# **APPENDIX** A

APEX: 96163A



## ABSTRACT

The abundance of forage fishes was assessed in three areas of Prince William Sound in July 1996 using acoustic surveys of offshore and nearshore areas, and a beach seine survey for the very shallow nearshore zone. Offshore biomass was similar in depths above and below 25 m, and was about four times higher in the North area than in either the Central or South areas. The only fishes sampled by net in the offshore survey were walleye pollock over 200 mm in length.

1

Herring were by far the most abundant forage species in the nearshore acoustic survey, based on both net sampling and video observations of acoustic targets. Most herring were juveniles aged 1 or 2 years; however, large schools of young-of-the-year (YOY) herring were found in the North area, and notable numbers of adult herring occurred in the South area. Other species encountered in the nearshore acoustic survey were sand lance and YOY walleye pollock, both in the North study area. Nearshore acoustic biomass was considerably higher in the North study area than in either the South or Central areas. Most nearshore biomass was concentrated in distinct schools of fish that occurred on relatively few transects - from 10% of transects in the South, to 25% of transects in the North. The number of nearshore acoustic transects where large schools (mean transect estimate >  $10 \text{ g/m}^2$ ) were encountered was approximately three times higher in the North study area than the South, and ten times higher than the Central area. Video observations were very valuable in identifying acoustic targets, and allowed confirmation of distinctly different patterns of acoustic return associated with schools of herring, sand lance and YOY walleye pollock.

Beach seine catches were highly variable, but trends were similar to those in the acoustic surveys. More fish were caught in the North - about five and twenty-five times as many as in the South and Central areas, respectively; with approximately equal effort. Nearly all fish caught in the North were herring or sand lance. Some sandlance did occur in catches from the Central area, although they ranked third in total catch after pink salmon and tomcod. In the South herring were about 80% of total catch, followed by tomcod at about 15% of total. In frequency of occurrence (the proportion of seine hauls that had a species present in the catch), herring and sand lance ranked highest in the North, whereas pink salmon and tomcod ranked one and two in both the South and Central areas.

All surveys (offshore acoustic, nearshore acoustic, beach seine) indicated that forage species were much more abundant in the North than in either the Central or South areas. Herring were the most common and widespread forage fishes, and were most abundant in the North, where many schools of YOY herring and older (age 1 and 2) juveniles occurred. In addition the North area had notable occurrences of sand lance and YOY pollock.

There was no obvious explanation for the dramatic differences we observed in the abundance and distribution of forage fishes in Prince William Sound. Temperature and salinity distributions in the water column were very similar in the three study areas. We examined salinity and temperature distributions along nearshore to offshore transects in all three study areas to determine if nearshore frontal zones could be associated with distributions of forage fishes. In all cases, the pronounced stratification of the water column persisted into very shallow nearshore areas, indicating that the energy of tidal mixing was insufficient to break down stratification in the nearshore areas.

## TABLE OF CONTENTS

| Abstract                                                                                                         | 1                                |
|------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Table of Contents                                                                                                | 3                                |
| List of Tables                                                                                                   | 4                                |
| List of Figures                                                                                                  | 5                                |
| Acknowledgements                                                                                                 | 7                                |
| Introduction                                                                                                     | 8                                |
| Objectives                                                                                                       | 9                                |
| Field Methods<br>Offshore survey<br>Nearshore survey<br>Beach Seine survey<br>Net sampling<br>Sample processing. | 10<br>10<br>11<br>12<br>12<br>13 |
| Analytical and Statistical Methods                                                                               | 14                               |
| Results - Offshore survey<br>Hydroacoustic<br>Net sampling<br>Hydrographic                                       | 16<br>16<br>16<br>16             |
| Results - Nearshore survey<br>Hydroacoustics<br>Net and video sampling<br>Hydrographic                           | 17<br>17<br>18<br>18             |
| Results - Beach Seine Survey                                                                                     | 19                               |
| Discussion/Summary                                                                                               | 20                               |
| Literature Cited                                                                                                 | 23                               |

| Table 1. C | Offshore transect locations                       | 26 |
|------------|---------------------------------------------------|----|
| Table 2. N | Midwater trawl samples collected on cruise 96-1   | 27 |
| Table 3. C | CTD stations in the offshore survey               | 28 |
| Table 4. N | Nearshore transect locations                      | 29 |
| Table 5. N | Net samples collected in nearshore survey         | 39 |
| Table 6. V | Video samples collected in the nearshore survey   | 40 |
| Table 7. C | CTD stations in the nearshore survey              | 42 |
| Table 8. E | Beach seine sample locations                      | 43 |
| Table 9. A | Acoustic biomass estimates in offshore survey     | 45 |
| Table 10.  | Average offshore biomass in North, Central, South | 47 |
| Table 11.  | Midwater trawl catch composition                  | 48 |
| Table 12.  | Acoustic biomass estimates in nearshore survey    | 49 |
| Table 13.  | Nearshore net catch composition, North area       | 50 |
| Table 14.  | Nearshore net catch composition, Central area     | 51 |
| Table 15.  | Nearshore net catch composition, South area       | 52 |
| Table 16.  | Video sample identifications                      | 53 |
| Table 17.  | Lengths of fishes in nearshore samples            | 55 |
| Table 18.  | Beach seine catch composition, North area         | 56 |
| Table 19.  | Beach seine catch composition, Central area       | 57 |
| Table 20.  | Beach seine catch composition, South area         | 58 |
|            |                                                   |    |

`

|   | List of Figures                                                                                                                                                              |    |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | Figure 1. Locations of North, Central and South study areas                                                                                                                  | 59 |
|   | Figure 2. Offshore hydroacoustic transect locations in the North study area of Prince William Sound                                                                          | 60 |
|   | Figure 3. Offshore hydroacoustic transect locations in the<br>Central study area of Prince William Sound                                                                     | 61 |
|   | Figure 4. Offshore hydroacoustic transect locations in the South study area of Prince William Sound                                                                          | 62 |
|   | Figure 5. Locations of nearshore study areas in the South study area of Prince William Sound                                                                                 | 63 |
| - | Figure 6. Locations of nearshore study areas in the<br>Central study area of Prince William Sound                                                                            | 64 |
|   | Figure 7. Locations of nearshore study areas in the North study area of Prince William Sound                                                                                 | 65 |
|   | Figure 8. Example of nearshore study site segements in a nearshore study area (N09)                                                                                          | 66 |
|   | Figure 9. Area plot of acoustic backscatter in offshore surveys of the Central study area in 1995 and 1996                                                                   | 67 |
|   | Figure 10. Vertical distribution of acoustic backscatter on transect C01A in the Central study area in 1995 and 1996                                                         | 68 |
|   | Figure 11. Vertical profiles of temperature, salinity and density at representative stations located in the: A. North study area, B. Central study area. C. South study area | 69 |
|   | Figure 12. Locations of CTD stations used to examine horizontal variation in the water column in the North study area                                                        | 70 |
|   | