{s}} .05$ significance level and observed $p$-values are given in appendices. The critical assumption in all of the analyses is that each group of fry collected provide a random and representative sample.

## RESULTS

Differences in age and species composition and fiy size (by age) were detected among depths and areas, although this depended somewhat on the time period sampled. Detail is given below for each set of analyses. Contingency tables are provided in appendix A. Sumary tables are provided for significant (P<.05) ANOVA results in appendix B. Appendix $C$ is the CPUE summary. All or part of the output from the statistical analyses is available upon request.

## July (SK200)

Data collected in July were used to make areal (among strata) comparirons of daytime surface tows using the 2 -boat metiod. No differences in sockeye age composition were detected and age-0 fry exceeded 99t in all three areas (A.1). Similarly, no difference among areas in species composition was detected and only two non-sockeye species were netted, both in area 2 (A.2). However, mean length and weight of age-0 fry differed sigmificantly and substantially among the areas, with the largest fiy occurring in area 1 and the smallest in area 3 (B.1). The sample size of age-1 fry was too small to be analyzed ( $n=5$ ).

## August (SR228)

Data collected in August consisted of a complex set of boom-boat tows that included day and might tows of two matching depths conducted in area 1 and various depth tows in all sanpling areas conducted during the day. Sockeye age and species composition and size of age-0 fry collected in area 1 were compared between day and right tows stratified by depths of 0 and 10 m . Age conposition did not depend on timing as only two age-1 fry were obtained in these tows (A.3-4). However, there is some evidence that the proportion of sockeye differed between day and aight tows at the 10 m depth $10 \%$ versus 28.6\%; A. 6 ) but not at the surface (A.5). It is worth pointing out, however, that only a few fish were obtained in the surface-day tows ( $n=38$ ) and 10 m night tows ( $n=14$ ); further studies may be needed to Eully address the timing issue. Mean length and weight of age -0 fry did not differ between day and night tows sampled ar 10 m . However, age-0 fry collected at the surface during the day were significantly larger than fry ottained in night-surface and day- 10 m tows (B.2).

Areal comparisons were made for the surface (all areas) and 15 m (areas $2 \& 3$ ) depth tows conducted during the day. No differences among areas in age composition were detected in the surface tows (A.7). However, the proportion of age-1 fry netted at 15 m was significantly higher in area 3 than in area 2 (15t and .5f, respectively; A.8). There is some indication that age composition differs among areas at the surface but sample sizes were small in areas $2 \& 2$ (38 and 10, respectively; A.9) and only two nom-sockeye species were captured. In the 10 m tows, a significantly higher proportion of nonsockeye species were captured in area 3 than in area 2 (16.2\% and I. $4 \%$, respectively; A.10). Age-0 fry collected in surface tows were significantiy larger in area 1 than in areas $20 \ln$ (B.3). No differences in fry size were decected between areas $2 \& 3$ at 15 m .

$$
F-3
$$

Comparisons among depth increments were made for each area and for night rows in area 1. For the daytime tows, age composition differed significantly among depths in all three areas (A.11-13). Bigher proportions of age-1 fry occurzed in the $15-25 \mathrm{~m}$ depths (e.g., in area 3. 14.6 tit at 15 m versus $.3 \%$ at 0 m ). Note, however, that very small samples were obtained in some of these tows. Species composition also depended upon depth in areas 2 and 3 with generally higher occurrence rates of non-sockeye species in the deeper zones (A.14-16; e.9.. in area 3, $16.1 \%$ at 15 m versus of at 0 m ). Size of age- 0 fry also differed among depths (B.4). In area 1 significantly larger fry were netted near the surface. On the other hand, the larger fry in area 2 were collected at 25 m (B.5). In area 3 slightly heavier fiy were collected at 15 m compared to the surface (B.6).

For the aight tows, a significantly higher proportion of age-1 fry were netted at 15 m ( $9 \%$ ) than at the surface (.4\%) or at $10 \mathrm{~m}(0 \%)(A .17)$; however, note that only 11 sockeye were captured at 10 m . Species composition also varied signi \#icantly between depths with the highest proportion of non-sockeye species occurring at 10 m (29\%), coupared to $3.1 \%$ at the surface and $1.6 \%$ at 15 m (A.18). Again, this result is based on a sample size of only 14 fish at 10 m . Age-0 fry captured at 10 m were also sigmificantly larger than those captured at the surface or at 15 m (B.7).

September (SK257-265)
Data from tows conducted on Sept. 13-15 (SK257) were used to compare gear types ( 2 -boat versus boom-boat). These surface tows were conducted during the day in each of the three areas. No difference in fry age composition between gear types was detected (A.19-21). Also, no differences in species composition were detected in areas 1 and 2 (A.22-23). However, in area 3 the 2-boat method captured a sigmificantly higher proportion of non-sockeye species than the boom-boat (2.3t versus .if; A.24). Note that this data was c=it=ised entirely of stickleback $(n=26)$ captured in a single tow. Overall. gear type did not have a significant effect on the size (length or weight) of fiy captured (age-0 or age-1).

Differences in age composition among areas were not derected for the 2 -boat method (A.25). However, the boom-boat captured a significantly lower proportion of age-1 fry in area 1 than in areas 2 and 3 (.3\%, 1.8\%, and 2.3\%, respectively; A.26). Similarly, no differences in species composition were decected among areas for the 2 -boat method and about 1-2f non-sockeye species were netted (A.27). Boom-boat tows, however, captured a significantly higher proportion of non-sockeye species in areas 1 and 2 compared to area 3 (1.3\%, 1.0\%, and.1t, respectively; A.28). Areal differences in the size of age-0 fyy were detected, with significantly and slightly smaller fry captured in area 3 (B.8). Size of age-1 fry did not differ significantly among areas.

The boom-boat was used to conduct daytime tows on Sept. 22-24 (SK265). These data were used to make comparisons among areas ( 10 m data) and depths; surface tows were not conducted. Age composition of sockeye Ery collected at 10 m differed significantly among the areas with the highest proportion of age-I fry occurring in area $3(10.6 \%)$, followed by area $2(6.7 \%)$, then area 1 ( $1.2 \%$ ) (A.29). Species composition in 10 m tors also differed significantly among the areas, with the highest incidence of 'other' species occurring in area 1 (5.5\%), followed by area 3 (2.5\%), then area 2 (.8\%) (A.30). Size of age-0 and age-1 fry sampled at 10 m did not differ significantly among the areas.

A significant difference in age composition among depths $\geq 10 \mathrm{~m}$ was detected in area 1, with the highest proportion of age-1 fry obtained at 30 m ( $8.8 \%$ versus 0-2t at 10-20 m; A.31). No depth differences in age composition were found in areas 2 and 3 and the proportion of age-1 fry ranged from about 5-12\% (A.32-33). Similarly, no differences in species composition among depths were derected in any of the areas (A.34-36). However, a significant size

$$
F-4
$$

difference in age-0 fry was detected among depths in area 1 , with the largest fry occurring at 30 m (B.9). In area 2, age-1 fry were significancly larger at 15 m than at $10 \mathrm{~m}(B .10)$. No other size differences among depths were detected.

All boom-boat data collected in September were combined so that surface tows could be included in the depth analyses. In all 3 areas, a significantly higher proportion of age-1 Ery occurred at depehs of $10-30 \mathrm{~m}(8-12 \%) \mathrm{m}$ compared to surface tows (<3\%; A.37-39). Similarly, non-sockeye species occurred at higher rates in the $10-30 \mathrm{~m}$ tows compared to surface tows (e.g., in area $1,5-13 \neq v e r s u s$ 1.3t at the surface; A.40-42). Size of age-0 fry differed among depths with the largest fry occurring in surface tows and at 20-30 m (B.11-13); the smaller fry occurred at $10-15 \mathrm{~m}$. Size of age-1 fry differed significantly among depths in area 2 only, where larger fry were collected at 15 m (B.14); area 3 showed a similar, but non-significant trend.

## November (SK319)

In November the boom-boat was used to make depth and areal conparisons of daytime tows. Age composition differed significantly among depths in all 3 areas with higher proportions of age-1 fry (about 5\%) occurring at depths of 20 m compared to the surface (<1\%; A.43-45). Species composition also differed significantly among depth: with the highest proportions of nonsockeye species occursing in the 13-20 m tows (7-11\% versus <.4t at the surface; A.46-48). Larger age-0 fry were collected at 20 m than at the surface or at $12 \mathrm{~m}(B, 15 \& \mathrm{~B} .17)$. No differences among depths in the size of age-I fry were detected.

Ery age composition and species composition did not differ significantly among areas at the surface or at 20 m (A.49-52). A sigaificant difference in the size of age-0 fry was detected among areas, with area 2 fry being slightly larger than fry collected in areas 1 and 3 (B.15-16). No differences in the size of age-1 fry were detected.

## CPUE

Catch rates were calculated for sockeye, now-sockeye, and all species by defining 30 minutes of towing as one unit of effort. Data for each set of tows was pooled (by date, area, depth, time, and gear) and then total counts converted to CPUE (C.I-3). As expected, variability in CPUE among (comparable) tows was high, which may indicate a generally clumped dispersion pattern of fish.

## RECOMMENDATIONS

There is substantial evidence of differences among sampling areas and between depth increments in sockeye fry age structure, size of age-0 fry, and species couposition. In cases of relatively small sample sizes, however, the representativeness of the tow(s) may be questionable (especially considering that the fish are probably patchily dispersed). The two types of gear used gave reasonably similar results, although there is some indication that the boom-boat captures a lower proportion of age-1 fry than the 2 -boat method. More studies are needed to fully address differences between day and night towing.

Results of the statistical analyses indicate that, for estimation purposes, stratification of daytime tows by area and depth should be undertaken. The desired number of depth strata is still in question, but 2 or 3 (including surface tows) should be adequate. The major problem lies in apportioning
depth strata (within areas) to the hydroacoustic estimates (Ken has indicated that this would be very difficult). One possible way around this problem would be to sample in proportion to fish abundance within each depth increment. The data could then be pooled and treated as a random sample of the area. If certain assumptions are met, equivalent length (time) tows at each depth may accomplish this. One critical assumption is that CPUE be linearly or proportionally related to fish abundance or density, which may not be the case. Capture efficiency atudies could be undertaken in the upcoming field season to address this problem.
appendices
cc: Dana Schmidt Linda Brannian









APPENDIX G

Page No. 1
SKILAK
water ouality summary
General Tests and Metals

LAKE DATE STA DEPTH Sp. Cond. Ph Alkalinity Turbidity Color Calcium Magnesium Iron (M) (umhos/cm) (Units) (mg/l) (NTU) (Pt) (mg/l) (mg/l) (ug/l)

| SKILAK | 04/25/94 | A | 1 | 61 | 6.7 | 18.0 | 7.4 | 3 | 10.0 | $<0.3$ | 413 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SKILAK | 04/25/94 | A | 2 | NA |
| SKILAK | 04/25/94 | A | 50 | 61 | 6.6 | 19.0 | 8.5 | 4 | 10.0 | $<0.3$ | 406 |
| SKILAK | 04/25/94 | B | 1 | 62 | 6.6 | 20.0 | 11.2 | 5 | 11.0 | $<0.3$ | 588 |
| SKILAX | 04/25/94 | C | 1 | 61 | 6.6 | 21.0 | 6.5 | 5 | 10.0 | 0.7 | 391 |
| SKILAK | 05/25/94 | A | 1 | 59 | 6.9 | 21.0 | 8.3 | 4 | 9.5 | $<0.3$ | 462 |
| SKILAK | 05/25/94 | A | 50 | 60 | 6.8 | 21.0 | 10.3 | 5 | 9.5 | 0.8 | 485 |
| SKILAX | 05/25/94 | B | 1 | 60 | 6.7 | 19.0 | 5.0 | 5 | 9.5 | 0.8 | 426 |
| SKILAX | 05/25/94 | B | 50 | 61 | 6.6 | 18.5 | 3.9 | 6 | 9.5 | 0.8 | 302 |
| SKILAK | 05/25/94 | C | 1 | 61 | 6.6 | 18.5 | 4.2 | 4 | 9.5 | 0.8 | 330 |
| SKILAK | 05/25/94 | C | 50 | 61 | 6.6 | 19.0 | 8.8 | 3 | 9.5 | 0.8 | 456 |
| SKILAK | 06/23/94 | A | 1 | 64 | 7.3 | 21.0 | 8.6 | 6 | 10.4 | $<0.3$ | 383 |
| SKILAK | 06/23/94 | A | 2 | NA |
| SKILAK | 06/23/94 | A | 70 | 63 | 7.2 | 21.0 | 10.0 | 4 | 10.4 | 0.7 | 432 |
| SKILAK | 06/23/94 | B | 1 | 63 | 7.3 | 20.0 | 5.3 | 9 | 10.4 | 0.7 | 205 |
| SKILAK | 06/23/94 | B | 2 | NA |
| SKILAK | 06/23/94 | B | 50 | 63 | 7.3 | 20.0 | 12.4 | 4 | 10.4 | 0.7 | 578 |
| SKILAK | 06/23/94 | C | 1 | 64 | 7.3 | 21.0 | 8.7 | 3 | 9.6 | 0.7 | 410 |
| SKILAK | 06/23/94 | C | 2 | NA |
| SKILAK | 06/23/94 | C | 50 | 65 | 7.2 | 21.0 | 10.2 | 4 | 9.6 | 0.7 | 408 |
| SKILAK | 07/13/94 | $A$ | 1 | 69 | 7.0 | 23.0 | 7.8 | 4 | 10.0 | $<0.3$ | 292 |
| SKILAK | 07/13/94 | A | 50 | 68 | 6.7 | 23.0 | 7.5 | 4 | 10.0 | 0.5 | 310 |
| SKILAK | 07/13/94 | B | 1 | 69 | 6.8 | 24.0 | 7.2 | 4 | 10.0 | 0.5 | 366 |
| SKILAK | 07/13/94 | B | 50 | 68 | 6.8 | 24.0 | 9.0 | 12 | 10.0 | $<0.3$ | 156 |
| SKILAK | 07/13/94 | C | 1 | 69 | 6.8 | 24.0 | 7.2 | 5 | 10.0 | $<0.3$ | 318 |
| SKILAK | 07/13/94 | C | 50 | 68 | 7.0 | 23.0 | 12.9 | 5 | 10.0 | 0.7 | 566 |
| SKILAK | 08/10/94 | A | 1 | 68 | 6.8 | 21.0 | 1.7 | 5 | 9.5 | 0.6 | 104 |
| SKILAK | 08/10/94 | A | 50 | 67 | 6.8 | 25.0 | 7.7 | 8 | 9.5 | 0.6 | 319 |
| SKILAK | 08/10/94 | B | 1 | 73 | 6.9 | 21.0 | 5.4 | 9 | 9.5 | $<0.3$ | 529 |
| SKILAK | 08/10/94 | B | 50 | 64 | 6.8 | 22.0 | 21.0 | 12 | 9.5 | 0.6 | 791 |
| SKILAK | 08/10/94 | C | 1 | 71 | 6.8 | 25.0 | 2.2 | 12 | 9.5 | 0.6 | 183 |
| SKILAK | 08/10/94 | C | 50 | 66 | 6.9 | 27.0 | 13.2 | 10 | 9.5 | 0.6 | 602 |
| SKILAK | 09/27/94 | $A$ | 1 | 66 | 7.5 | 22.5 | 7.4 | 6 | 9.9 | 0.6 | 388 |
| SKILAK | 09/27/94 | $A$ | 50 | 65 | 7.4 | 22.0 | 12.2 | 5 | 9.9 | 0.6 | 528 |
| SKILAK | 09/27/94 | B | 1 | 68 | 7.4 | 22.5 | 9.2 | 6 | 9.9 | 0.6 | 442 |
| SKILAK | 09/27/94 | B | 50 | 62 | 7.4 | 20.5 | 25.2 | 6 | 9.9 | 0.6 | 1584 |
| SKILAK | 09/27/94 | C | 1 | 65 | 7.4 | 21.5 | 8.4 | 9 | 9.9 | 0.6 | 393 |
| SKILAK | 09/27/94 | C | 50 | 64 | 7.4 | 21.5 | 11.1 | 10 | 9.9 | 0.6 | 842 |
| SKILAK | 10/19/94 | $A$ | 1 | 64 | 6.7 | 20.0 | 9.8 | 8 | 10.0 | 0.6 | 350 |
| SKILAK | 10/19/94 | $A$ | 50 | 64 | 6.8 | 20.0 | 10.9 | 9 | 10.0 | 0.6 | 516 |
| SKILAK | 10/19/94 | B | 1 | 64 | 6.8 | 20.5 | 13.6 | 9 | 10.0 | 0.6 | 672 |
| SKILAK | 10/19/94 | B | 50 | 64 | 6.8 | 20.0 | 13.8 | 6 | 10.0 | 0.6 | 658 |
| SKILAK | 10/19/94 | C | 1 | 64 | 6.8 | 20.5 | 12.0 | 8 | 10.0 | 0.6 | 590 |
| SKILAK | 10/19/94 | C | 50 | 64 | 6.8 | 20.5 | 10.7 | 5 | 10.0 | 0.6 | 288 |

LAKE DATE STA DEPTH TP TFP FRP TKH NH3+NH WO3+NOZRSi Carbon TPP Chl a Phaeo a (M) (ug/l) (ug/l) (ug/l) (ug/t) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l) (ug/l)

| SKILAK | 04/25/94 | A | 1 | 5.5 | 2.7 | 1.0 | 34.7 | $<1.7$ | 202.7 | 1511 | 61 | NA | 0.24 | 0.16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SKILAK | 06/25/94 | $A$ | 2 | NA | HA | MA | NA | M | ma | MA | NA | Na | 0.23 | 0.20 |
| SKILAK | 04/25/94 | A | 50 | 9.1 | 2.7 | 1.5 | 33.1 | $<1.7$ | 208.5 | 1463 | 38 | NA | 0.18 | 0.06 |
| SKILAK | 04/25/94 | B | 1 | 11.7 | 2.5 | 1.9 | 24.2 | $<1.7$ | 220.9 | 1475 | 30 | NA | 0.32 | 0.28 |
| SKILAK | 06/25/94 | C | 1 | 16.7 | 2.7 | 2.2 | 40.3 | $\leqslant 1.7$ | 221.8 | 1457 | 38 | na | 0.32 | 0.26 |
| SKILAK | 05/25/94 | A | 1 | 5.9 | 1.5 | 1.3 | 23.4 | $<1.7$ | 217.6 | 1336 | 55 | NA | 0.29 | 0.11 |
| SKILAK | 05/25/94 | A | 50 | 4.5 | 2.0 | 1.7 | 28.2 | $<1.7$ | 217.6 | 1336 | 33 | NA | 0.19 | 0.19 |
| SKilak | 05/25/94 | B | 1 | 3.9 | 1.5 | 1.3 | 27.4 | $<1.7$ | 260.0 | 1360 | 30 | MA | 0.12 | 0.12 |
| SKilak | 05/25/94 | 8 | 50 | 4.8 | 4.6 | 4.0 | 27.4 | $\leqslant 1.7$ | 235.8 | 1383 | 33 | NA | 0.08 | 0.07 |
| SKILAK | 05/25/94 | c | 1 | 5.5 | 1.0 | 1.2 | 25.0 | $<1.7$ | 224.2 | 1360 | 33 | MA | 0.18 | 0.16 |
| SKILAK | 05/25/94 | C | 50 | 6.3 | 0.9 | 1.4 | 26.6 | 2.1 | 211.8 | 1360 | 33 | Na | 0.13 | 0.07 |
| SKilak | 06/23/94 | A | 1 | 10.6 | 2.2 | 2.3 | 44.1 | 2.7 | 198.5 | 1420 | 94 | NA | 0.43 | 0.25 |
| SKILAK | 06/23/94 | $A$ | 2 | MA | HA | HA | HA | HA | MA | NA | NA | na | 0.56 | 0.27 |
| SKILAK | 06/23/94 | A | 70 | 8.4 | 0.9 | 1.1 | 24.6 | $<1.7$ | 216.8 | 1369 | 49 | Na | 0.12 | 0.10 |
| SKILAK | 05/23/94 | B | 1 | 7.4 | 3.2 | 4.1 | 31.4 | $<1.7$ | 207.6 | 1375 | 74 | Na | 0.47 | 0.21 |
| SKILAK | 06/23/94 | B | 2 | NA | MA | NA | HA | NA | MA | NA | NA | Na | 0.40 | 0.25 |
| SKILAK | D6/23/94 | B | 50 | 9.8 | 0.9 | 1.2 | 26.9 | $\leqslant 1.7$ | 223.4 | 1429 | 52 | Na | 0.09 | 0.09 |
| SKILAK | 06/23/94 | C | 1 | 4.0 | 1.1 | 0.9 | 32.9 | 2.1 | 245.1 | 1405 | 80 | na | 0.58 | 0.20 |
| SKILAK | 05/23/94 | c | 2 | na | MA | NA | NA | HA | MA | na | NA | ma | 0.47 | 0.18 |
| SKILAK | 06/23/94 | C | 50 | 10.3 | 0.8 | 1.1 | 29.1 | 2.1 | 223.4 | 1429 | 33 | NA | 0.09 | 0.08 |
| SKILAK | 07/13/94 | $A$ | 1 | 5.3 | 0.7 | 0.9 | 30.6 | 2.1 | 206.0 | 1298 | 66 | NA | 0.22 | 0.11 |
| SKILAK | 07/13/94 | 1 | 50 | 7.6 | 0.8 | 1.4 | 28.4 | 2.1 | 223.4 | 1298 | 55 | NA | 0.10 | 0.08 |
| SKILAK | 07/13/94 | B | 1 | 8.8 | 0.8 | 1.4 | 32.1 | 2.1 | 214.3 | 1298 | 61 | na | 0.17 | 0.20 |
| SKILAK | 07/13/94 | B | 50 | 10.8 | 4.4 | 5.4 | 26.9 | 3.2 | 222.6 | 1499 | 41 | Ha | 0.11 | 0.10 |
| SKILAK | 07/13/94 | C | 1 | 9.6 | 1.7 | 1.8 | 37.5 | 2.7 | 210.1 | 1384 | 77 | Na | 0.39 | 0.20 |
| SKILAK | 07/13/94 | $c$ | 50 | 13.4 | 1.2 | 1.4 | 33.6 | 3.2 | 219.2 | 1327 | 61 | HA | 0.10 | 0.10 |
| SKILAK | 08/10/94 | $A$ | 1 | 6.0 | 1.8 | 1.4 | 59.5 | 3.2 | 177.8 | 1488 | 190 | na | 0.46 | 0.22 |
| SKILAK | 08/10/94 | 1 | 50 | 8.6 | 3.7 | 3.0 | 30.6 | 2.1 | 222.6 | 1508 | 33 | HA | 0.07 | 0.07 |
| SKILAK | 08/10/94 | B | 1 | 9.8 | 1.5 | 1.4 | 39.8 | 2.1 | 202.6 | 1570 | 93 | HA | 0.33 | 0.32 |
| SKILAK | 08/10/94 | B | 50 | 24.6 | 3.7 | 4.9 | 42.0 | 2.1 | 203.5 | 1502 | 193 | wa | 0.06 | 0.07 |
| SKILAK | 08/10/94 | C | 1 | 10.5 | 4.0 | 2.8 | 60.0 | 2.1 | 196.0 | 1529 | 117 | Na | 0.44 | 0.31 |
| SKILAK | 08/10/94 | C | 50 | 20.5 | 2.7 | 2.7 | 35.1 | 2.1 | 212.6 | 1502 | 69 | Na | 0.04 | 0.09 |
| SKILAK | 09/27/94 | $A$ | 1 | 9.5 | 1.8 | 1.4 | 34.4 | 3.2 | 199.3 | 1384 | 94 | NA | 0.56 | 0.12 |
| SKILAK | 09/27/94 | A | 50 | 13.8 | 1.3 | 1.3 | 32.1 | <1.7 | 206.0 | 1371 | 41 | Ha | 0.03 | 0.08 |
| SKILAK | 09/27/94 | 8 | 1 | 8.1 | 1.9 | 1.7 | 38.2 | 4.3 | 226.7 | 1371 | 69 | Ha | 0.38 | 0.17 |
| SKILAX | 09/27/94 | B | 50 | 28.8 | 3.1 | 2.6 | 44.3 | <1.7 | 198.5 | 1328 | 96 | na | 0.07 | 0.07 |
| SKILAK | 09/27/94 | C | 1 | 7.0 | 2.6 | 2.2 | 34.4 | 3.2 | 220.1 | 1346 | 45 | NA | 0.31 | 0.18 |
| SKILAK | 09/27/94 | C | 50 | 19.9 | 2.5 | 2.1 | 37.5 | 3.2 | 225.1 | 1359 | 71 | Na | 0.02 | 0.08 |
| SKILAK | 10/19/94 | A | 1 | 7.5 | 1.8 | 1.7 | 30.6 | 3.2 | 227.6 | 1406 | 30 | NA | 0.18 | 0.19 |
| SKILAK | 10/19/94 | A | 50 | 10.2 | 2.1 | 2.1 | 32.1 | 3.2 | 210.1 | 1386 | 36 | NA | 0.26 | 0.07 |
| Skilak | 10/19/94 | 8 | 1 | 19.3 | 1.9 | 1.6 | 32.9 | 3.2 | 232.5 | 1386 | 46 | Na | 0.08 | 0.17 |
| Stilax | 10/19/94 | B | 50 | 14.8 | 2.4 | 1.9 | 36.0 | 3.2 | 200.2 | 1348 | 36 | na | 0.09 | 0.17 |
| Stilak | 10/19/94 | c | 1 | 9.6 | 2.6 | 2.3 | 37.5 | 3.2 | 235.9 | 1336 | 50 | na | 0.16 | 0.17 |
| SKILAX | 10/19/94 | C | 50 | 11.8 | 1.9 | 1.9 | 39.0 | 3.2 | 211.8 | 1323 | 55 | Na | 0.12 | 0.16 |

Page Mo. 1 11/03/95

KENA」

WATER OUALITY SUMMARY
General Tests and Metals

| LAKE | date |  | DEPTH <br> (K) | Sp. Cond. (umhos/cm) | Ph (Units) | Alkalinity (mg/l) | Turbidity (NTU) | Color $(P t)$ | Calcium <br> (mg/l) | Magnesium (mg/l) | Iron (ug/l) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KENAI | 05/06/94 | 8 | 1 | 69 | 6.3 | 22.0 | 6.7 | 11 | 13.0 | $<0.3$ | 270 |
| KENAI | 05/06/94 | 8 | 2 | \% | NA | NA | MA | NA | NA | MA | Na |
| KENAI | 05/06/94 | B | 50 | 70 | 6.5 | 22.5 | 6.7 | 5 | 12.0 | $<0.3$ | 291 |
| KENAI | 05/06/94 | C | 1 | 69 | 6.4 | 22.0 | 6.8 | 4 | 15.0 | $<0.3$ | 282 |
| KEMAI | 05/06/94 | C | 2 | NA | NA | MA | WA | NA | MA | MA | MA |
| KENAI | 05/06/94 | $C$ | 50 | 69 | 6.6 | 22.0 | 6.3 | 5 | 12.0 | 0.7 | 273 |
| xemal | 05/06/94 | 0 | 1 | 69 | 6.6 | 22.0 | 6.1 | 4 | 12.0 | $<0.3$ | 238 |
| KEMAI | 05/06/94 | 0 | 2 | Na | NA | MA | Na | MA | NA | Na | NA |
| KENAI | 05/06/94 | D | 50 | 69 | 6.5 | 22.0 | 6.7 | 5 | 12.0 | 0.7 | 268. |
| KENAI | 06/08/94 | B | 1 | 72 | 6.9 | 22.0 | 6.0 | 10 | 11.6 | $<0.3$ | 223 |
| KEmAI | 06/08/94 | 8 | 2 | NA | ma | MA | Ma | NA | NA | Na | NA |
| KENAI | 06/08/94 | 8 | 50 | 73 | 6.9 | 22.0 | 4.0 | 2 | 10.6 | $<0.3$ | 199 |
| KENAI | 06/08/94 | c | 1 | 61 | 6.9 | 22.0 | 1.7 | 2 | 11.6 | $<0.3$ | 95 |
| KENAI | 06/08/94 | c | 2 | Na | NA | NA | WA | Na | Na | ma | HA |
| KEmal | 06/08/94 | C | 50 | 69 | 6.9 | 21.0 | 5.0 | 2 | 11.6 | $<0.3$ | 130 |
| KEMAI | 06/08/94 | D | 1 | 72 | 6.8 | 22.0 | 4.1 | 2 | 11.6 | $<0.3$ | 116 |
| KEma! | 06/08/94 | D | 2 | Ha | na | MA | NA | Na | Na | Na | ma |
| KEMAI | 06/08/94 | D | 50 | 72 | 6.8 | 22.0 | 5.3 | 3 | 11.6 | $<0.3$ | 140 |
| KEmal | 06/30/94 | B | 1 | 78 | 7.0 | 23.5 | 3.9 | 2 | 11.8 | 0.7 | 145 |
| KENAI | 06/30/94 | 8 | 24 | NA | MA | MA | NA | Na | Na | na | na |
| KENAI | 06/30/94 | B | 2B | Na | ma | NA | Na | na | na | na | NA |
| KENAI | 06/30/94 | B | 50 | 78 | 6.8 | 23.0 | 4.8 | 2 | 11.8 | 0.7 | 154 |
| KEmAI | 06/30/94 | C | 1 | 77 | 7.0 | 23.5 | 6.0 | 2 | 11.8 | 0.7 | 218 |
| KENAI | 06/30/94 | $C$ | 2A | Na |
| KEmal | 06/30/94 | C | 28 | Na | MA | na | Na | NA | ma | Na | Ha |
| KEMAI | 06/30/94 | C | 50 | 78 | 6.9 | 23.0 | 8.1 | 2 | 11.8 | $<0.3$ | 334 |
| KENAI | 06/30/94 | D | 1 | 77 | 7.0 | 23.0 | 4.3 | 2 | 11.8 | 0.7 | 125 |
| KENAI | 06/30/94 | D | 2 A | ka | ma | Na | HA | NA | ha | Ha | Na |
| XENAI | 06/30/94 | D | 28 | na | NA | na | ma | MA | MA | ma | Ha |
| KENAI | 06/30/94 | D | 50 | 76 | 6.8 | 23.0 | 4.8 | 2 | 11.8 | 0.7 | 78 |
| KENAI | 07/29/94 | B | 1 | 74 | 7.0 | 24.0 | 4.0 | 2 | 11.7 | 0.9 | 172 |
| KENAI | 07/29/94 | B | 2 | Na | NA | Na | Ha | NA | Na | NA | NA |
| KEnAI | 07/29/94 | 8 | 50 | 74 | 7.0 | 24.0 | 4.2 | 4 | 11.7 | 0.9 | 172 |
| KENAI | 07/29/94 | C | 1 | 71 | 7.0 | 24.0 | 4.2 | 3 | 11.7 | 0.9 | 128 |
| KENAI | 07/29/94 | C | 2 | NA | NA | ma | na | WA | na | NA | NA |
| KEnAI | 07/29/94 | C | 50 | 73 | 7.2 | 26.0 | 5.7 | 2 | 11.7 | 0.9 | 260 |
| Kenat | 07/29/94 | 0 | 1 | 74 | 7.2 | 24.0 | 4.8 | 4 | 11.7 | 0.9 | 208 |
| KENAI | 07/29/94 | D | 2 | NA | Ma | ma | ma | Ha | na | HA | NA |
| KENAI | 07/29/94 | D | 50 | 69 | 7.1 | 22.0 | 25.2 | 2 | 11.7 | $<0.3$ | 1190 |
| KENAI | 08/16/94 | 8 | 1 | 71 | 6.9 | 24.0 | 5.5 | 18 | 10.5 | 0.6 | 178 |
| KEMAI | 08/16/94 | 8 | 50 | 72 | 6.9 | 24.0 | 1.1 | 2 | 10.5 | 1.3 | 40 |
| KENAI | 08/16/94 | c | 1 | 69 | 7.0 | 22.0 | 13.3 | 4 | 10.5 | 0.6 | 596 |
| KENAI | 08/16/94 | C | 50 | 68 | 6.9 | 22.0 | 7.2 | 4 | 10.5 | 0.6 | 296 |
| KENAI | 08/16/94 | D | 1 | 70 | 7.0 | 23.0 | 10.7 | 2 | 10.5 | 0.6 | 418 |
| KENA! | 08/16/94 | 0 | 50 | 71 | 6.9 | 23.0 | 3.9 | 2 | 10.5 | 0.6 | 195 |
| KENAI | 09/28/94 | B | 1 | 71 | 7.0 | 21.0 | 3.6 | 2 | 10.9 | 0.6 | 152 |
| KENAI | 09/28/96 | B | 50 | 72 | 6.9 | 21.5 | 2.9 | 2 | 11.9 | $<0.3$ | 173 |
| KEMAI | 09/28/94 | C | 1 | 71 | 6.9 | 21.0 | 12.1 | 2 | 10.9 | 0.6 | 636 |
| KENA! | 09/28/96 | c | 50 | 71 | 6.9 | 21.0 | 7.3 | 2 | 10.9 | 0.6 | 658 |

DEPTH TP TFP FRP TKN NH3+NH4 NO3+NO2 RSi Carbon TPP Chl a Phaeo a (M) (ug/l) (ug/l)

| KENAI | 05/06/\% |  | 1 | 6.7 | 8.6 | 7.2 | 32.1 | $<1.7$ | 212.5 | 1555 | 36 | NA | 0.12 | 0.14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KENAI | 05/06/9\% | B | 2 | NA | na | NA | NA | NA | NA | ma | ma | na | 0.28 | 0.10 |
| Kenal | 05/06/\% в | B | 50 | 7.7 | 2.5 | 2.0 | 42.0 | <1.7 | 214.4 | 1543 | 25 | NA | 0.28 | 0.07 |
| kenal | 05/06/\% | C | 1 | 7.3 | 2.1 | 1.6 | 36.0 | <1.7 | 214.4 | 1561 | 17 | NA | 0.10 | 0.13 |
| KENAI | 05/06/94 c | C | 2 | NA | NA | NA | HA | MA | NA | na | ma | na | 0.13 | 0.10 |
| KENAI | 05/06/\%4 c | C | 50 | 7.5 | 2.5 | 1.9 | 32.9 | <1.7 | 216.3 | 1561 | $<8$ | NA | 0.14 | 0.05 |
| KENAI | 05/06/940 | D | 1 | 7.2 | 2.3 | 1.9 | 29.9 | $<1.7$ | 214.4 | 1531 | 9 | NA | 0.13 | 0.14 |
| KENAI | 05/06/960 | 0 | 2 | NA | 0.15 | 0.14 |
| KENAI | 05/06/940 | D | 50 | 7.3 | 2.4 | 1.9 | 30.6 | <1.7 | 214.4 | 1513 | 9 | na | 0.10 | 0.18 |
| KENAI | 06/08/\% | B | 1 | 6.0 | 6.7 | 6.7 | 32.9 | 2.2 | 205.2 | 1513 | 52 | NA | 0.22 | 0.16 |
| KENAI | 06/08/9 | B | 2 | NA | 0.23 | 0.16 |
| KENAI | 06/08/94 | B | 50 | 7.8 | 1.7 | 1.7 | 46.7 | 2.8 | 242.8 | 1502 | 46 | na | 0.16 | 0.19 |
| KENAI | 06/08/9 | C | 1 | 6.7 | 1.9 | 1.8 | 42.0 | 2.2 | 238.1 | 1572 | 33 | NA | 0.24 | 0.16 |
| KENAI | 06/08/94 | c | 2 | na | 0.22 | 0.18 |
| KENAI | 06/08/9 | C | 50 | 8.0 | 1.9 | 1.7 | 37.5 | 3.3 | 219.3 | 1513 | 20 | NA | 0.20 | 0.19 |
| KENAI | 06/08/960 | D | 1 | 6.9 | 2.6 | 2.2 | 37.5 | 4.9 | 216.2 | 1466 | 30 | Na | 0.26 | 0.20 |
| Kenal | 06/08/94 D | D | 2 | NA | 0.15 | 0.12 |
| Kenal | 06/08/96 | D | 50 | 6.5 | 2.4 | 2.2 | 47.4 | 2.8 | 216.2 | 1484 | 36 | NA | 0.24 | 0.19 |
| Kenai | 06/30/9 | B | 1 | 6.0 | 1.1 | 1.1 | 44.3 | 2.8 | 222.4 | 1599 | 30 | Na | 0.17 | 0.14 |
| KENAI | 06/30/94 | 8 | 2 A | NA | 0.26 | 0.17 |
| KENAI | 06/30/94 | B | 28 | na | NA | Na | na | NA | ma | NA | NA | NA | 0.23 | 0.18 |
| Kenal | 06/30/94 | B | 50 | 9.1 | 2.7 | 1.7 | 58.8 | 2.8 | 228.7 | 1587 | 20 | NA | 0.13 | 0.19 |
| Kenal | 06/30/94 | c | 1 | 9.2 | 1.7 | 1.7 | 46.6 | 4.9 | 230.2 | 1732 | 44 | Na | 0.11 | 0.13 |
| KEnAI | 06/30/94 | c | 2A | NA | 0.23 | 0.14 |
| Kenal | 06/30/96 | c | 28 | NA | 0.19 | 0.14 |
| KENAI | 06/30/94 | c | 50 | 12.0 | 2.8 | 1.4 | 42.8 | 4.9 | 220.9 | 1660 | 57 | NA | 0.18 | 0.20 |
| KENAI | 06/30/940 | D | 1 | 5.9 | 1.3 | 0.9 | 27.5 | 4.9 | 227.2 | 1574 | 30 | NA | 0.14 | 0.13 |
| kenal | 06/30/960 |  | 2A | na | 0.10 | 0.16 |
| KEnAI | 06/30/94 | D | 2 B | NA | 0.12 | 0.14 |
| Kenal | 06/30/940 |  | 50 | 7.0 | 1.0 | 0.9 | 30.6 | 3.9 | 228.7 | 1587 | 17 | NA | 0.16 | 0.19 |
| KENAI | 07/29/94 | B | 1 | 3.9 | 1.0 | 0.8 | 34.4 | $<1.7$ | 213.0 | 1640 | 67 | NA | 0.16 | 0.16 |
| KENAI | 07/29/94 | B | 2 | NA | 0.29 | 0.18 |
| KEnAI | 07/29/94 | B | 50 | 4.8 | 5.2 | 2.8 | 29.8 | $<1.7$ | 234.9 | 1616 | 20 | NA | 0.07 | 0.22 |
| kenal | 07/29/94 | c | 1 | 5.0 | 3.7 | 1.9 | 39.1 | <1.7 | 219.3 | 1598 | 33 | NA | 0.22 | 0.15 |
| KENAI | 07/29/9 | c | 2 | NA | 0.30 | 0.16 |
| KENAI | 07/29/94 | C | 50 | 7.3 | 2.4 | 1.5 | 28.2 | <1.7 | 230.2 | 1592 | 22 | NA | 0.04 | 0.26 |
| KENAI | 07/29/94 | D | 1 | 5.5 | 3.5 | 2.2 | 29.8 | <1.7 | 219.3 | 1592 | 28 | NA | 0.13 | 0.14 |
| KEnAI | 07/29/940 | 0 | 2 | NA | NA | NA | NA | NA | ma | NA | NA | NA | 0.40 | 0.16 |
| KENAI | 07/29/960 | D | 50 | 25.4 | 1.2 | 1.4 | 36.0 | $<1.7$ | 195.8 | 1507 | 83 | NA | 0.07 | 0.14 |
| KENAI | 08/16/94 | B | 1 | 6.8 | 11.8 | 11.1 | 39.9 | 2.8 | 234.9 | 1708 | 52 | NA | 0.21 | 0.17 |
| KENAI | 08/16/9 | B | 50 | 2.4 | 1.3 | 1.3 | 32.1 | $<1.7$ | 231.8 | 1770 | 17 | NA | 0.05 | 0.11 |
| kenal | 08/16/9\% | c | 1 | 12.4 | 3.3 | 3.3 | 44.5 | <1.7 | 177.0 | 1577 | 71 | NA | 0.32 | 0.38 |
| Kenal | 08/16/94 | c | 50 | 15.3 | 3.1 | 3.2 | 29.1 | $<1.7$ | 220.9 | 1632 | 44 | NA | 0.05 | 0.10 |
| kenal | 08/16/\% |  | 1 | 7.7 | 1.7 | 1.2 | 36.2 | $<1.7$ | 194.2 | 1564 | 83 | NA | 0.34 | 0.21 |
| KENAI | 08/16/90 |  | 50 | 11.8 | 2.3 | 1.7 | 29.1 | <1.7 | 222.4 | 1653 | 89 | NA | 0.04 | 0.10 |
| KENA! | 09/28/9 | B | 1 | 4.3 | 1.2 | 1.2 | 22.1 | $<1.7$ | 188.0 | 1432 | 54 | NA | 0.21 | 0.16 |
| KENAI | 09/28/9 | B | 50 | 5.7 | 1.0 | 1.0 | 18.2 | <1.7 | 217.8 | 1506 | 12 | NA | 0.05 | 0.08 |
| KENAI | 09/28/94 | C | 1 | 10.8 | 0.9 | 1.0 | 25.2 | <1.7 | 184.8 | 1414 | 49 | NA | 0.16 | 0.16 |
| KEMAI | 09/28/96 | c | 50 | 26.1 | 1.0 | 1.4 | 29.8 | $<1.7$ | 203.6 | 1518 | 110 | NA | 0.03 | 0.07 |

Page No. 2
11/03/95

LAKE

KENAI
KENAI
KENAI
KENAI
KENAI
KENAI
KENAI
KENAI

DATE STA DEPTH Sp. Cond. Ph (M) (umhos/cm) (Units) (mg/l) (NTU) (Pt) (mg/l) (mg/l) (ug/l)

WATER QUALITY SUMMARY
General Tests and Metals

| KENAI | $09 / 28 / 94$ | D | 1 | 70 | 7.1 | 21.0 | 2.1 | 4 | 10.9 | 0.6 | 142 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| KENAI | $09 / 28 / 94$ | D | 50 | 71 | 7.0 | 21.0 | 8.8 | 2 | 11.9 | 0.6 | 342 |
| KENAI | $10 / 25 / 94$ | B | 1 | 70 | 6.4 | 24.0 | 6.7 | 2 | 13.0 | $<0.3$ | 326 |
| KENAI | $10 / 25 / 94$ | B | 50 | 70 | 6.4 | 24.0 | 1.9 | 2 | 12.0 | $<0.3$ | 108 |
| KENAI | $10 / 25 / 94$ | C | 1 | 69 | 6.5 | 23.0 | 3.7 | 2 | 12.0 | $<0.3$ | 184 |
| KENAI | $10 / 25 / 94$ | $C$ | 50 | 70 | 6.6 | 22.0 | 1.7 | 2 | 12.0 | $<0.3$ | 120 |
| KENAI | $10 / 25 / 94$ | D | 1 | 70 | 6.4 | 22.0 | 7.1 | 2 | 12.0 | 0.7 | 413 |
| KENAI | $10 / 25 / 94$ | D | 50 | 70 | 6.4 | 23.0 | 2.4 | 2 | 12.0 | 0.7 | 132 |

Page No. 1 11/03/95

WATER OUALITY SUMMARY
General Tests and Metals

LAKE
DATE STA DEPTH Sp. Cond. Ph Alkalinity Turbidity Color Calcium Magnesium Iron (M) (umhos/cm) (Units) (mg/l) (NTU) (Pt) (mg/l) (mg/l) (ug/l)

| TUSTUMENA | 04/26/94 | A | 1 | 42 | 6.5 | 14.0 | 44.5 | 9 | 5.0 | 0.7 | 2503 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TUSTUMENA | 04/26/94 | $A$ | 30 | 40 | 6.4 | 13.0 | 43.6 | 8 | 5.0 | 0.7 | 2663 |
| TUSTUMENA | 04/26/94 | B | 1 | 40 | 6.4 | 14.0 | 44.3 | 4 | 5.0 | 0.7 | 2365 |
| TUSTUMENA | 04/26/94 | B | 50 | 40 | 6.4 | 15.0 | 44.0 | 6 | 5.0 | 0.7 | 2409 |
| TUSTUMENA | 04/26/94 | C | 1 | 40 | 6.5 | 14.0 | 40.0 | 8 | 5.0 | 0.7 | 2532 |
| TUSTUMENA | 04/26/94 | C | 50 | 40 | 6.6 | 14.0 | 43.9 | 6 | 5.0 | 0.7 | 2596 |
| TUSTUMEMA | 05/24/94 | A | 1 | 40 | 7.4 | 12.5 | 33.1 | 4 | 4.8 | 1.6 | 2702 |
| TUSTUMEMA | 05/24/94 | A | 25 | 40 | 7.2 | 12.5 | 43.0 | 5 | 4.8 | 1.6 | 2617 |
| TUSTUMENA | 05/24/94 | 8 | 1 | 40 | 7.1 | 12.0 | 47.6 | 6 | 4.8 | 1.6 | 2642 |
| TUSTUMENA | 05/24/94 | B | 50 | 40 | 7.0 | 11.0 | 30.8 | 6 | 4.8 | 0.8 | 2622 |
| TUSTUMENA | 05/24/94 | C | 1 | 40 | 6.8 | 11.0 | 28.3 | 8 | 4.8 | 0.8 | 2592 |
| TUSTUMENA | 05/24/94 | C | 50 | 40 | 6.7 | 10.0 | 31.3 | 4 | 4.8 | 0.8 | 2311 |
| TUSTUMENA | 06/17/94 | $A$ | 9 | 43 | 6.7 | 13.5 | 45.0 | 9 | 5.0 | 1.4 | 2562 |
| TUSTUMENA | 06/17/94 | A | 25 | 43 | 6.6 | 13.0 | 48.1 | 13 | 5.0 | 1.4 | 2342 |
| TUSTUMEMA | 06/17/94 | B | 1 | 43 | 6.8 | 13.0 | 48.6 | 5 | 5.0 | 0.7 | 2704 |
| TUSTUMENA | 06/17/94 | B | 50 | 43 | 6.7 | 13.0 | 49.8 | 5 | 5.0 | 0.7 | 2773 |
| TUSTUMENA | 06/17/94 | C | 1 | 43 | 6.8 | 12.5 | 49.0 | 6 | 5.0 | 0.7 | 2754 |
| TUSTUMENA | 06/17/94 | C | 50 | 42 | 6.7 | 12.5 | 50.3 | 8 | 5.0 | 0.7 | 2862 |
| TUSTUMENA | 07/06/94 | A | 1 | 42 | 6.8 | 12.0 | 43.4 | 6 | 5.0 | 1.4 | 1440 |
| TUSTUMENA | 07/06/94 | A | 25 | 42 | 6.8 | 12.0 | 47.0 | 9 | 5.0 | 1.4 | 1520 |
| TUSTUMENA | 07/06/94 | 8 | 1 | 42 | 6.8 | 12.0 | 46.0 | 8 | 5.0 | 1.4 | 1398 |
| TUSTUMENA | 07/06/94 | B | 50 | 49 | 6.7 | 12.0 | 48.0 | 8 | 5.0 | 1.4 | 1496 |
| TUSTLMENA | 07/06/94 | C | 1 | 42 | 6.7 | 12.0 | 50.3 | 5 | 5.0 | 1.4 | 1828 |
| TUSTUMENA | 07/06/94 | C | 50 | 42 | 6.7 | 12.0 | 50.3 | 4 | 5.0 | 1.4 | 1766 |
| TUSTUMENA | 07/28/94 | A | 1 | 42 | 7.1 | 15.0 | 39.9 | 5 | 4.9 | 1.3 | 2414 |
| TUSTUMENA | 07/28/94 | A | 30 | 41 | 7.0 | 15.0 | 47.1 | 6 | 4.9 | 1.5 | 2754 |
| TUSTUMENA | 07/28/94 | B | 9 | 39 | 7.0 | 14.0 | 40.6 | 4 | 4.9 | 0.9 | 2492 |
| TUSTUMENA | 07/28/94 | B | 50 | 41 | 7.0 | 15.0 | 44.1 | 5 | 4.9 | 1.5 | 2777 |
| tustumena | 07/28/94 | C | 1 | 40 | 7.0 | 15.0 | 41.4 | 5 | 4.9 | 0.9 | 2584 |
| TUSTUMENA | 07/28/94 | C | 50 | 40 | 7.0 | 15.0 | 46.5 | 4 | 4.9 | 1.5 | 2827 |
| TUSTUMENA | 08/18/94 | A | 1 | 42 | 6.7 | 13.0 | 35.5 | 4 | 5.0 | 0.7 | 2074 |
| TUSTUMENA | 08/18/94 | A | 30 | 42 | 6.5 | 13.0 | 30.1 | 4 | 5.0 | 1.7 | 1881 |
| TUSTUMENA | 08/18/94 | B | 1 | 40 | 6.7 | 13.0 | 29.0 | 5 | 5.0 | 0.7 | 1840 |
| TUSTUMERA | 08/18/94 | B | 50 | 40 | 6.5 | 13.0 | 32.2 | 8 | 6.0 | 0.7 | 2108 |
| TUSTUMENA | 08/18/94 | C | 1 | 39 | 6.7 | 13.0 | 30.0 | 4 | 5.0 | 0.7 | 1857 |
| TUSTIMENA | 08/18/94 | $C$ | 50 | 40 | 6.7 | 13.0 | 31.1 | 5 | 5.0 | 0.7 | 1860 |
| TUSTUMENA | 09/12/94 | $A$ | 1 | 43 | 6.9 | 13.0 | 39.0 | 5 | 4.9 | 1.4 | 2248 |
| TUSTUMENA | 09/12/94 | $A$ | 25 | 43 | 6.8 | 13.0 | 48.0 | 6 | 4.9 | 0.6 | 2940 |
| TUSTUMENA | 09/12/94 | B | 1 | 43 | 6.8 | 13.0 | 39.0 | 5 | 4.9 | 1.4 | 2392 |
| TUSTUMENA | 09/12/94 | B | 50 | 44 | 6.8 | 13.0 | 49.0 | 4 | 4.9 | 1.4 | 2868 |
| TUSTUMENA | 09/12/94 | C | 1 | 43 | 6.8 | 13.0 | 41.0 | 5 | 4.9 | 1.4 | 2564 |
| TUSTIMENA | 09/12/94 | C | 50 | 43 | 6.8 | 13.0 | 50.0 | 4 | 4.9 | 0.6 | 3140 |
| TUSTUMENA | 10/12/94 | A | 1 | 41 | 6.6 | 11.5 | 41.0 | 4 | 5.0 | 1.3 | 2304 |
| TUSTUMENA | 10/12/94 | $A$ | 30 | 41 | 6.6 | 12.0 | 41.9 | 4 | 5.0 | 1.3 | 2360 |
| TUSTUMENA | 10/12/94 | B | 1 | 41 | 6.6 | 11.5 | 45.9 | 4 | 5.0 | 1.3 | 2639 |
| TUSTUMENA | 10/12/94 | B | 50 | 41 | 6.6 | 11.5 | 51.2 | 5 | 5.0 | 1.3 | 2886 |
| TUSTUMENA | 10/12/94 | C | 1 | 42 | 6.6 | 11.5 | 43.5 | 4 | 5.0 | 1.3 | 2418 |
| TUSTUMENA | 10/12/94 | C | 50 | 41 | 6.6 | 11.5 | 49.0 | 3 | 5.0 | 1.3 | 2754 |


| Page No. | 2 | KENAI |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WATER QUALITY SUMMARY <br> Nutrients and Primary Production |  |  |  |  |  |  |  |  |  |  |  |  |  |
| lake | date | STA | DEPTH <br> (M) | $\begin{aligned} & \text { TP } \\ & \text { (ug/1) } \end{aligned}$ | $\begin{aligned} & \text { TFP } \\ & (\text { Ug } / t) \end{aligned}$ | $\begin{aligned} & \text { FRP } \\ & (u g / t) \end{aligned}$ | $\begin{aligned} & \text { TKM } \\ & (\operatorname{ug} / \mathrm{l}) \end{aligned}$ | NH3+NH4 <br> (ug/l) | N03+NO2 <br> (ug/l) | $\begin{aligned} & \text { RSi } \\ & (u g / l) \end{aligned}$ | Carbon (ug/l) | $\begin{aligned} & \text { TPP } \\ & \text { (ug/t) } \end{aligned}$ | Chl a (ug/l) | Phaeo a (ug/l) |
| Kenal | 09/28/94 | D | 1 | 4.3 | 2.4 | 2.6 | 21.3 | $<9.7$ | 188.0 | 1420 | 33 | ma | 0.17 | 0.17 |
| Kenal | 09/28/94 | D | 50 | 12.5 | 2.3 | 1.2 | 24.4 | $<1.7$ | 203.6 | 1488 | 99 | Na | 0.03 | 0.07 |
| kenal | 10/25/94 | B | 1 | 8.9 | 0.8 | 1.2 | 23.6 | $<1.7$ | 202.1 | 1647 | 33 | na | 0.12 | 0.14 |
| Kenal | 10/25/94 | B | 50 | 8.7 | 0.9 | 1.2 | 24.4 | $<1.7$ | 200.5 | 1586 | 27 | NA | 0.19 | 0.11 |
| KENAI | 10/25/94 | C | 1 | 10.9 | 1.6 | 1.2 | 23.6 | $<1.7$ | 192.7 | 1568 | 44 | na | 0.09 | 0.20 |
| Kenal | 10/25/94 | C | 50 | 10.5 | 2.5 | 1.2 | 23.6 | $<1.7$ | 194.2 | 1623 | 38 | NA | 0.10 | 0.08 |
| KENAI | 10/25/94 | D | 1 | 7.2 | 2.6 | 1.3 | 19.8 | $<1.7$ | 197.4 | 1598 | 38 | na | 0.08 | 0.18 |
| kenai | 10/25/94 |  | 50 | 10.4 | 2.6 | 1.2 | 24.4 | <1.7 | 199.0 | 1604 | 30 | ma | 0.09 | 0.08 |

Page No. 1 11/03/95

TUSTUMEMA

WATER QUALITY SUMHARY
Wutrients and Primary Production

LAKE DATE STA DEPTH TP TFP FRP TKN NH3+NHG NOS $+N O 2$ RSi Carbon TPP ChI a Phaeo a ( 1 ) (ug/l) (ug/l)

| tustumena | 04/26/94 | $a$ | 1 | 38.6 | 5.9 | 6.7 | 47.6 | $<1.7$ | 80.6 | 2314 | 127 | NA | 0.05 | 0.13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tustumema | 04/26/94 | A | 30 | 40.8 | 4.7 | 5.3 | 46.0 | $<1.7$ | 91.8 | 2278 | 116 | NA | 0.03 | 0.12 |
| TUSTUAEmA | 04/26/94 | B | 1 | 39.0 | 5.1 | 4.7 | 46.0 | 2.6 | 97.8 | 2218 | 66 | NA | $<0.01$ | 0.14 |
| TUSTUMENA | 04/26/96 | B | 50 | 43.0 | 6.2 | 6.1 | 45.2 | $<1.7$ | 98.5 | 2206 | 104 | NA | $<0.01$ | 0.09 |
| tustumena | 04/26/96 | C | 1 | 39.1 | 7.2 | 7.1 | 46.8 | 2.6 | 97.0 | 2218 | 181 | NA | 0.02 | 0.15 |
| TUSTUMENA | 04/26/94 | C | 50 | 44.5 | 5.2 | 5.2 | 52.2 | 2.0 | 103.8 | 2206 | 125 | NA | < 0.01 | 0.07 |
| TUSTUMENA | 05/24/94 | a | 1 | 25.2 | 5.2 | 4.3 | 66.2 | 2.6 | 91.8 | 2206 | 156 | Na | 0.07 | 0.14 |
| TUSTUMERA | 05/24/94 | A | 25 | 32.1 | 5.1 | 4.3 | 60.5 | $<1.7$ | 97.0 | 2182 | 156 | NA | 0.05 | 0.13 |
| TUSTUMEMA | 05/24/94 | B | 1 | 34.8 | 4.9 | 3.8 | 71.2 | 3.6 | 91.8 | 2182 | 166 | NA | 0.03 | 0.14 |
| tustumena | 05/24/94 | B | 50 | 25.9 | 7.2 | 5.3 | 64.6 | $<1.7$ | 93.2 | 2148 | 161 | Ha | 0.03 | 0.09 |
| tustumena | 05/24/94 | c | 1 | 38.0 | 6.9 | 5.6 | 80.2 | $<1.7$ | 93.2 | 2112 | 187 | HA | 0.02 | 0.14 |
| TUSTUMEMA | 05/24/94 | C | 50 | 36.7 | 5.0 | 3.7 | 64.6 | $<1.7$ | 103.8 | 2159 | 177 | NA | $<0.01$ | 0.07 |
| tustumena | 06/17/94 | A | 1 | 42.6 | 5.7 | 4.9 | 77.7 | $<1.7$ | 88.0 | 2760 | 332 | MA | 0.94 | 0.72 |
| tustumena | 06/97/94 | 1 | 25 | 43.0 | 9.0 | 8.3 | 58.4 | $<1.7$ | 106.0 | 2737 | 203 | NA | 0.02 | 0.09 |
| tustumena | 06/17/94 | B | 1 | 49.8 | 4.7 | 4.6 | 57.6 | $<1.7$ | 103.0 | 2138 | 172 | KA | 0.19 | 0.15 |
| tusturena | 06/17/94 | B | 50 | 44.5 | 5.2 | 4.7 | 53.8 | $<1.7$ | 105.2 | 2126 | 135 | NA | 0.02 | 0.07 |
| TUSTUMENA | 06/17/94 | C | 1 | 46.1 | 5.8 | 5.0 | 52.2 | $<1.7$ | 109.0 | 2126 | 140 | NA | 0.08 | 0.09 |
| tustumena | 06/17/94 | c | 50 | 47.1 | 5.2 | 3.5 | 53.8 | <1.7 | 100.0 | 2114 | 151 | NA | 0.02 | 0.06 |
| tustumena | 07/06/94 | A | 1 | 35.7 | 3.4 | 3.0 | 71.5 | $\leqslant 1.7$ | 84.3 | 2024 | 259 | NA | 1.00 | 0.46 |
| TUSTUMENA | 07/06/94 | A | 25 | 42.2 | 5.2 | 5.3 | 55.3 | $<1.7$ | 91.0 | 2024 | 161 | NA | 0.10 | 0.12 |
| TUSTUMENA | 07/06/94 | B | 1 | 32.1 | 3.5 | 3.4 | 59.4 | $<1.7$ | 95.5 | 1909 | 151 | Ha | 0.51 | 0.26 |
| TUSTLMENA | 07/06/94 | B | 50 | 41.0 | 5.5 | 5.4 | 66.1 | $<1.7$ | 102.2 | 1956 | 270 | Na | 0.02 | 0.10 |
| tustumena | 07/06/94 | c | 1 | 37.5 | 5.3 | 5.2 | 53.8 | $<1.7$ | 100.8 | 1909 | 259 | NA | 1.60 | 2.14 |
| TUSTUMENA | 07/06/94 | C | 50 | 46.4 | 5.0 | 5.3 | 53.0 | $<1.7$ | 100.8 | 1938 | 244 | NA | $<0.01$ | 0.08 |
| tustumena | 07/28/94 | $A$ | 1 | 34.1 | 3.0 | 3.5 | 107.0 | $<1.7$ | 84.3 | 2186 | 291 | NA | 0.55 | 0.38 |
| tustumena | 07/28/94 | A | 30 | 30.1 | 4.8 | 5.2 | 51.4 | $<1.7$ | 100.8 | 2204 | 177 | Na | NA | MA |
| TUSTUMENA | 07/28/94 | B | 1 | 34.4 | 3.3 | 3.3 | 74.6 | $<1.7$ | 91.8 | 2180 | 156 | NA | 0.41 | 0.48 |
| TUSTUMENA | 07/28/94 | B | 50 | 42.1 | 4.8 | 4.8 | 58.4 | $<1.7$ | 103.0 | 2168 | 234 | NA | 0.02 | 0.15 |
| TUSTUMENA | 07/28/94 | C | 1 | 35.9 | 4.2 | 4.0 | 52.2 | 2.6 | 97.0 | 2180 | 368 | Na | 0.43 | 0.40 |
| TUSTUMENA | 07/28/94 | c | 50 | 42.0 | 4.0 | 3.9 | 46.0 | $<1.7$ | 98.5 | 2186 | 228 | NA | 0.02 | 0.10 |
| tustumena | 08/18/94 | A | 1 | 25.1 | 2.9 | 2.8 | 56.1 | $<1.7$ | 61.2 | 2304 | 441 | NA | 1.52 | 0.33 |
| tustumena | 08/18/94 | A | 30 | 44.0 | 4.5 | 5.1 | 46.8 | $<1.7$ | 101.5 | 2414 | 223 | NA | $<0.01$ | 0.27 |
| tustumena | 08/18/94 | 8 | 1 | 28.7 | 4.0 | 3.9 | 68.5 | $<1.7$ | 58.2 | 2400 | 316 | NA | 1.82 | 0.20 |
| TUSTUMEKA | 08/18/94 | 8 | 50 | 46.4 | 4.3 | 4.9 | 53.0 | $<1.7$ | 102.2 | 2386 | 187 | NA | 0.02 | 0.12 |
| tustumena | 08/18/94 | $c$ | 1 | 32.0 | 2.9 | 3.0 | 55.3 | $<1.7$ | 63.3 | 2386 | 218 | NA | 1.08 | 0.38 |
| TUSTUMENA | 08/18/94 | c | 50 | 49.1 | 5.1 | 5.6 | 48.3 | $<1.7$ | 103.0 | 2413 | 151 | NA | NA | 0.14 |
| tustumena | 09/12/94 | $A$ | 1 | 27.8 | 3.8 | 3.7 | 41.4 | <1.7 | 86.5 | 2090 | 280 | NA | 0.48 | 0.59 |
| tustumena | 09/12/94 | A | 25 | 39.1 | 6.9 | 7.0 | 59.5 | $<1.7$ | 102.2 | 2102 | 182 | NA | $<0.01$ | 0.26 |
| tustumena | 09/12/94 | 8 | 1 | 33.3 | 4.1 | 4.7 | 46.0 | $<1.7$ | 91.8 | 2090 | 182 | NA | 0.31 | 0.44 |
| tustumena | 09/12/94 | B | 50 | 42.6 | 4.8 | 5.8 | 48.4 | $<1.7$ | 107.5 | 2126 | 151 | NA | 0.03 | 0.11 |
| tustumena | 09/12/94 | C | 1 | 33.8 | 4.2 | 4.0 | 49.1 | 4.7 | 91.8 | 2066 | 156 | NA | 0.30 | 0.44 |
| TUSTUMENA | 09/12/94 | $c$ | 50 | 50.1 | 4.5 | 5.4 | 60.7 | 81.7 | 100.8 | 2102 | 161 | na | 0.01 | 0.19 |
| tustumena | 10/12/94 | $A$ | 1 | 32.6 | 4.0 | 4.8 | 45.2 | $<1.7$ | 99.2 | 2468 | 265 | NA | 0.13 | 0.29 |
| tustumena | 10/12/94 | A | 30 | 38.2 | 3.7 | 4.6 | 50.6 | 89.7 | 100.0 | 2316 | 311 | NA | 0.12 | 0.31 |
| tustumena | 10/12/94 | B | 1 | 35.5 | 4.3 | 4.2 | 45.2 | $<1.7$ | 100.6 | 2188 | 156 | NA | 0.10 | 0.17 |
| TUSTUMERA | 10/12/94 | B | 50 | 42.9 | 4.8 | 5.7 | 51.5 | 81.7 | 104.5 | 2138 | 130 | NA | 0.02 | 0.16 |
| TUSTUMENA | 10/12/94 | c | 1 | 35.5 | 4.5 | 4.8 | 48.3 | $\leqslant 1.7$ | 100.0 | 2049 | 130 | NA | 0.07 | 0.21 |
| tustumena | 10/12/94 | c | 50 | 44.0 | 3.5 | 4.7 | 53.0 | $<1.7$ | 100.8 | 2074 | 130 | NA | 0.03 | 0.19 |




| Lake: | SKILAK |
| :--- | :---: |
| Station: | C |
| Depth: | 50 m |
| Year: | 1994 |


| Date: | 25-Apr | 25-May | 22-Jun | 13-Jul | 10-Aug | 27-Sep | 19-Oct |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Seasonal Mean ( $\mathrm{No} / \mathrm{m} 2$ )

## Ergasilus

| Epischura |  |  |  |  |  |  |  | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diaptomus | 3,057 | 9,849 | 11,293 | 7,641 | 10,613 | 9,806 | 3,863 | 8.017 |
|  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| Cyctops | 106,643 | 162.333 | 83,800 | 216,085 | 203,349 | 91.824 | 121.243 | 140,754 |
| Ovig Cyc |  |  |  |  | 20,377 | 9.806 | 2.377 | 4,651 |
| Ovig Diap |  |  |  | 1,274 | 424 | 1,486 |  | 455 |
| Daphnia g. |  |  |  |  |  |  |  | 0 |
| Holopedium |  |  |  |  |  |  |  | 0 |
| Chydorinae |  |  |  |  |  |  |  | 0 |
| Polyphemus |  |  |  |  |  |  |  | 0 |



| Lake: | SKILAK |
| :--- | :---: |
| Sation: | D |
| Depth: | 50 m |
| Year: | 1994 |

## Macrozooplankton Density ( $\mathrm{n} 0 . / \mathrm{m}^{\wedge}$ 2)

| Date: | 25-Apr | 25-Mav | 22-Jun | 13-Jul | 10-Aug | 27-Sep | 19-Oct | ( $\mathrm{No} / \mathrm{m} 2$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ergasilus |  |  |  |  |  |  |  | 0 |
| Epischura |  |  |  |  |  |  |  | 0 |
| Disptornus | 10,613 | 4,245 | 26,321 | 3,821 | 15,622 | 7,132 | 8,490 | 10,892 |
| Cyclops | 176,605 | 261,500 | 165,563 | 117.168 | 457.117 | 206,821 | 104,941 | 212,816 |
| Ovig Cye |  |  |  |  | 38.716 | 28.528 | 4.755 | 10,286 |
| Orig Diap |  |  |  |  |  | 4,075 | 1.358 | 776 |
| Daphnia g. |  |  |  |  |  |  |  | 0 |
| Holopedium |  |  |  |  |  |  |  | 0 |
| Chydorinae |  |  |  |  |  |  |  | 0 |
| Polyphemus |  |  |  |  |  |  |  | 0 |


G-13



| Lake: | KENAI |
| :--- | :---: |
| Station: | C |
| Deptr: | 50 m |
| Year: | 1994 |

Macrozooplankton Density
( $\mathrm{n} 0 . / \mathrm{m}^{\wedge} \mathrm{z}$ )

| Date: | 6-May | 8-Jun | 30-Jun | 29-Jul | 16-Aug | 28-Sep | 25-Oct | ( $\mathrm{No} / \mathrm{m} 2$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OCyc | 85 | 509 | 2,377 | 15,452 | 1,868 | 1,528 | 136 | 3,136 |
| ODiap |  |  | 340 | 297 | 1,019 | 5.943 | 1,087 | 1,241 |
| Diaptomus | 4,500 | 22,414 | 57,395 | 13,967 | 9,509 | 9,170 | 1,630 | 16,941 |
| Cyclops | 24,198 | 76,666 | 94,073 | 97,467 | 71,319 | 80,148 | 88,978 | 76,121 |
| Heterocope |  |  | present |  |  |  |  | 0 |
| Cyclops cap | atus |  |  | present |  |  |  | 0 |
| Daphnia g. |  |  |  |  |  |  |  | 0 |
| Holopedium |  |  |  |  |  |  |  | 0 |
| Chydorinae |  |  |  |  |  |  |  | 0 |
| Polyphemus |  |  |  |  |  |  |  | 0 |



| Lake: | KENAI |
| :--- | :---: |
| Station: | D |
| Depth: | 50 m |
| Year: | 1994 |

## Macrozooplankton Density <br> ( $\mathrm{no} . / \mathrm{m}^{\wedge}$ 2)

| Date: | 6-May | 8-Jun | 30-Jun | 29-Jul | 16-Aug | 28-Sep | 25-Oct | ( $\mathrm{No} / \mathrm{m} 2$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OCyc |  |  | 170 | 3,566 | 8,915 | 1,358 |  | 2,001 |
| OXiap |  |  | 85 | 1,019 | 4,840 | 10.528 | 849 | 2,474 |
| Diaptomus | 6.962 | 15.283 | 20,037 | 25,471 | 23,688 | 9509 | 849 | 14.543 |
| Cyclops | 28.528 | 29,208 | 27,848 | 71,488 | 167,346 | 66,057 | 76.582 | 66,722 |
| Bosmina |  |  |  |  | present |  |  | 0 |

Daphnial. 0

| Daphniag. | 0 |
| :--- | ---: |
| Holopedium | 0 |
| Chydorinae | 0 |
| Polyphermus | 0 |
|  | Total: 85,741 |


|  |  |  |  |  |  |  |  |  | SEASO | AL MEA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & d y \operatorname{Siz} \\ & (\mathrm{~mm}) \end{aligned}$ |  |  |  | Mean <br> Leagth <br> (mm) | Weighted Leagth (mina) | Biomass (mp/m'2) | Weighted Biomass ( $\mathrm{mq} / \mathrm{m} / \mathrm{m}$ 2) |
| Ooye |  |  | 1.21 | 1.17 | 1.21 | 1.18 |  | 1.19 | 1.20 | 11 | 11 |
| ODiap |  |  | 1.02 | 1.35 | 1.30 | 1.29 | 1.24 | 1.24 | 1.29 | 20 | 22 |
| Diaptomus | 0.56 | 0.73 | 1.02 | 1.29 | 1.20 | 1.28 | 1.24 | 1.05 | 1.08 | 71 | 78 |
| Cyclops | 0.78 | 0.84 | 0.93 | 0.64 | 0.80 | 0.79 | 0.67 | 0.78 | 0.76 | 141 | 134 |
| Bosmina |  |  |  |  | 0.34 |  |  | 0.34 | 0.34 |  |  |

Daphnial.

Daphniag

Holopedium

Chydorinae

Polyphemus

| Lake: | KENAI |
| :--- | :---: |
| Station: | $\mathbf{E}$ |
| Depth: | 50 m |
| Year: | 1994 |

Macrozooplankton Density
( $\mathrm{no} . / \mathrm{m}^{\wedge}$ 2)

| (no.m 2) |  |  |  |  |  |  |  | Seasonal Mean ( $\mathrm{No} / \mathrm{mL}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date: | 6-Mav | 8-Jun | 30-Jun | 29-Jul | 16-Aug | 28-Sep | 25-Oct |  |
| OCye |  | 255 | 2,377 | 11,887 | 3,566 | 170 |  | 2,608 |
| ODiap |  |  |  | 340 | 3.269 | 4.755 | 425 | 1,256 |
| Diaptomus | 5,094 | 15,198 | 35,999 | 34,980 | 21,396 | 4,415 | 1,486 | 16.938 |
| Cyodops | 23,518 | 24,707 | 89,998 | 210,565 | 103,119 | 118,186 | 119,715 | 98,544 |
| Bosmina |  |  |  |  |  | 170 |  | 24 |

Heterocope present 0 0 0

Daphniag. 0
Holopedium 0

Chydorinae
0

Polyphemus







| Lake: | TUSTUM |
| :--- | ---: |
| Station: | E |
| Depth: | 50 m |
| Year: | 1994 |

APPENDIX H


|  | AFOGNAK | 09/22194 | 1 | 16 | 52 | 6.5 | 10.0 |  | 1.1 | 8 | 3.0 | 1.2 | 64 | 6.4 | 4.8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AFOGNAK | 09/22194 | 2 | 1 | 51 | 6.6 | 10.0 |  | 0.0 | 9 | 4.0 | 1.2 | 60 | 7.8 | 24.2 : |
|  | AFOGNAK | 09/22294 | 2 | 2 |  |  |  |  |  |  |  |  |  |  |  |
|  | AFOGNAK | 09/22194 | 2 | 11 | 52 | 6.6 | 10.0 |  | 1.1 | 10 | 4.0 | 1.2 | 122 | 6.5 | 4.0 |
|  | AFOGNAK | 10114/94 | 1 | 1 | 54 | 6.5 | 9.0 |  | 1.3 | 9 | 4.0 | 1.3 | 79 | 7.2 | 2.7 |
|  | AFOGNAK | 10114/94 | 1 | 2 |  |  |  |  |  |  |  |  |  |  |  |
|  | AFOGNAK | 10/14/94 | 1 | 16 | 54 | 6.4 | 9.0 |  | 1.0 | 9 | 4.0 | 1.3 | 79 | 7.7 | 2.2 |
|  | AFOGNAK | 10114/94 | 2 | 1 | 50 | 65 | 9.0 |  | 1.3 | 10 | 40 | 1.3 | 82 | 6.0 | 2.1 |
|  | AFOGNAK | 10/14/94 | 2 | 2 |  |  |  |  |  |  |  |  |  |  |  |
|  | AFOGNAK | 10/14/94 | 2 | 10 | 52 | 6.5 | 9.0 |  | 1.0 | 10 | 4.0 | 1.3 | 90 | 6.9 | 6.1 |
|  | AKALURA | 05/16/94 | 1 | 1 | 58 | 6.9 | 13.0 |  | 2.1 | 9 | 5.0 | 1.4 | 56 | 12.5 | 6.3 |
|  | AKALURA | 05/16/94 | 1 | 2 | 0 | 0.0 | 0.0 |  | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | AKALURA | 05/16/94 | 1 | 17 | 58 | 7.2 | 14.0 |  | 3.0 | 8 | 5.0 | 1.4 | 128 | 16.7 | 3.1 |
|  | AKALURA | 05/16/94 | 2 | 1 | 58 | 7.0 | 13.5 |  | 2.4 | 4 | 4.0 | 1.4 | 56 | 12.7 | 3.4 |
|  | AKALURA | 05116/94 | 2 | 2 | 0 | 0.0 | 0.0 | $\because$ | 0.0 . | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | AKALURA | 05/16/94 | 2 | 14 | 58 | 7.1 | 14.0 |  | 3.0 | 5 | 5.0 | 1.4 | 64 | 11.7 | 3.4 |
|  | AKALURA | 06/14/94 | 1 | 1 | 58 | 6.8 | 140 |  | 2.3 | 6 | 5.0 | 0.7 | 66 | 9.5 | 2.8 |
|  | AKALURA | 06/14/94 | 1 | 2 | 0 | 0.0 | 0.0 |  | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 00 |
|  | AKALURA | 06/14/94 | 1 | 16 | 59 | 6.6 | 14.0 |  | 3.0 | 5 | 5.0 | 0.7 | 244 | 12.1 | 2.6 |
|  | AKALURA | 06/14/94 | 2 | 1 | 58 | 6.8 | 14.0 |  | 3.0 | 4 | 5.0 | 0.7 | 84 | 10.1 | 3.0 |
|  | AKALURA | 06/14/94 | 2 | 2 | 0 | 0.0 | 0.0 |  | 0.0 | 0 | 0.0 | 00 | 0 | 0.0 | 0.0 |
|  | AKALURA | 06/14/94 | 2 | 14 | 58 | 6.6 | 13.0 |  | 3.0 | 8 | 5.0 | 0.7 | 308 | 16.9 | 3.8 |
|  | AKALURA | 07/18/94 | 1 | 1 | 56 | 6.9 | 14.0 |  | 3.2 | 4 | 4.9 | 1.5 | 76 | 9.6 | 2.7 |
|  | AKALURA | 07/18/94 | 1 | 2 | 0 | 0.0 | 0.0 |  | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
| 田 | AKALURA | 07/18/94 | 1 | 16 | 61 | 6.6 | 15.0 |  | 2.0 | 10 | 4.9 | 1.5 | 679 | 18.6 | 7.5 |
| $1$ | AKALURA | 07/18/94 | 2 | 1 | 50 | 7.0 | 14.0 |  | 3.3 | 4 | 4.9 | 1.5 | 70 | 10.4 | 3.2 |
| $\omega$ | AKALURA | 07178/94 | 2 | 2 | 0 | 0.0 | 0.0 |  | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | AKALURA | 07118/94 | 2 | 13 | 58 | 6.6 | 15.0 |  | 2.4 | 5 | 49 | 1.5 | 192 | 11.7 | 3.1 |
|  | AKALURA | 08/18/94 | 1 | 1 | 57 | 6.7 | 14.0 |  | 7.5 | 6 | 5.0 | 1.7 | 66 | 19.8 | 3.5 |
|  | AKALURA | 08118/94 | 1 | 2 | 0 | 0.0 | 0.0 |  | 0.0 | 0 | 0.0 | 00 | 0 | 0.0 | 0.0 |
|  | akalura | 08/18/94 | 1 | 17 | 63 | 64 | 16.0 |  | 2.1 | 12 | 50 | 1.7 | 1186 | 50.9 | 13.6 |
|  | AKALURA | 08/18/94 | 2 | 1 | 59 | 7.2 | 15.0 | : | 130 | 9 | 50 | 1.7 | 228 | 10.6 | 14.1 |
|  | AKALURA | 08/18/94 | 2 | 2 | 0 | 0.0 | 0.0 |  | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | AKALURA | 08/18/94 | 2 | 14 | 61 | 6.3 | 15.0 |  | 1.7 | 9 | 5.0 | 1.7 | 434 | 19.9 | 6.5 |
|  | AKALURA | 09126/94 | 1 | 1 | 64 | 7.0 | 150 |  | 0.8 | 6 | 4.9 | 1.3 | 90 | 22.9 | 6.7 |
|  | AKALURA | 09/26194 | 1 | 2 | 0 | 00 | 0.0 |  | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | Aralura | 09126/94 | 1 | 16 | 64 | 7. | 15.0 |  | 1.1 | 3 | 4.9 | 1.3 | 112 | 22.5 | 5.6 |
|  | AKALURA | 09/26/94 | 2 | 1 | 64 | 7.0 | 15.0 |  | 1.0 | 4 | 4.9 | 1.3 | 107 | 18.5 | 6.4 |
|  | AKALURA | 09/26/94 | 2 | 2 | 0 | 0.0 | 00 |  | 0.0 | 0 | 00 | 0.0 | 0 | 0.0 | 0.0 |
|  | AKALURA | 09/26/94 | 2 | 14 | 63 | 7.0 | 150 |  | 1.0 | 6 | 4.9 | 1.3 | 129 | 20.1 | 6.8 |
|  | BIG KITOI | 05/26/94 | 1 | 1 | 66 | 6.8 | 19.0 |  | 1.0 | 20 | 7.6 | 1.6 | 64 | 5.6 | 5.3 |



|  | FRAZER | 00/25/94 | 1 | 1 |  | 54 | 7.3 | 15.0 | 0.4 | 6 | 4.7 | 1.4 | 32 | 3.6 | 1.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | FRAZER | 08/25/94 | 1 | 2 |  | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | FRAZER | 08/25/94 | 1 | 24 | - | 52 | 7.0 | 14.0 | 0.3 | 4 | 4.7 | 1.4 | 30 | 3.6 | 1.7 |
|  | FRAZER | 08/30/94 | 3 | 1 |  | 54 | 6.8 | 13.0 | 0.4 | 6 | 4.8 | 1.3 | 30 | 5.8 | 2.5 |
|  | FRAZER | 08130/94 | 3 | 2 |  | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 00 |
|  | FRAZER | 08/30/94 | 3 | 50 |  | 54 | 6.5 | 12.5 | 0.4 | 4 | 4.8 | 1.3 | 36 | 3.4 | 1.2 |
|  | FRAZER | 10111/94 | 1 | 1 |  | 57 | 6.7 | 13.0 | 0.3 | 4 | 5.0 | 1.3 | 10 | 4.8 | 1.6 |
|  | FRAZER | 10/11/94 | 1 | 2 |  | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 00 |
|  | FRAZER | 10/11/94 | 1 | 23 |  | 56 | 6.6 | 12.0 | 0.4 | 3 | 50 | 1.3 | 11 | 4.7 | 1.8 |
|  | FRAZER | 1011194 | 3 | 1 |  | 56 | 6.7 | 12.5 | 0.4 | 4 | 5.0 | 1.3 | 11 | 4.9 | 1.6 |
|  | FRAZER | 10/11/94 | 3 | 2 |  | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 00 |
|  | FRAZER | 10/11/94 | 3 | 43 |  | 55 | 6.6 | 12.0 | 0.4 | 3 | 5.0 | 1.3 | 12 | 13.5 | 1.5 |
|  | HIODENK | 05/16/94 | 1 | 1 | : | 47 | 6.7 | 7.0 | 0.7 | 13 | 3.0 | 0.7 | 66 | 3.0 | 1.2 |
|  | HIDDENK | 05/16/94 | 1 | 2 |  | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | HIDDENK | 05/16/94 | 1 | 40 |  | 47 | 8.7 | 7.0 | 1.0. | 13 | . 3.0 | 0.7 | 53 | 2.6 | 0.9 |
|  | HIDDENK | 06/16/94 | 1 | 1 |  | 53 | 6.7 | 6.5 | 1.3 | 12 | 3.0 | 0.7 | 0 | 5.8 | 1.1 |
|  | HIDDENK | 06116194 | 1 | 2 |  | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | HIDDENK | 06/16/94 | 1 | 36 |  | 47 | 6.5 | 6.5 | 0.2 | 13 | 3.0 | 0.7 | 0 | 4.2 | 1.2 |
|  | HIDDENK | 07/05/94 | 1 | 1 |  | 45 | 6.4 | 7.0 | 0.7 | 11 | 3.0 | 0.5 | 30 | 5.2 | 1.5 |
|  | HIDDENK | 07105/94 | 1 | 2 |  | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 00 |
|  | HIDDENK | 07/05/94 | 1 | 42 |  | 45 | 6.4 | 7.0 | 0.8 | 14 | 3.0 | 0.5 | 36 | 3.3 | 1.6 |
|  | HIDDENK | 07/29/94 | 1 | 1 |  | 45 | 6.6 | 7.0 | 0.4 | 14 | 2.9 | 1.3 | 74 | 4.4 | 25 |
| $1$ | HIDDENK | 07/29/94 | 1 | 2 |  | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
| U | HIDDENK | 07/29/94 | 1 | 43 |  | 46 | 6.2 | 6.0 | 0.4 | 13 | 2.9 | 0.7 | 65 | 4.6 | 1.2 |
|  | HIDDEN K | 08/19/94 | 1 | 1 |  | 48 | 6.4 | 8.0 | 0.9 | 10 | 3.9 | 1.2 | 87 | 4.8 | 1.8 |
|  | HIDDENK | 00/19/94 | 1 | 2 |  | . 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | HIDDENK | 0819/94 | 1 | 41 |  | 46 | 6.0 | 8.0 | 0.3 | 12 | 2.9 | 1.2 | 68 | 3.3 | 1.4 |
|  | HIDDENK | 09/16/94 | 1 | 1 |  | 50 | 6.6 | 8.0 | 0.4 | 10 | 4.0 | 1.2 | 38 | 7.0 | 1.9 |
|  | HIDDENK | 09/16/94 | 1 | 2 |  | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | HIDDEN K | 09/16/94 | 1 | 39 |  | 49 | 6.2 | 8.0 | 0.4 | 12 | 3.0 | 1.2 | 30 | 9.2 | 2.5 |
|  | HIDDENK | 10/07/94 | 1 | 1 |  | 47 | 6.2 | 7.0 | 0.5 | 11 | 2.9 | $\cdot 1.3$ | 42 | 2.1 | 1.9 |
|  | HIDDEN K | 10/07/94 | 1 | 2 |  | . 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | HIDDEN K | 10/07/94 | 1 | 39 |  | 46 | 6.0 | 7.0 | 0.3 | 11 | 2.9 | 1.3 | 29 | 2.7 | 1.4 |
|  | JENNIFER | 0610194 | 1 | 1 |  | 133 | 7.0 | 17.0 | 0.4 | 15 | 5.8 | 2.1 | 26 | 3.9 | 1.8 |
|  | JENNIFER | 06/01/94 | 1 | 2 |  | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | JENNIFER | 06/01/24 | 1 | 21 |  | 138 | 6.7 | 17.0 | 0.5 | 17 | 5.8 | 2.1 | 30 | 4.4 | 3.5 |
|  | JENNIFER | 07/21/94 | 1 | 1 |  | 130 | 6.6 | 19.0 | 0.8 | 30 | 5.9 | 1.9 | 71 | 5.4 | 10.8 |
|  | JENNIFER | 07/21/94 | 1 | 2 |  | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 00 |
|  | JENNIFER | 07/21/94 | 1 | 20 |  | 134 | 6.4 | 19.0 | 1.0 | 17 | 5.9 | 1.9 | 75 | 4.4 | 2.9 |
|  | JENHIFER | 008181894 | 1 | 1 |  | 130 | 6.5 | 18.0 | 0.6 | 13 | 5.8 | 3.6 | 84 | 5.4 | 3.1 |
|  | JENNIFER | 08/18/94 | 1 | 2 |  | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 00 |



|  | laura | 0789194 |  | 37 | 68 | 6.3 | 11.0 | 1.0 | 13 | 3.9 | 1.3 | 95 | 5.7 | 2.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | laura | 08/19194 |  | 1 | 66 | 6.4 | 10.0 | 0.7 | 13 | 3.9 | 1.2 | 64 | 11.6 | 2.9 |
|  | laura | 08/19/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | laura | 00/19194 | 1 | 34 | 69 | 6.2 | 10.0 | 0.7 | 14 | 3.9 | 2.4 | 83 | 4.3 | 1.9 |
|  | laura | 09/16/94 | 1 | 1 | 69 | 6.6 | 10.0 | 0.7 | 11 | 4.9 | 1.2 | 17 | 11.6 | 2.6 |
|  | laura | 09/16/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | laura | 09/16/94 | 1 | 37 | 81 | 6.5 | 10.0 | 0.6 | 12 | 4.0 | 1.9 | 40 | 4.6 | 2.1 |
|  | laura | 10/07/94 | 1 | 1 | 66 | 6.2 | 10.0 | 0.6 | 12 | 3.8 | 1.3 | 60 | 7.5 | 3.5 |
|  | laura | 1010794 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | laura | 10107194 | 1 | 37 | 65 | 6.0 | 10.0 | 0.7 | 14 | 3.8 | 2.0 | 58 | 4.8 | 1.8 |
|  | LITLE KIt | 05/26/94 | 1 | 1 | 97 | 6.8 | 24.0 | 0.6 | 19 | 9.5 | 2.4 | 51 | 3.8 | 2.5 |
|  | LITTLEKIT | 05/26/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | LITTLE KIT | 05/26/94 | 1 | 18 | 126 | 6.5 | 26.0 | 1.0 | 20 | 9.5 | 2.4 | 57 | 4.3 | 2.3 |
|  | LITTLE Kit | 05/26/94 | 2 | 1 | 95 | 6.6 | 24.0 | 1.0 | 22 | 8.6 | 2.4 | 42 | 4.2 | 2.5 |
|  | LITTLEKIT. | 05/26194 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | LITTLEKIT | 05/26/94 | 2 | 14 | 120 | 6.5 | 30.0 | 5.7 | 18 | 11.4 | 2.4 | 92 | 4.2 | 2.0 |
|  | little kit | 0712494 | 1 | 1 | 106 | 7.2 | 29.0 | 1.0 | 19 | 9.7 | 1.5 | 48 | 4.9 | 3.2 |
|  | LITLLE KIt | 07124/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | LITTLE Kit | 07124/94 | 1 | 18 | 381 | 7.0 | 32.0 | 0.8 | 20 | 11.7 | 7.8 | 42 | 4.4 | 4.4 |
|  | LIttle Kit | 07124/94 | 2 | 1 | 107 | 7.3 | 32.0 | 1.3 | 19 | 8.7 | 1.5 | 68 | 4.8 | 3.9 |
|  | LITLLE KIT | 07124/94 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | LITTLE KIT | 0724/94 | 2 | 15 | 141 | 6.9 | 34.0 | 0.8 | 19 | 12.6 | 2.2 | 30 | 3.7 | 4.1 |
| 1 | LITTLE KIT | 09109194 | 1 | 1 | 113 | 6.9 | 27.0 | 0.8 | 19 | 9.8 | 2.2 | 44 | 4.6 | 3.8 |
| $\checkmark$ | LItTle Kit | 09109194 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 00 |
|  | LITTLE KIT | 0909194 | 1 | 11 | 190 | 6.7 | 27.0 | 0.8 | 14 | 10.8 | 3.7 | 45 | 4.5 | 3.0 |
|  | utite kit | 0909/94 | 2 | 1 | 128 | 7.5 | 33.0 | 0.7 | 15 | 11.8 | 2.2 | 46 | 7.4 | 3.7 |
|  | little kit | 09/09/94 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | LITTLE KIT | 09109/94 | 2 | 15 | 156 | 6.6 | 32.0 | 1.0 | 18 | 11.8 | 2.2 | 57 | 4.5 | 3.5 |
|  | litile kit | 10/27194 | 1 | 1 | 132 | 6.6 | 26.0 | 0.3 | 20 | 12.0 | 2.1 | 6 | 5.6 | 2.8 |
|  | LITILE KIT | 1027/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | LITLLE KIT | 102794. | 1 | 20 | 5990 | 7.6 | 160.0 | 0.7 | $\cdot 97$ | 88.0 | 140.0 | 202 | 62.3 | 64.7 |
|  | LITTLE KIT | 10/2794 : |  | 1 | 224 | 6.6 | 31.0 | 0.3 | 26 | 13.0 | 0.7 | 24 | 6.0 | 4.3 |
|  | LITILE KIT | 1022794 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | LITTLE KIT | 1022794 | 2 | 15 | 129 | 6.6 | 30.0 | 0.4 | 21 | 11.0 | 2.1 | 10 | 6.6 | 3.2 |
|  | malinal | 05105/94 | 1 | 1 | 71 | 6.7 | 20.0 | 1.0 | 8 | 7.0 | 1.4 | 74 | 7.9 | 2.7 |
|  | malinal. | 05105/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | malinal | 05/05/94 | 1 | 10 | 71 | 6.5 | 19.0 | 1.0 | 6 | 7.0 | 1.4 | 60 | 6.1 | 2.7 |
|  | MALINAL | 06/09/94 | 1 | 1 | 72 | 6.8 | 20.0 | 0.9 | 29 | 8.0 | 1.4 | 22 | 5.3 | 12.5 |
|  | MALINAL | 06/09/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | MALINAL | $06 / 09194$ | 1 | 9 | 72 | 6.8 | 20.0 | 0.8 | 5 | 7.0 | 1.4 | 18 | 3.7 | 2.5 |
|  | MALINAL | 06/30/94 | 1 | 1 | 75 | 7.0 | 20.0 | 0.7 | 10 | 7.0 | 2.1 | 38 | 6.6 | 4.5 |


|  | malinal | 06/30/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MALINAL | 06/30/94 | 1 | 9 | 68 | 6.9 | 20.0 | 0.7 | 6 | 7.0 | 2.1 | 32 | 5.1 | 4.1 |
|  | Malinal | 07120/94 | 1 | 1 | 76 | 6.8 | 22.0 | 0.7 | 44 | 6.9 | 1.9 | 29 | 5.3 | 40.9 |
|  | MALINAL | 0720/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | malinal | 07/20/94 | 1 | 9 | 77 | 6.9 | 21.0 | 0.7 | 14 | 6.9 | 1.3 | 30 | 4.2 | 5.5 |
|  | MALINAL | 001294 | 1 | 1 | 76 | 7.0 | 22.0 | 0.4 | 9 | 12.4 | 1.3 | 55 | 7.3 | 5.7 |
|  | malinal | 081/294 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | malinal | 08/12/94 | 1 | 10 | 74 | 6.9 | 22.0 | 0.5 | 21 | 12.4 | 1.3 | 57 | 6.2 | 7.4 |
|  | MALINAL | 08/31/94 | 1 | 1 | 79 | 6.9 | 22.0 | 0.6 | 4 | 6.7 | 2.0 | 54 | 5.2 | 2.7 |
|  | MALINAL | -0831/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | MALINAL | 0831/94 | 1 | 8 | 79 | 7.0 | 22.0 | 0.6 | 5 | 7.7 | 1.3 | 49 | 5.1 | 2.7 |
|  | MALINAL | 09/22/94 | 1 | 1 | 76 | 7.1 | 21.0 | 0.5 | 18 | 7.8 | 1.2 | 23 | 4.4 | 9.3 |
|  | MALINAL | 09/22/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | malinal | 09/22994 | 1 | 9 | 76 | . 7.1 | 22.0 | 1.3 | 14 | 6.8 | 1.2 | 55 | 6.8 | 7.2 |
|  | MALINAL | 10114/94 | 1 | 1 | 77 | : 7.0 | 21.5 | 0.4 | 4 | 8.0 | 2.0 | 28 | 5.8 | 3.1 |
|  | malinal | 10/1494 | 1 | 2 | 0 | 0.0 | 0.0 | - 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | malinal | 10/14/94 | 1 | 9 | 77 | - 6.9 | 21.5 | 0.5 | 4 | 8.0 | 2.0 | 26 | 4.9 | 3.9 |
|  | malima u | 05/05/94 | 2 | 1 | 68 | 6.5 | 18.5 | 1.2 | 8 | 7.0 | 1.4 | 109 | 4.6 | 2.1 |
|  | malitiau | 05/05/94 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | MALINA U | 05/05/94 | 2 | 27 | 68 | 6.5 | 18.0 | 1.0 | 8 | 7.0 | 1.4 | 102 | 7.6 | 2.6 |
|  | malina U | 06/09/94 | 2 | 1 | 69 | 6.8 | 18.0 | 1.0 | 8 | 7.0 | 1.4 | 28 | 5.0 | 1.9 |
|  | mai.ina U | 06/09/94 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | MAIIIIA U | 06/09/94 | 2 | 27 | 71 | 6.8 | 18.0 | 0.8 | 9 | 7.0 | 1.4 | 46 | 4.4 | 2.8 |
| 1 | malina u | 06/30/94 | 2 | 1 | 72 | 7.0 | 18.0 | 1.0 | 6 | 6.0 | 1.4 | 42 | 10.7 | 2.7 |
| $\infty$ | malina u | 06/30/94 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | malina u | 06130/94 | 2 | 27 | 72 | 6.7. | 10.0 | 0.8 | 6 | 7.0 | 1.4 | 43 | 5.9 | 2.5 |
|  | malina u | 07/20/94 | 2 | 1 | 71 | 6.9 | 19.0 | 1.0 | 9 | 6.9 | 1.3 | 36 | 8.0 | 2.8 |
|  | malina u | 07/20/94 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | malina u | 07/20/94 | 2 | 27 | 73 | 6.6 | 19.0 | 1.9 | 13 | 6.9 | 1.3 | 85 | 6.9 | 6.3 |
|  | malina u | 08/1294 | 2 | 1 | 70 | 7.0 | 20.0 | 0.6 | 8 | 6.6 | 1.3 | 82 | 11.0 | 3.8 |
|  | malina u | 08/12194 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | malina u | 08112/94 | 2 | 27 | 73 | 6.6 | 20.0 | 0.6 | 6 | 6.6 | 1.3 | 63 | 6.5 | 3.8 |
|  | malitau | 00/31/94 | 2 | 1 | 73 | 7.0 | 21.0 | 0.8 | 6 | 6.7 | 1.3 | 42 | 5.5 | 2.6 |
|  | malina u | 08/31/94 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | malitiau | 08/31/94 | 2 | 21 | 74 | 65 | 20.0 | 0.6 | 18 | 6.7 | 1.3 | 50 | 7.6 | 5.3 |
|  | MALINA U | 09/2294 | 2 | 1 | 72 | 6.9 | 19.0 | 1.3 | 5 | 6.8 | 1.9 | 39 | 6.0 | 2.9 |
|  | malina u | 09/22/94 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | malina u | 0912294 | 2 | 26 | 72 | 6.8 | 19.0 | 1.3 | 5 | 6.8 | 1.9 | 55 | 7.2 | 4.5 |
|  | malina u | 1011494 | 2 | 1 | 74 | 7.0 | 19.0 | 1.0 | 5 | 7.0 | 1.3 | 43 | 4.6 | 39 |
|  | malina u | 10/14/94 | 2 | 2 | 0 | 0.0 | 0.0 | 00 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | malina u | 10/14/94 | 2 | 26 | 74 | 6.9 | 19.0 | 1.0 | 6 | 7.0 | 2.0 | 40 | 4.7 | 3.5 |


|  | portage | 05/16994 | 1 | 1 | 47 | 6.8 | 8.5 | 2.6 | 22 | 4.0 | 0.7 | 214 | 5.0 | 2.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | portage | 05/16/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | portage | 05/16/94 | 1 | 14 | 48 | 6.8 | 8.5 | 3.5 | 21 | 4.0 | 0.7 | 332 | 5.9 | 2.3 |
|  | portage | 06/16/94 | 1 | 1 | 47 | 6.8 | 10.0 | 2.0 | 20 | 4.0 | 0.7 | 109 | 9.1 | 2.1 |
|  | portage | 06/16/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 00 |
|  | portage | 00/16/94 | 1 | 17 | 03 | 6.7 | 9.0 | 1.4 | 23 | 4.0 | 0.7 | 120 | 5.8 | 3.5 |
|  | portage | 07/06994 | 1 | 1 | 47 | 6.5 | 9.0 | 0.9 | 21 | 4.0 | 0.5 | 106 | 13.9 | 39 |
|  | portage | 07/06/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | portage | 07106/94 | 1 | 17 | 46 | 6.1 | 9.0 | 0.8 | 22 | 4.0 | 0.5 | 126 | 4.6 | 2.4 |
|  | portage | 07/29/94 | 1 | 1 | 45 | 6.5 | 11.0 | 1.4 | 28 | 3.9 | 1.3 | 230 | 20.0 | 5.0 |
|  | portage | 07129/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | portage | 07/29/94 | 1 | 15 | 48 | 6.3 | 11.0 | 0.7 | 20 | 4.1 | 0.8 | 170 | 5.3 | 2.6 |
|  | portage | 08/19/94 | 1 | 1 | 48 | 6.5 | 11.0 | 1.2 | 23 | 3.9 | 1.2 | 182 | 10.6 | 3.9 |
|  | Portage | 08119/94 | 1 | 18 | 49 | 6.0 | 10.0 | 1.0 | 21 | 3.9 | 1.2 | 182 | 5.4 | 2.8 |
|  | portage | 09116/94 | 1 | 1 | 46 | 66 | 10.0 | 1.0 | 19 | 4.0 | 1.2 | 100 | 7.2 | 35 |
|  | portage | 0911684 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 00 | 0.0 |
|  | portage | 09/16194 | 1 | 17 | 55 | 6.2 | 10.0 | 1.6 | 20 | 4.0 | 1.2 | 123 | 5.8 | 2.8 |
|  | portage | 1007/04 | 1 | 1 | 51 | 0.2 | 10.0 | 1.4 | 24 | 3.8 | 1.3 | 260 | 7.9 | 3.0 |
|  | portage | 10107/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | portage | 10/07/94 | 1 | 17 | 51 | 6.2 | 10.0 | 2.0 | 20 | 4.0 | 1.3 | 276 | 8.6 | 3.0 |
|  | RED | 05/1694 | 1 | 1 | 59 | 7.3 | 15.0 | 1.0 | 12 | 5.0 | 1.4 | 28 | 13.7 | 9.4 |
|  | RED | 05/16/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
| ! | RED | 05/16/94 | 1 | 38 | 62 | 7.1 | 15.0 | 1.0 | 5 | 5.0 | 1.4 | 36 | 13.2 | 46 |
| ${ }^{6}$ | RED | 05/16/94 | 2 | 1 | 63 | 7.1 | 15.0 | 1.0 | 3 | 5.0 | 1.4 | 34 | 10.6 | 4.2 |
|  | RED | 05/16/94 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | RED | 05/16/94 | 2 | 38 | 63 | 7.1 | 15.0 | 1.5 | 2 | 5.0 | 1.4 | 46 | 14.1 | 4.7 |
|  | RED | 06/14/94 | 1 | 1 | 61 | 7.2 | 16.0 | 1.0 | 2 | 5.0 | 0.7 | 12 | 9.0 | 4.0 |
|  | RED | 06/14/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | RED | 0611494 | 1 | 38 | 62 | 6.9 | 16.0 | 1.9 | 3 | 5.0 | 0.7 | 212 | 42.0 | 13.4 |
|  | RED | 06/14194 | 2 | 1 | 61 | 7.1 | 16.0 | 2.0 | 3 | 5.0 | 0.7 | 14 | 9.2 | 3.8 |
|  | RED | 06/1494 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 00 |
|  | RED | 0614194 | 2 | 38 | 75 | 7.4 | 20.0 | 2.0 | 2 | 5.0 | 0.7 | 197 | 32.1 | 8.9 |
|  | RED | 07118194 | 1 | 1 | 62 | 6.7 | 16.0 | 0.4 | 3 | 4.9 | 1.5 | 55 | 11.4 | 4.6 |
|  | RED | 07/18/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | RED | 0711894 | 1 | 38 | 63 | 6.6 | 16.0 | 1.8 | 4 | 4.8 | 1.5 | 546 | 76.2 | 22.6 |
|  | RED | 07/1894 | 4 | 1 | 62 | 6.8 | 16.0 | 0.5 | 4 | 4.9 | 1.5 | 59 | 11.7 | 5.1 |
|  | RED | 07118194 | 4 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | RED | 07118194 | 4 | 37 | 64 | 6.7 | 16.0 | 1.8 | 4 | 4.9 | 1.5 | 519 | 70.7 | 26.4 |
|  | RED | 08/18194 | 1 | 1 | 64 | 6.7 | 16.0 | 0.5 | 4 | 5.8 | 1.2 | 30 | 20.6 | 6.3 |
|  | RED | 08118/94 | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
|  | RED | 08/18/94 | 1 | 38 | 65 | 6.2 | 15.0 | 2.7 | 9 | 4.8 | 2.4 | 916 | 125.3 | 63.1 |
|  | RED | 08/18/94 | 2 | 1 | 63 | 6.7 | 16.0 | 0.5 | 3 | 5.8 | 1.2 | 43 | 10.5 | 69 |


| RED | 00/18994 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RED | 00118194 | 2 | 37 | 70 | 6.3 | 16.0 | 3.4 | 5 | 4.8 | 2.4 | 1334 | 130.4 | 45.0 |
| RED | 09722194 | 1 | 1 | 65 | 6.8 | 15.0 | 0.8 | 4 | 5.9 | 1.2 | 22 | 17.2 | 9.5 |
| RED | $09 / 2294$ | 1 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 00 | 0.0 |
| RED | $09122 / 94$ | 1 | 37 | 65 | 6.4 | 15.0 | 1.8 | 5 | 4.9 | 1.9 | 529 | 111.2 | 40.0 |
| RED | $09 / 2294$ | 2 | 1 | 63 | 6.9 | 15.0 | 0.8 | 4 | 4.9 | 1.2 | 34 | 17.9 | 10.7 |
| RED | 09/22194 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
| RED | 09/22/94 | 2 | 37 | 65 | 6.3 | 14.5 | 2.0 | 4 | 5.9 | 1.2 | 648 | 147.9 | 44.8 |
| RED | 10122/94 | 1 | 1 | 62 | 6.9 | 12.0 | 1.1 | 5 | 5.0 | 0.7 | 74 | 34.8 | 16.8 |
| RED | 10R22/94 | 1 | 2 | 0 | 00 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
| RED | 10/22/94 | 1 | 37 | 61 | 6.3 | 17.0 | 1.0 | 6 | 6.0 | 1.4 | 91 | 33.6 | 23.4 |
| RED | 10/22194 | 2 | 1 | 62 | 6.4 | 17.0 | 1.1 | 6 | 6.0 | 1.4 | 77 | 34.2 | 18.1 |
| RED | 1022194 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
| RED | 10/22/94 | 2 | 37 | 62 | 6.4 | 19.0 | 1.5 | 5 | 6.0 | 1.4 | 144 | 39.4 | 17.7 |


| Appendix D. Kodiak Island limnological data for 1994 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAKE | Dale | Sla | Deplt <br> (m) | Fillerable reactive. P (ug/L P) | Total keldahi nitrogen (ug/L $N$ ) | Ammonla <br> (ugh N) | $\begin{aligned} & \text { Nilralet } \\ & \text { nllile } \\ & \text { (ugh N) } \end{aligned}$ | Reactive silicon (ugil SI) | Organic carbon (ugh) | Chlorophylla (ught) | Phaeophylina (ught) |
| AFOGNAK | 05/05/94 | 1 | 1 | 2.5 | 129.5 | 1.7 | 150.4 | 2942 | 201 | 2.33 | 0.01 |
| AFOGNAK | 05/05/94 | 1 | 2 |  |  |  |  |  |  | 1.88 | 0.44 |
| afognak | 05/05/94 | 1 | 17 | 3.0 | 139.6 | 1.5 | 155.3 | 2882 | 190 | 2.00 | 0.57 |
| AFOGNAK | 05/05/94 | 2 | 1 | 3.5 | 137.2 | 1.5 | 154.3 | 2894 | 165 | 2.06 | 0.39 |
| afognak | 05/05/94 |  | 2 |  |  |  |  |  |  | 2.17 | 0.53 |
| afognak | 05/05/94 | 2 | - | 2.7 | 161.2 | 1.5 | 154.3 | 2894 | 182 | 2.30 | 0.43 |
| afognak | 06/09/94 | 1 | 1 | 2.2 | 145.0 | 1.5 | 98.0 | 2820 | 209 | 1.93 | 0.71 |
| afognak | $00609 / 94$ | 1 | 2 |  |  |  |  |  |  | 1.80 | 0.59 |
| afognak | 06/09/94 | 1 | 18 | 2.4 | 137.2 | 2.1 | 103.9 | 2878 | 146 | 1.14 | 0.45 |
| afognak | 06/09/94 | 2 | 1 | 2.6 | 131.8 | 3.2 | 08.0 | 2690 | 154 | 1.30 | 0.30 |
| afognak | 06/09/94 | 2 | 2 |  |  |  |  |  |  | 1.04 | 0.39 |
| AFOGNAK | $00609 / 94$ | 2 | 11 | 2.9 | 131.8 | 3.7 | 88.0 | 2714 | 168 | 1.11 | 0.32 |
| afognak | 00/30/84 | 1 | 1 | 2.2 | 187.7 | 12.6 | - 62.4 | 2310 | 278 | 2.22 | 1.21 |
| afognak | $06 / 30 / 94$ | 1 | 2 |  |  |  |  |  |  | 2.11 | 1.37 |
| Afognak | 06/30194 | 1 | 18 | 2.2 | 136.5 | 20.3 | 99.0 | 2740 | 113 | 0.71 | 0.41 |
| AFOGNAK | 06130/94 | 2 | 1 | 4.7 | 231.0 | 22.5 | 64.0 | 2310 | 289 | 2.43 | 1.22 |
| Afognak | 06/30194 | 2 | 2 |  |  |  |  |  |  | 2.07 | 1.47 |
| AFOGNAK | 06/3094 | 2 | 11 | 2.5 | 138.8 | 23.6 | 90.3 | 2597 | 127 | 0.63 | 0.67 |
| AFOGNAK | 07/20/94 | 1 | 1 | 2.4 | 195.4 | 2.6 | 30.1 | 2225 | 292 | 3.88 | 1.20 |
| AFOGNAK | 07/20/94 | 1 | 2 |  |  |  |  |  |  | 4.38 | 1.11 |
| afognak | 072094 | 1 | 17 | 1.8 | 199.2 | 14.8 | 38.8 | 2310 | 294 | 2.70 | 1.54 |
| AFOGNAK | 07120194 | 2 | 1 | 2.0 | 196.9 | 3.7 | 32.0 | 2164 | 432 | 4.16 | 1.25 |
| Afognak | 07120/94 | 2 | 2 |  |  |  |  |  |  | 4.12 | 1.45 |
| afognak | 07/20/94 | 2 | 11 | 3.8 | 183.8 | 12.6 | 41.7 | 2480 | 474 | 2.64 | 1.57 |
| afognak | 00/1294 | 1 | 1 | 9.4 | 202.4 | 13.7 | 14.6 | 2180 | 379 | 1.62 | 0.62 |
| Afognak | 0011294 | 1 | 2 |  |  |  |  |  |  | 1.82 | 055 |
| afognak | 08/12/94 | 1 | 15 | 3.2 | 225.6 | 57.8 | 38.9 | 2633 | 131 | 1.06 | 1.08 |
| afoghak | 08/12/94 | 2 | 1 | 6.7 | 207.8 | 14.8 | 18.4 | 2125 | 234 | 2.11 | 0.53 |
| afognak | 08/12194 | 2 | 2 |  |  |  |  |  |  | 1.80 | 0.59 |
| afognak | 00/1294 | 2 | 12 | 2.5 | 224.8 | 70.0 | 35.9 | 2620 | 192 | 1.52 | 1.45 |
| AFOGNAK | 08/31/94 | 1 | 1 | 1.4 | 214.8 | 25.8 | 16.5 | 1742 | 271 | 2.26 | 0.63 |
| AFOGNAK | 08/31/94 | 1 | 2 |  |  |  |  |  |  | 2.00 | 0.86 |
| AFOGNAK | 0831/94 | 1 | 15 | 1.6 | 244.2 | 31.3 | 23.3 | 1858 | 274 | 1.50 | 0.74 |
| afognak | 0831/94 | 2 | 1 | 1.0 | 217.1 | 22.5 | 14.6 | 1730 | 313 | 1.99 | 0.68 |
| afognak | 08/3194 | 2 | 2 |  |  |  |  |  |  | 2.46 | 0.56 |
| afognak | $0831 / 94$ | 2 | 10 | 1.8 | 211.7 | 25.8 | 16.5 | 1717 | 278 | 1.47 | 0.68 |
| afognak | 0972294 | 1 | 1 | 27.2 | 179.1 | 29.1 | 37.9 | 1580 | 161 | 1.72 | 0.30 |
| afognak | 09122194 | 1 | 2 |  |  |  |  |  |  | 1.84 | 0.29 |


|  | AFOGNAK | 09/2294 | 1 | 16 | 2.5 | 179.1 | 28.6 | 48.6 | 1697 | 174 | 1.09 | 0.49 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AFOGNAK | 09/22/94 | 2 | 1 | 19.9 | 214.1 | 26.9 | 34.0 | 1592 | 210 | 1.97 | 0.59 |
|  | AFOGNAK | 09/22194 | 2 | 2 | : |  |  |  |  |  | 2.64 | 0.24 |
|  | AFOGNAK | 09/22/94 | 2 | 11 | 2.6 | 182.2 | 29.1 | 45.6 | 1801 | 174 | 1.26 | 0.42 |
|  | AFOGNAK | 10/14/94 | 1 | 1 | 1.7 | 215.6 | 17.6 | 70.9 | 2021 | 189 | 1.70 | 0.35 |
|  | AFOGNAK | 10114/94 | 1 | 2 |  |  |  |  |  |  | 1.71 | 0.33 |
|  | AFOGNAK | 10/14/94 | 1 | 16 | 1.6 | 175.2 | 19.2 | 35.9 | 2123 | 152 | 1.20 | 0.40 |
|  | AFOGNAK | 10/14/94 | 2 | 1 | 1.8 | 187.6 | 26.9 | 70.9 | 2052 | 176 | 1.03 | 0.32 |
|  | AFOGNAK | 10/14/94 | 2 | 2 |  |  |  |  |  |  | 1.79 | 0.39 |
|  | AFOGNAK | 10/14/94 | 2 | 10 | 3.9 | 177.6 | 14.8 | 72.8 | 2148 | 152 | 1.29 | 0.43 |
|  | AKALURA | 05/16/94 | 1 | 1 | 3.9 | 204.7 | 1.8 | 23.4 | 752 | 487 | 5.75 | 0.12 |
|  | AKALURA | 05/16/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 4.74 | 1.05 |
|  | AKALURA | 05/16/94 | 1 | 17 | 2.0 | 241.6 | 6.2 | 34.2 | 776 | 565 | 7.23 | 1.69 |
|  | AKALURA | 05/16/94 | 2 | 1 | 2.2. | 193.8 | 3.4 | 27.8 | 724 | 490 | 5.73 | 0.36 |
|  | AKALURA | 05116/94 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 5.65 | 1.13 |
|  | AKALURA | 05/16/94 | 2 | 14 | 2.5 | 193.0 | 3.4 | 27.9 | 724 | 524 | 6.16 | 0.63 |
|  | Alsalura | 06/1494 | 1 | 1 | 1.7 | 171.8 | 3.4 | 0.8 | 705 | 348 | 2.58 | 0.60 |
|  | ALALURA | $06114 / 94$ | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 2.35 | 0.42 |
|  | AKALURA | 06/14/94 | 1 | 16 | 1.7 | 133.3 | 50.7 | 6.2 | 922 | 224 | 2.36 | 0.87 |
|  | AKALURA | 0611494 | 2 | 1 | 1.7 | 133.3 | 3.4 | 7.0 | 664 | 280 | 2.25 | 0.52 |
|  | ARIIURA | 0611494 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 2.33 | 0.42 |
|  | AKALURA | 0611494 | 2 | 14 | 2.5 | 224.3 | 59.6 | 7.6 | 940 | 318 | 2.78 | 1.63 |
|  | AKALURA | 07/18/94 | 1 | 1 | 2.2 | 240.8 | 6.8 | 0.8 | 596 | 509 | 5.45 | 0.77 |
| 1 | AKALURA | 07/18/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 5.31 | 0.71 |
| $\stackrel{-}{\bullet}$ | AKALURA | 07/18/94 | 1 | 16 | 4.9 | 317.6 | 149.7 | 18.9 | 1358 | 239 | 0.73 | 0.81 |
| N | AKALURA | 07/18/94 | 2 | 1 | 2.7 | 240.8 | 7.9 | 4.0 | 609 | 609 | 5.29 | 0.93 |
|  | AKALURA | 07118/94 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 5.84 | 0.57 |
|  | AKALURA | 07/18/94 | 2 | 13 | 2.7 | 272.1 | 45.1 | 5.9 | 797 | 427 | 4.09 | 0.44 |
|  | AKALURA | 08/18/94 | 1 | 1 | 3.0 | 460.7 | 1.7 | 4.0 | 935 | 1227 | 14.67 | 0.01 |
|  | AKALURA | 08/18/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 13.79 | 0.01 |
|  | AKALURA | 08/18/94 | 1 | 17 | 0.6 | 433.3 | 176.7 | 78.8 | 1717 | 524 | 0.39 | 0.87 |
|  | AKALURA | 08/18/94 | 2 | 1 | 8.9 | 378.7 | 1.7 | 0.8 | 959 | 1038 | 13.70 | 0.15 |
|  | AKALURA | 08/18/94 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 12.11 | 0.01 |
|  | AKALURA | 08/18/94 | 2 | 14 | 4.8 | 218.2 | 75.4 | 125.1 | 1546 | 138 | 0.65 | 0.73 |
|  | akalura | 09/26/94 | 1 | 1 | 4.8 | 301.7 | 91.2 | 47.1 | 1408 | 319 | 2.10 | 1.06 |
|  | AKALURA | 09126/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 2.39 | 0.64 |
|  | AKALURA | 09/26/94 | 1 | 16 | 4.0 | 303.2 | 92.3 | 46.0 | 1396 | 399 | 3.01 | 0.51 |
|  | AKALURA | 09/26/94 | 2 | 1 | 4.7 | 280.4 | 90.1 | 44.9 | 1420 | 312 | 1.93 | 0.59 |
|  | AKALURA | 09/26/94 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.75 | 0.75 |
|  | AKALURA | 09/26/94 | 2 | 14 | 4.8 | 285.0 | 93.4 | 47.1 | 1420 | 269 | 1.77 | 0.98 |
|  | BIG KITOI | 05/26/94 | 1 | 1 | 2.1 | 103.8 | 4.3 | 169.5 | 2450 | 103 | 0.34 | 0.19 |


|  | BIG KITOI | 05/26194 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.43 | 0.17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BIG KITOI | 05/26/94 | 1 | 32 | 1.0 | 81.1 | 5.4 | 139.6 | 2520 | 36 | 0.22 | 0.11 |
|  | big kitol | 0727194 | 1 | 1 | 3.4 | 229.2 | 25.2 | 79.0 | 2599 | 480 | 0.27 | 0.20 |
|  | aIG Kitol | 07127/94 | 1 | 2 | 00 | 0.0 | 00 | 0.0 | 0 | 0 | 0.16 | 0.21 |
|  | BIG KITOI | 07127194 | 1 | 31 | 1.2 | 101.4 | 18.6 | 167.0 | 2768 | 61 | 0.08 | 0.12 |
|  | Big kitol | 09/08/94 | 1 | 1 | 1.4 | 130.5 | 7.6 | 55.0 | 2174 | 86 | 0.80 | 0.19 |
|  | BIG KITOI | 09/08/94 | 1 | 2 | 0.0 | 00 | 0.0 | 0.0 | 0 | 0 | 0.79 | 0.23 |
|  | big kitoi | 09/00994 | 1 | 31 | 1.2 | 1101 | 12.0 | 173.7 | 2531 | 91 | 0.10 | 0.17 |
|  | BIG KITOI | 10/27/94 | 1 | 1 | 0.7 | 96.7 | 1.0 | 132.2 | 2707 | 60 | 0.40 | 0.24 |
|  | BIG KItol | 10/27/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.32 | 0.18 |
|  | big kitol | 10/27/94 | 1 | 30 | 0.7 | 91.2 | 1.0 | 131.3 | 2732 | 52 | 0.39 | 0.21 |
|  | crescen | 06/01/94 | 1. | 1 | 3.6 | 195.0 | 0.7 | 71.0 | 2968 | 66 | 0.94 | 0.30 |
|  | crescen | 06/01/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.99 | 0.37 |
|  | CRESCEN | 06/01/84 | 1 | 26 | 3.2 | 181.2 | 1.2 | 75.8 | 2956 | 216 | 0.71 | 0.33 |
|  | crescen | 0630194 | 1 | 1 | 1.5 | 161.4 | 1.8 | 40.1 | 2740 | 88 | 0.21 | 0.16 |
|  | crescen | 0630/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.14 | 0.23 |
|  | crescen | 06/30194 | 1 | 28 | 3.3 | 149.2 | 12.6 | 85.7 | 2970 | 140 | 0.21 | 0.39 |
|  | crescen | 0712894 | 1 | 1 | 5.6 | 121.0 | 0.7 | 59.6 | 2651 | 108 | 0.41 | 0.34 |
|  | crescen | 07/28194 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.62 | 0.45 |
|  | crescen | 0712894 | 1 | 28 | 3.9 | 141.6 | 18.0 | 82.4 | 3392 | 55 | 0.18 | 0.15 |
|  | CRESCEN | 00125/94 | 1 | 1 | 1.8 | 159.1 | 4.0 | 17.3 | 2924 | 143 | 0.45 | 0.36 |
|  | crescen | 08/25194 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.19 | 0.44 |
| $\stackrel{1}{1}$ | crescen | 08/25/94 | 1 | 26 | 2.3 | 150.8 | 21.0 | 92.2 | 3476 | 122 | 0.19 | 0.26 |
| $\stackrel{\omega}{\omega}$ | CRESCEN | 09/2294 | 1 | 1 | 6.9 | 154.6 | 5.1 | 23.8 | 2865 | 158 | 0.76 | 0.20 |
|  | crescen | 09/2294 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.86 | 0.23 |
|  | crescen | 09/22194 | 1 | 25 | 10.6 | 162.9 | 28.8 | 82.4 | 3430 | 110 | 0.44 | 0.18 |
|  | CRESCEN | 1011994 | 1 | 1 | 1.9 | 167.6 | 5.1 | 27.0 | 2912 | 115 | 0.56 | 0.29 |
|  | Crescen | 10/19/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.57 | 0.31 |
|  | CRESCEN | 10/19994 | 1 | 25 | 1.7 | 166.8 | 8.3 | 27.0 | 2836 | 126 | 0.44 | 0.30 |
|  | frazer | $06 / 0294$ | 1 | 1 | 1.7 | 99.7 | 2.2 | 75.0 | 1841 | 149 | 0.58 | 0.13 |
|  | frazer | 06/02194 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.73 | 0.16 |
|  | frazer | 06/02194 | 1 | 23 | 1.9 | 92.0 | 4.4 | 85.0 | 1900 | 124 | 0.96 | 0.08 |
|  | frazer | 06/0294 | 3 | 1 | 2.4 | 138.6 | 4.4 | 79.2 | 1876 | 190 | 0.66 | 0.20 |
|  | frazer | 06/02/94 | 3 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.69 | 0.19 |
|  | frazer | 06/02/94 | 3 | 50 | 1.6 | 86.7 | 9.8 | 90.7 | 1923 | 116 | 0.75 | 0.17 |
|  | frazer | 07119194 | 1 | 1 | 1.5 | 102.7 | 8.8 | 53.6 | 1901 | 165 | 0.52 | 0.16 |
|  | frazer | 0711994 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.47 | 0.20 |
|  | frazer | 07/19/94 | 1 | 23 | 1.3 | 89.8 | 5.5 | 56.4 | 1913 | 171 | 0.52 | 0.21 |
|  | frazer | 07119194 | 3 | 1 | 1.2 | 95.1 | 3.3 | 47.9 | 1931 | 124 | 0.61 | 0.17 |
|  | frazer | 07/19/94 | 3 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.58 | 0.20 |
|  | frazer | 07119/94 | 3 | 50 | 1.8 | 97.4 | 16.4 | 75.0 | 2004 | 80 | 0.36 | 0.24 |


|  | frazer | 00/25/94 | 1 | 1 | 1.2 | 91.3 | 7.7 | 42.1 | 1924 | 127 | 0.79 | 0.17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | frazer | 00/25/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.65 | 0.17 |
|  | frazer | 08/25/94 | 1 | 24 | 1.2 | 101.2 | 22.9 | 67.8 | 2015 | 138 | 0.42 | 0.14 |
|  | frazer | 08/30/94 | 3 | 1 | 1.9 | 111.9 | 5.5 | 30.7 | 1963 | 132 | 0.76 | 0.17 |
|  | frazer | 08/30/94 | 3 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | - | 0.74 | 0.16 |
|  | frazer | 0a/30/94 | 3 | 50 | 1.0 | 101.2 | 33.8 | 80.7 | 2143 | 36 | 0.18 | 0.09 |
|  | frazer | 10/11/94 | , | 1 | 1.0 | 86.0 | 1.1 | 73.5 | 1932 | 102 | 0.71 | 0.08 |
|  | frazer | 10/11/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.79 | 0.11 |
|  | frazer | 10/11/94 | 1 | 23 | 1.2 | 84.4 | 1.1 | 76.4 | 2014 | 134 | 0.62 | 0.10 |
|  | frazer | 10/11/94 | 3 | 1 | 1.0 | 89.0 | 1.1 | 70.7 | 2059 | 102 | 0.78 | 0.13 |
|  | frazer | 10/11/94 | 3 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.75 | 0.13 |
|  | frazer | 10/11/94 | 3 | 43 | 1.0 | 105.8 | 4.4 | 70.7 | 1983 | 70 | 0.56 | 0.13 |
|  | hidden K | 05/16/94 | 1 | 1 | $\cdot 1.3$ | 76.8 | 1.1 | 56.4 | 1733 | 86 | 0.49 | 0.10 |
|  | hidoenk | 05/1094 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.44 | 0.13 |
|  | hiddenk | 05110/94 | 1 | 40 | 0.9 | 75.2 | 1.1 | 56.4 | 1768 | 68 | 0.28 | 0.11 |
|  | hidden $k$ | 06/16/94 | 1 | 1 | 1.0 | 94.3 | 1.1 | 32.1 | 1744 | 195 | 0.18 | 0.17 |
|  | hidden k | 06/16/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.31 | 0.17 |
|  | hidden k | 06/16/94 | 1 | 38 | 1.1 | 80.6 | 3.3 | 50.7 | 1862 | 170 | 0.04 | 0.12 |
|  | hicden K | 0705/94 | 1 | 1 | 0.9 | 149.2 | 5.5 | 10.8 | 1499 | 220 | 0.73 | 0.09 |
| 1 | HIDDEN K | 07105/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.62 | 0.14 |
| $\stackrel{+}{\sim}$ | HIDDEN K | 07/05/94 | 1 | 42 | 1.5 | 127.1 | 6.6 | 52.2 | 1671 | 38 | 0.04 | 0.16 |
| $\stackrel{\sim}{1}$ | hidden k | 07/29/94 | 1 | 1 | 2.4 | 138.6 | 3.3 | 2.2 | 1644 | 273 | 4.43 | 0.01 |
|  | hidden k | 07/29/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 2.89 | 0.12 |
|  | hidden k | 07/29/94 | 1 | 43 | 1.2 | 88.2 | 9.8 | 52.2 | 1858 | 44 | 0.04 | 0.12 |
|  | Hif: .allk | 0819/94 | 1 | 1 | 0.9 | 169.8 | 3.3 | 2.2 | 1558 | 295 | 1.10 | 0.01 |
|  | hidden K | 08/19/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.02 | 0.04 |
|  | hidden K | 08/19/94 | 1 | 41 | 1.1 | 86.7 | 8.8 | 55.0 | 1790 | 55 | 0.06 | 0.11 |
|  | hidden | 09/16/94 | 1 | 1 | 1.1 | 113.4 | 5.5 | 2.9 | 1616 | 69 | 0.57 | 0.32 |
|  | HIDDENK | 09/16/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.61 | 0.35 |
|  | HIDDENK | 09/16/94 | 1 | 39 | 1.9 | 79.9 | 9.8 | 57.9 | 1930 | 56 | 0.06 | 0.21 |
|  | hidden k | 10/07/94 | 1 | 1 | 0.9 | 99.7 | 8.8 | 26.4 | 1767 | 110 | 0.25 | 0.20 |
|  | Hidden K | 10/07/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.19 | 0.24 |
|  | HIDDEN K | 10/07/94 | 1 | 39 | 0.7 | 79.9 | 12.0 | 60.0 | 1818 | 33 | 0.04 | 0.12 |
|  | Jennifer | 06/01/94 | 1 | 1 | 1.6 | 163.2 | 7.7 | 230.5 | 1917 | 80 | 0.20 | 0.10 |
|  | JENNIFER | 06/01/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.17 | 0.16 |
|  | JENNIFER | 06/01/94 | 1 | 21 | 2.6 | 165.5 | 17.5 | 301.8 | 2230 | 7 | 0.20 | 0.22 |
|  | JENNIFER | 07121/94 | 1 | 1 | 9.1 | 177.2 | 22.9 | 173.4 | 1852 | 234 | 0.62 | 0.28 |
|  | JENNIFER | 07121/94 |  | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.00 | 0.00 |
|  | JENNIFER | 07121/94 | , | 20 | 1.9 | 192.9 | 33.8 | 25.7 | 2431 | 131 | 0.13 | 0.18 |
|  | Jennifer | 08/18/94 | 1 | 1 | 1.2 | 185.9 | 9.8 | 72.1 | 1570 | 192 | 0.64 | 0.17 |
|  | JENNIFER | 08/18/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.57 | 0.24 |


|  | Jennifer | 0818194 |  | 20 | 1.3 | 174.9 | 28.9 | 261.2 | 2725 | 55 | 0.12 | 0.20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Jennifer | 1024/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.20 | 0.09 |
|  | JENNIFER | 10/24/94 | 1 | 19 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 105 | 0.13 | 0.18 |
|  | JENNIFER | 10/24/94 | 2 | 1 | 1.7 | 189.1 | 25.1 | 263.2 | 2204 | 102 | 0.04 | 0.25 |
|  | Jennifer | 10/24/94 | 2 | 19 | 3.0 | 243.9 | 25.1 | 260.4 | 2364 | 105 | 0.00 | 0.00 |
|  | Jennifer | 06/01/94 | 1 | 1 | 1.1 | 158.5 | 9.8 | 32.1 | 1338 | 198 | 0.12 | 0.14 |
|  | Jennifer | 0610194 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.20 | 0.23 |
|  | Jennifer | 06/01994 | 1 | 21 | 1.0 | 127.9 | 12.0 | 69.2 | 1490 | 100 | 0.20 | 0.26 |
|  | Jennifer | 072194 | 1 |  | 3.3 | 146.7 | 9.8 | 16.5 | 1076 | 97 | 0.84 | 0.15 |
|  | jennifer | 0721199 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.46 | 0.18 |
|  | Jennifer | 072194 | 1 | 21 | 1.6 | 146.7 | 25.1 | 85.0 | 1604 | 52 | 0.12 | 0.12 |
|  | JENNIFER | 08118994 | 1 | 1 | 1.0 | 179.6 | 5.5 | 2.2 | 1008 | 66 | 0.28 | 0.14 |
|  | JENNIFER | 08181994 | , | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.20 | 0.14 |
|  | JENNIFER | 08118/94 | 1 | 21 | 1.1 | 157.7 | 27.2 | 102.1 | 1632 | 50 | 0.12 | 0.09 |
|  | JENNIFER | $1027 / 184$ |  | 1 | 1.0 | 153.8 | 12.0 | 42.1 | 1353 | 107 | 0.30 | 0.09 |
|  | JENNIFER | 10/24/94 | ; | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.17 | 0.17 |
|  | JENNIFER | 10/24/84 | 1 | 20 | 1.0 | 145.1 | 25.1 | 80.7 | 1629 | 67 | 0.08 | 0.21 |
|  | karluk | 06102/94 | 3 | 1 | 0.9 | 110.1 | 2.9 | 136.2 | 61 | 293 | 0.53 | 0.12 |
| $\stackrel{ }{-}$ | karluk | 0610294 | 3 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.49 | 0.13 |
| u | karluk | 0610294 | 3 | 50 | 1.0 | 96.2 | 10.0 | 147.5 | 44 | 346 | 1.13 | 0.20 |
|  | karluk | 0719/94 | - | 1 | 1.3 | 107.8 | 4.0 | 59.6 | 112 | 246 | 0.91 | 0.24 |
|  | karluk | 071/9/94 | 3 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.86 | 0.14 |
|  | kartuk | 0719194 | 3 | 50 | 1.1 | 100.0 | 19.1 | 126.4 | 94 | 222 | 1.31 | 0.27 |
|  | karluk | 08130/94 | - | 1 | 1.0 | 136.5 | 4.0 | 30.3 | 126 | 502 | 1.21 | 0.15 |
|  | karluk | 0830/94 | 3 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.14 | 0.23 |
|  | kartuk | 08/30/94 | - | 50 | 17.0 | 184.5 | 53.7 | 124.7 | 512 | 376 | 0.65 | 0.42 |
|  | kartuk | 10/11/94 | 3 | 1 | 0.4 | 103.2 | 1.7 | 92.2 | 257 | 121 | 1.22 | 0.27 |
|  | kartuk | 10/41/94 | 3 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.18 | 0.41 |
|  | karluk | 10/11/94 |  | 43 | 1.6 | 87.7 | 1.7 | 154.0 | 225 | 126 | 0.61 | 0.20 |
|  | laura | 05/16/94 | 1 | 1 | 1.4 | 114.1 | 4.4 | 17.6 | 1686 | 146 | 1.07 | 0.18 |
|  | laura | 05/16/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.09 | 0.31 |
|  | laura | 05/16/94 | 1 | 38 | 0.9 | 110.2 | 4.4 | 20.9 | 1710 | 118 | 0.49 | 0.26 |
|  | laura | 06/15/94 | 1 | 1 | 1.4 | 146.5 | 5.4 | 4.0 | 1544 | 69 | 1.04 | 0.36 |
|  | laura | 06/15/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.22 | 0.30 |
|  | laura | 0615/94 | 1 | 32 | 2.2 | 113.4 | 9.7 | 17.6 | 1791 | 88 | 0.55 | 0.27 |
|  | .laura | 07106/94 | 1 | 1 | 2.0 | 238.8 | 4.4 | 4.4 | 109 | 60 | 5.21 | 1.02 |
|  | laura | 07106/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 5.50 | 0.94 |
|  | laura | 07/06/94 | 1 | 35 | 1.5 | 130.2 | 14.0 | 14.3 | 1656 | 102 | 0.48 | 0.30 |
|  | laura | 0712999 | 1 | 1 | 1.6 | 230.4 | 28.9 | 12.7 | 630 | 265 | 2.62 | 021 |
|  | laura | 07/29/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 2.79 | 035 |


|  | LAURA | 07\%2994 | 1 | 37 | 1.3 | 194.2 | 68.4 | 22.6 | 1832 | 74 | 0.35 | 0.25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | laura | 00019194 | 1 | 1 | 1.4 | 218.1 | 10.8 | 4.0 | 690 | 248 | 1.43 | 0.80 |
|  | laura | 00019/94 | 1 | 2 | 0.0 | 00 | 0.0 | 0.0 | 0 | 0 | 1.71 | 0.78 |
|  | laura | $00 / 1994$ | 1 | 34 | 1.4 | 200.3 | 96.1 | 24.2 | 1766 | 69 | 0.18 | 0.22 |
|  | laura | 09/16/94 | 1 | 1 | 1.4 | 187.3 | 5.5 | 4.0 | 871 | 210 | 4.36 | 0.33 |
|  | LAURA | 0911694 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 3.63 | 0.89 |
|  | LAURA | 09/16/94 | 1 | 37 | 1.7 | 171.9 | 63.0 | 11.0 | 1930 | 58 | 0.21 | 0.20 |
|  | laura | 10/07/94 | 1 | 1 | 1.5 | 152.6 | 6.5 | 91.9 | 1145 | 166 | 2.38 | 0.86 |
|  | laura | 10/07/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 2.75 | 0.60 |
|  | laura | 10107/94 | 1 | 37 | 1.4 | 143.4 | 39.6 | 92.2 | 1805 | 126 | 0.45 | 0.25 |
|  | Little kit | 05/26/94 | . 1 | 1 | 1.6 | 153.2 | 2.9 | 210.9 | 2649 | 119 | 1.05 | 0.36 |
|  | littlekgt | 05726/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.81 | 0.49 |
|  | littlekit | 05/26194 | 1 | 18 | 1.6 | 149.8 | 6.3 | 223.7 | 3150 | 117 | 0.33 | 0.37 |
|  | Littlekit | 05/26194 | 2 | 1 | 1.7 | 175.9 | 6.3 | 214.1 | 2558 | 164 | 0.87 | 0.34 |
|  | LITTLE KIT | 05/20194 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.88 | 0.55 |
|  | Littlekit | 05/26194 | 2 | 14 | 1.8 | 141.3 | 13.1 | 244.6 | 3210 | 83 | 0.29 | 0.29 |
|  | LITTLEKIT | 07/2494 |  | 1 | 1.6 | 143.0 | 5.2 | 130.8 | 2262 | 131 | 0.96 | 0.53 |
|  | LITTLEKIT | 0712494 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.24 | 0.47 |
|  | littlekit | 07/24/94 | 1 | 18 | 2.8 | 151.3 | 70.1 | 287.3 | 3110 | 47 | 0.25 | 0.18 |
|  | LITTLE KIT | 0712494 | 2 | 1 | 2.0 | 143.0 | 5.2 | 128.7 | 2250 | 172 | 1.38 | 0.45 |
|  | uttle kit | 0712494 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.41 | 0.49 |
|  | LITLEKIT | 072494 | 2 | 15 | 2.8 | 105.2 | 6.3 | 259.6 | 3135 | 50 | 0.47 | 0.29 |
|  | LITLE KIt | 09/09/94 | 1 | 1 | 2.2 | 198.6 | 10.9 | 86.0 | 2007 | 228 | 0.67 | 0.34 |
| 苂 | Little kit | 09/09/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.77 | 0.34 |
| $\stackrel{\rightharpoonup}{\bullet}$ | LITTLE KIT | 09109/94 | 1 | 11 | 1.6 | 162.1 | 14.2 | 270.2 | 2852 | 50 | 0.40 | 0.14 |
| の | LITTLE KIT | 09109/94 | 2 | 1 | 1.6 | 208.0 | 13.1 | 90.3 | 2090 | 209 | 0.85 | 0.30 |
|  | LITLIE KIT | 09109194 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.78 | 0.31 |
|  | LIITLE KIT | 09/09/94 | 2 | 15 | 2.4 | 116.7 | 4.0 | 251.0 | 3102 | 75 | 0.47 | 0.32 |
|  | litile kit | 1027194 | 1 | 1 | 1.3 | 143.0 | 20.0 | 215.2 | 2780 | 78 | 0.88 | 0.48 |
|  | LITTLE KIT | 1027/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.76 | 0.35 |
|  | LITTLE KIT | 102794 | 1 | 20 | 61.2 | 3282.5 | 2223.0 | 108.4 | 6931 | 619 | 0.17 | 0.36 |
|  | LITTLE KIT | 1027194 | 2 | 1 | 2.5 | 160.2 | 21.1 | 214.1 | 2915 | 78 | 0.00 | 0.00 |
|  | LITTLE KIT | 1027/94 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.77 | 0.29 |
|  | LITTLE KIt | 1022794 | 2 | 15 | 0.8 | 212.1 | 21.1 | 22.6 | 2866 | 30 | 0.61 | 0.31 |
|  | MALINAL | 05/05/94 | 1 | 1 | 0.7 | 140.3 | 2.2 | 207.3 | 2811 | 218 | 1.39 | 0.20 |
|  | . malinal | 05/05/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.33 | 0.24 |
|  | malinal | 0505194 |  | 10 | 1.0 | 129.5 | 3.3 | 207.3 | 2811 | 201 | 1.41 | 0.25 |
|  | Malinal | 06/09/94 | 1 | 1 | 11.1 | 165.7 | 5.5 | 156.2 | 2620 | 331 | 1.81 | 0.28 |
|  | MALINAL | 0669194 | 1 | 2 | 0.0 | 00 | 0.0 | 0.0 | 0 | 0 | 1.81 | 0.27 |
|  | malinal. | 06/09/94 | 1 | 9 | 3.1 | 125.7 | 4.4 | 151.2 | 2714 | 262 | 1.46 | 0.31 |
|  | MALINAL. | 06/30/94 | 1 | 1 | 4.7 | 145.7 | 6.5 | 116.6 | 2339 | 201 | 1.22 | 0.33 |


|  | MALINA L | 06/30/94 | 1 | 2 | 00 | 0.0 | 0.0 | 0.0 | - 0 | 0 | 1.40 | 0.31 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MALINA L | 00630194 | 1 | 9 | 4.4 | 128.0 | 8.6 | 119.9 | 2482 | 162 | 0.72 | 0.32 |
|  | MALINAL | 07/20/94 | 1 | 1 | 35.8 | 168.0 | 15.0 | 93.5 | 2489 | 146 | 1.26 | 0.32 |
|  | MALINAL | 07/20/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.06 | 0.42 |
|  | MALINAL | 07/20/94 | 1 | 9 | 58 | 154.2 | 15.0 | 95.2 | 2513 | 140 | 0.67 | 0.36 |
|  | MALINA L | 08/12/94 | 1 | 1 | 5.0 | 161.1 | 4.4 | 86.9 | 2566 | 140 | 1.44 | 0.43 |
|  | MALINAL. | 00/12194 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.23 | 0.47 |
|  | MALINA L | $08 / 1294$ | 1 | 10 | 6.2 | 146.5 | 19.3 | 93.5 | 2628 | 152 | 0.72 | 0.28 |
|  | MALINAL | 08/31/94 | 1 | 1 | 3.2 | 153.4 | 4.4 | 70.4 | 2516 | 146 | 0.99 | 0.29 |
|  | MALINAL | 00/31/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.97 | 0.26 |
|  | MALINAL | 08/31/94 | 1 | 8 | 3.1 | 145.7 | 6.5 | 70.4 | 2464 | 131 | 0.84 | 0.34 |
|  | MALINA L | $09 / 22 / 94$ | 1 | 1 | 7.1 | 144.2 | 10.8 | 67.1 | 2471 | 123 | 1.05 | 0.41 |
|  | MALINA L | 0912294 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.00 | 0.27 |
|  | MALIIJAL | 09/22/94 | 1 | 9 | 4.8 | 143.3 | 17.9 | 63.8 | 2324 | 120 | 0.69 | 0.31 |
|  | Malinal | 10/14/94 | 1 | 1 | 3.3 | 151.1 | 12.9 | 83.5 | 2519 | 105 | 0.61 | 0.18 |
|  | MALINAL | 1011494 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.62 | 0.27 |
|  | MALINAL | 10/14/94 | 1 | $\theta$ | 3.8 | 143.3 | 15.0 | 96.8 | 2532 | 81 | 0.50 | 0.21 |
|  | MALINA U | 05/05/94 | 2 | 1 | 2.5 | 120.2 | 4.4 | 225.5 | 2942 | 209 | 1.19 | 0.33 |
|  | MALINA U | 05/05/94 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.78 | 0.03 |
|  | MALINA U | 05/05/94 | 2 | 27 | 1.0 | 134.1 | 4.4 | 181.0 | 2930 | 201 | 1.51 | 0.17 |
|  | malina U | 06/09/94 | 2 | 1 | 1.9 | 137.2 | 6.5 | 491.7 | 2808 | 251 | 1.14 | 0.24 |
|  | MALINA U | 06/09/94 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.16 | 0.21 |
|  | malina u | 06/09/94 | 2 | 27 | 3.9 | 127.2 | 9.7 | 138.1 | 2901 | 207 | 1.02 | 0.16 |
| $\underset{\sim}{1}$ | malina u | 0630194 | 2 | 1 | 2.9 | 176.5 | 11.8 | 195.8 | 2310 | 336 | 2.62 | 0.09 |
| $\checkmark$ | malina u | 06/30/94 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 3.07 | 0.63 |
|  | malina U | 0630194 | 2 | 27 | 3.2 | 130.2 | 21.4 | 17.6 | 2769 | 146 | 0.55 | 0.31 |
|  | malina U | 07/20994 | 2 | 1 | 3.0 | 181.1 | 2.2 | 108.4 | 2528 | 333 | 3.36 | 0.85 |
|  | mulina U | 07/20/94 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 3.25 | 0.85 |
|  | MALINA U | 07/20194 | 2 | 27 | 6.2 | 147.2 | 21.4 | 187.6 | 3050 | 116 | 0.43 | 0.43 |
|  | MALINA U | 08/12/94 | 2 | 1 | 4.0 | 192.7 | 7.5 | 57.2 | 2742 | 99 | 3.25 | 1.05 |
|  | malina u | 08/1294 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 3.38 | 0.06 |
|  | MALINA U | 08/1294 | 2 | 27 | 1.7 | 144.1 | 42.8 | 184.2 | 3374 | 87 | 0.28 | 0.34 |
|  | malina u | 08/31/94 | 2 | 1 | 2.9 | 171.9 | 8.6 | 62.1 | 2513 | 282 | 2.56 | 0.19 |
|  | malita U | 08/31/94 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.80 | 0.33 |
|  | MALINA U | 08/31/94 | 2 | 21 | 6.4 | 142.6 | 34.2 | 184.2 | 3078 | 80 | 0.40 | 0.32 |
|  | malina u | 09/22/94 | 2 | 1 | 3.2 | 159.6 | 4.4 | 75.4 | 2520 | 323 | 2.71 | 0.46 |
|  | MALINA U | 09/22/94 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 2.54 | 0.63 |
|  | MALINA U | 09/22/94 | 2 | 26 | 4.0 | 154.9 | 9.7 | 97.7 | 2644 | 193 | 1.89 | 0.29 |
|  | MALITIA U | 10/14/94 | 2 | 1 | 3.7 | 154.2 | 6.5 | 90.2 | 2696 | 181 | 2.06 | 0.13 |
|  | malina U | 10/14/94 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 2.06 | 0.05 |
|  | MALINA U | 10/14/94 | 2 | 26 | 3.6 | 143.3 | 8.6 | 90.2 | 2658 | 179 | 1.72 | 0.28 |



| RED | 08/18/94 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 4.31 | 0.69 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RED | 08/18/9.1 | 2 | 37 | 44.7 | 334.1 | 154.2 | 88.9 | 764 | 441 | 0.27 | 1.19 |
| RED | 09/22194 | 1 | 1 | 46 | 200.8 | 10.2 | 8.7 | 129 | 231 | 3.52 | 1.22 |
| RED | 09/22/94 | 1 | 2 | 00 | 0.0 | 00 | 0.0 | 0 | 0 | 390 | 1.16 |
| RED | 09/22/94 | 1 | 37 | 38.1 | 121.6 | 7.4 | 182.7 | 762 | 183 | 0.52 | 0.66 |
| RED | 09/2294 | 2 | 1 | 5.5 | 167.8 | 10.2 | 13.2 | 117 | 242 | 3.06 | 1.30 |
| RED | 09/22/94 | 2 | 2 | 00 | 0.0 | 0.0 | 0.0 | 0 | 0 | 4.12 | 1.30 |
| RED | 09/22/94 | 2 | 37 | 448 | 176.4 | 19.2 | 189.5 | 886 | 318 | 0.60 | 1.03 |
| RED | 10/22/94 | 1 | 1 | 138 | 154.2 | 16.4 | 49.9 | 62 | 258 | 404 | 0.44 |
| RED | 10/22/94 | 1 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 9.33 | 0.17 |
| RED | 10/22/94 | 1 | 37 | 15.6 | 157.3 | 14.5 | 50.7 | 74 | 288 | 0.00 | 0.00 |
| RED | 10/2294 | 2 | 1 | 14.6 | 158.8 | 18.2 | 53.1 | 68 | 280 | 8.33 | 0.86 |
| RED | 10/2294 | 2 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 8.25 | 0.76 |
| RED | 10/22/94 | 2 | 37 | 14.9 | 171.3 | 16.4 | 51.5 | 56 | 293 | 8.75 | 0.84 |


| Lake: | AKALURA |
| :--- | :---: |
| Station: | 1 |
| Depth: | $16-17 \mathrm{~m}$ |
| Year: | 1994 |

Macrozooplankton Density
( $\mathrm{no} . / \mathrm{m}^{2}$ )


Daphnia g.

Holopedium
Chydorinae
Palyphernus


| Lake: | AKALURA |
| :--- | :---: |
| Station: | 2 |
| Depth: | $13-14 \mathrm{~m}$ |
| Year: | 1994 |

Macrozooplankton Density
( $\mathrm{no} . / \mathrm{m}^{2}$ )

| Date: | 16-May | 14-Jun | 18-Jul | 17-Aug | 26-Sep |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ergasilus |  |  |  |  | present |
| Epischura |  | 9,236 | 29,724 | 35,881 | 5,414 |
| Eurytemora | 4,777 | 17,197 | 24,204 | 20.382 | 13.376 |
| Ovig Eurytemora |  |  |  |  | 955 |
| Cyclops | 318 | 5,732 | 4,671 | 1,486 | 22,293 |
| Bosmina | 1.911 | 12.739 | 91,296 | 49.469 | 96,182 |
| Ovig Bosmina |  | 3,822 | 28,875 | 25,053 | 19,746 |
| Daphnial. |  |  |  |  |  |
| Ovig Daphnia |  | 955 |  |  |  |
| Daphniag. |  |  |  |  |  |
| Holopedium |  |  |  |  |  |
| Chydorinae |  |  |  |  |  |
| Polyphemus |  |  |  |  |  |

## Seasonal Mean

( $\mathrm{No} / \mathrm{m}^{2}$ )

16,051
15.987

191
6,900
50.319

15,499

191

$\mathrm{H}-21$

| Lake: | ALELUURA |
| :--- | :---: |
| Station: | 3 |
| Depth: | 20 m |
| Year: | 1994 |

Macrozooplankton Density
(no./m ${ }^{2}$ )

| Date: | 16-May | 14-Jun | $18-J u l$ | 17 -Aug | 26-Sep |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Segsonal Mean

( $\mathrm{NO} / \mathrm{m}^{2}$ )

| Ergasilus |  |  |  |  | present |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Epischurs | 849 | 10,616 | 30.997 | 32,484 | 6,369 | 16.263 |
| Eurytemora | 4,034 | 35,669 | 42,038 | 41.401 | 14,862 | 27.601 |
| Ovig Ei:rytemora |  |  |  | 212 | 425 | 127 |
| Cyclops | 425 | 5,945 | 2,548 | 1,274 | 19.958 | 6.030 |
| Bosmina | 637 | 3,397 | 142.255 | 36,094 | 118.047 | 60.086 |
| Ovig Bosmina | 212 | 1,274 | 39,490 | 24.204 | 22.080 | 17.452 |
| Daphnial. |  |  |  |  |  |  |
| Ovig Daphnia |  |  |  |  |  |  |
| Daphniag. |  |  |  |  |  |  |

Holopedium

Chydorinae
Polyphemus


| Lake: | FRAZER |
| :--- | :---: |
| Station: | 1 |
| Depth: | $23-24 \mathrm{~m}$ |
| Year: | 1994 |

Macrozooplankton Density
( $\mathrm{no} . / \mathrm{m}^{2}$ )

| Date: | 2.Iun | $19 . \mathrm{Jul}$ | 25-Aug | $11-($ Ct |
| :--- | :--- | :--- | :--- | :--- |
|  | 1,062 | 637 |  |  |
| Ergasilus |  |  |  |  |
| Epischura |  |  |  |  |


| Seasonal Mean <br> $\left(\mathrm{No} / \mathrm{m}^{2}\right)$ |
| :---: |
| 425 |


| Diaptomus | 425 |  |  |  | 106 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ovig Diaptomus |  | 318 |  |  | 80 |
| Cyclops | 47,559 | 7,643 | 9,023 | 4.883 | $\mathbf{1 7 . 2 7 7}$ |
| Ovig Cyclops |  | present | preseat |  |  |
| Bosmina | 2,760 | 45.542 | 99,788 | 45,648 | $\mathbf{4 8 , 4 3 5}$ |
| Ovig Bosmina | 0 | 7,325 | 30,255 | 14.438 | 13,005 |
| Daphnia l. | 637 | 7,006 | 37,686 | 13.588 | 14,729 |
| Ovig Daphnia |  | 637 | 19,639 | 425 | 5,175 |
| Daphnia g. |  |  |  |  |  |

Holopedium

Chydorinae

Polyphemus


| Lake: | FRAZER |
| :--- | :---: |
| Station: | 2 |
| Depth: | 50 m |
| Year: | 1994 |

Macrozooplankton Density
( $\mathrm{no} . / \mathrm{m}^{2}$ )


## Chydorinae

Polyphemus


| Lake: | ERAZER |
| :--- | :---: |
| Station: | 3 |
| Depth: | 50 m |
| Year: | $199+$ |

Macrozooplankton Density
( $\mathrm{no} . \mathrm{m}^{2}$ )

| Date: | 2-Jun | 19-Jul | 30-Aug | 11-Oct | $\left(\mathrm{No} / \mathrm{m}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ergasilus |  | 637 | 1,274 | 637 | 637 |
| Epischura |  |  |  |  |  |
| Diaptomus |  | present |  |  |  |
| Cyelops | 128.981 | 140.765 | 42.675 | 15.924 | 82.086 |
| Ovig Cyelaps | 318 |  | 637 |  | 239 |
| Bosmina | 6.369 | 51,592 | 217,834 | 251.599 | 131.849 |
| Ovig Bosmina | 1,274 | 20.383 | 83.440 | 36,942 | 35.510 |
| Daphnial. | 955 | 1,911 | 47,711 | 75,797 | 31.609 |
| Ovig Daphnia |  | 1,911 | 15,287 | 1,911 | 4.777 |
| Daphniag. |  |  |  |  |  |

Holopedium

Chydorinae preseat

Polyphemus



Chydorinae
Polyphemus


| ミこコ－（Kociak） |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Station： 1 | 1 |  |  |  |  |  |
| Depth： 3 | 37.38 m |  |  |  |  |  |
| Year： | 1994 |  |  |  |  |  |
|  | Macrozooplankton Density |  |  |  |  |  |
|  | （no．／m＾2） |  |  |  |  |  |
| Date： | 16－May | 14．Jun | 18．Jul | 17－4us | 22－Sep | 22－（）ct |
| Ergasilus |  |  |  |  | 1，061 |  |
| Immature Calanoids | 5 15．924 | 7，431 | 8，493 | 27，601 | 6.369 | 531 |
| Diaplomus | 14.331 | 38.747 | 108.280 | 93.417 | 14，862 | 16.986 |
| Ovig Diaptomus |  | 531 |  |  |  | 1.062 |
| Cyclops | 250.525 | 288.217 | 222，930 | 192.143 | 80.678 | 95.012 |
| Ovig Cyclops |  | 11.677 | 48.831 | 70.064 | 4，246 |  |
| Bosmina | 4．777 | 5，839 | 96，602 | 145.436 | 26.539 | 5，839 |
| Ovig Bosmina | 1.062 | 1，592 | 8，493 | 24.416 | 1.061 |  |
| Daphnial． |  |  |  | 18.047 | 9，554 | 16，454 |
| Ovig Daphnia |  |  | 2123 | 6,369 | 4，246 | 9，023 |
| Daphniag． |  |  |  |  |  |  |
| Holopedium |  |  |  |  |  |  |

Seasonal Mean
（ $\mathrm{No} / \mathrm{m} 2$ ）

177
11.058
47.771

266
188.251
22.470
47.505 6.104 7.343 3,627

| Chydorinae | 1,061 | 8,493 | 1,061 | 1.769 |
| :--- | :---: | :---: | :---: | :---: |
| Ov－Chydorinae | 1,061 |  |  | 177 |

## Polyphemus



| Lake: | $E \equiv D-($ Koãiak $)$ |
| :--- | :---: |
| Station: | 2 |
| Depth: | $37-38 \mathrm{~m}$ |
| Year: | 1994 |

Macrozooplankton Density
(no./m^2)
Date: 16-May 14-Jun 18-Jul 17-Aug 22-Sep 22-()ct

Seasonal Mean
( $\mathrm{No} / \mathrm{m} 2$ )

| Immature Calanoids | 4.246 | 3.185 | 5,308 | 7,962 | 3,981 |  | 4.114 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diaplomus | 35.032 | 18.046 | 41.932 | 40,605 | 58.918 | 35,562 | 38.349 |
| Ovig Diaptomus |  |  |  |  | present |  |  |
| Cyciops | 239.930 | 160.828 | 140.658 | 167.197 | 93,153 | 123.142 | 154,150 |
| Ovig Cyclops |  | 3,715 | 43.524 | 26.274 | 8,758 | 1.592 | 13.977 |
| Bosmina | 3,715 | 3,715 | 54,670 | 156,050 | 21,497 | 2,654 | 40.384 |
| Ovig Bosmina | 2.123 |  |  | 33.439 | 3,185 | 531 | 6.546 |
| Daphnial. |  |  | 7,431 | 31.051 | 14.331 | 10,616 | 10,572 |
| Ovig Daphnia |  |  | 4,246 | 8,758 | 3.981 | 1,062 | 3.008 |


| Chydorinae | 1.592 | 531 | 1,062 | 5,573 | 796 | 1.592 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Ovig Chydorinae | present |  | present |  |  |  |

Total: 272,691

## SEASONAL MEANS

| Mean Weichted |  |  | Weic |
| :---: | :---: | :---: | :---: |
| Length (mm) | Length (mm) | Blomass ( $m \mathrm{~m} / \mathrm{m}^{\wedge}$ 2) | Biomass $\left(m g / m^{\wedge} 2\right)$ |
| 0.53 | 0.53 | 3 | 3 |
| 0.99 | 0.97 | 160 | 149 |
| 1.20 | 1.20 |  |  |
| 0.72 | 0.72 | 272 | 279 |
| 1.18 | 1.16 | 71 | 69 |
| 0.41 | 0.33 | 61 | 40 |
| 0.46 | 0.34 | 13 | 7 |
| 0.60 | 0.56 | 16 | 14 |
| N. 73 | 0.66 | 7 | 6 |
| 0.29 | 0.29 | 1 | 1 |
| 0.34 | 0.34 |  |  |
| TO | AL: | 604 | 567 |


| Lake: | $R E D-K O E I A K$ |
| :--- | :---: |
| Station: | 3 |
| Depth: | $32-38 \mathrm{~m}$ |
| Year: | 1994 |

Macrozooplankton Density
(no./m^2)
Date: 16-May 14-Jun 18 -Jul 17-Aug 22-Sep 22-Oct

Seasonal Mean

Ergasilus
Epischura

| Dlaptomus | 62.634 | 43.525 | 71,124 | 73,567 | 135,349 | 50,957 | 72,859 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ovig Diaptamus |  | 4.246 |  | 2972 |  |  | 1.203 |
| Cyelops | 329.076 | 398.089 | 185.774 | 168.684 | 218,154 | 171,975 | 245.292 |
| Ovig Cyelops |  | 6.369 | 78.557 | 15,605 | 1.592 | 3,185 | 17.551 |
| Bosmina | 2.123 | 4.246 | 101.911 | 167,940 | 38,217 | 17,516 | 55.326 |
| Ovig Bosmina | 1,061 | 2.123 | 7,431 | 40,127 | 1,592 |  | 8.722 |
| Daphnia 1. |  | 1.061 |  | 2,972 | 28,662 | 23.885 | 9.430 |
| Ovig Daphnia |  |  |  | 1,486 | 15,923 | 7,962 | 4.229 |
| Daphniag. |  |  |  |  |  |  |  |

Holopedium

| Chydorinae | 5.202 | 867 |
| :--- | :---: | :---: |
| Ovig Chydorinae | 743 | 124 |
| Polyphemus |  |  |



| Lake: | RED - RODIAK |
| :--- | :---: |
| Station: | 4 |
| Depth: | $32-37 \mathrm{~m}$ |
| Year: | 1994 |

## Macrozooplankton Density

 (no./m^2)Seasonal Mean ( $\mathrm{No} / \mathrm{m} 2$ )

| Diaptomus | 60,511 | 54.140 | 14,331 | 37,154 | 132.167 | 92,357 | 65.110 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ovig Diaptomus |  | 2.123 | 3,981 |  | 1.592 | 1,061 | 1.460 |
| Cyclops | 498.392 | 254.777 | 78,026 | 72.718 | 152.866 | 300,424 | 226.201 |
| Ovig Cyclops |  | 7,431 | 9.554 | 7.431 | 4,777 |  | 4.866 |
| Sosmina | 1.592 | 3,185 | 13,535 | 90,764 | 44,586 | 31,847 | 30,918 |
| Ovig Bosmina |  | 1.061 | 7.962 | 61.572 |  |  | 11.766 |
| Daphnial. |  | 2,123 | 6.370 | 13,800 | 38,217 | 45,646 | 17.693 |
| Ovig Daphnia |  |  | 1,592 | 5,839 | 6,369 | 18.047 | 5,308 |


| Chydorinae | 531 |  |
| :--- | :---: | :---: |
| Ovig Chydorinae | present | 89 |


| Diaptomus | 1.03 | 0.96 | 0.91 | 0.73 | 0.82 | 0.88 | 0.89 | 0.88 | 200 | 196 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ovig Diaptomus |  | 0.96 | 1.40 | 1.26 | 1.16 | 0.88 | 1.13 | 1.19 | 9 | 10 |
| Cyclops | 0.71 | 1.00 | 0.78 | 0.66 | 0.73 | 0.62 | 0.75 | 0.75 | 440 | 438 |
| Ovig Cyclaps |  | 1.11 | 1.16 | 1.13 | 1.19 | 1.12 | 1.14 | 1.14 | 23 | 23 |
| Bosmina | 0.50 | 0.46 | 0.34 | 0.32 | 0.35 | 0.41 | 0.40 | 0.35 | 45 | 34 |
| Ovig Bosmina | 0.53 | 0.52 | 0.48 | 0.35 | 0.38 | 0.47 | 0.46 | 0.37 | 23 | 14 |
| Daphnial. | 0.82 | 0.67 | 0.63 | 0.51 | 0.57 | 0.63 | 0.64 | 0.59 | 31 | 26 |
| Ovig Daphnia | 0.84 | 0.67 | 0.83 | 0.63 | 0.64 | 0.75 | 0.73 | 0.71 | 12 | 12 |
| Chydorinae |  | 0.24 | 0.30 | 0.31 | 0.38 |  | 0.31 | 0.31 | 0.1 | 0.1 |
| Ovig Chydorinae |  |  | 0.36 | 0.36 |  |  | 0.36 | 0.36 |  |  |
|  |  |  |  |  |  |  | TOTAL: |  | 783 | 753 |


[^0]:    ${ }^{1}$ Contribution 94-41 is from the Soldotna area office. The Regional Information Report Series was established in 1987 to provide an information access system for all unpublished divisional reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate timely reporting of recently collected information, reports in this series may undergo only limited internal review and may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without prior approval of the author or the Commercial Fisheries Management and Development Division.

[^1]:    2 No traps were fished on July 4.

[^2]:    2 No traps were fished on July 4.

[^3]:    2 No traps were fished on July 4.

[^4]:    a No traps were fished on July 4; on July 5 only traps $1-3$ were fished.

[^5]:    1 Total migration-486,181. Lower confidence interval- 163,99* Upper confidence interval-1202,844.
    b No traps were fished on 4 July, only traps 1-3 were fished on 5 July.

[^6]:    ${ }^{2}$ Shaded blocks highlight 1 proporion increments

[^7]:    'The Regional Information Report Series was established in 1987 to provide an information access system for all unpublished divisional reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate timely reporting of recently collected information, reports in this series undergo only limited internal review and may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without prior approval of the author or of the Commercial Fisheries Management and Development Division.

[^8]:    ' Use of a company name does not constitute endorsement by ADF\&G.

[^9]:    ${ }^{\circ}$ Age composition sample size for Skilak Lake $=2.879$. for Kenai Lake $=2.979$.
    ${ }^{\mathrm{b}}$ Rounded to nearest 100 fish. File: 6tab94.w51

[^10]:    - No estimate was made for fish near the bottom; file: 13tab94.w51

[^11]:    - Target strength determined from dual-beam data collected in situ. File: 2aptab94.w51

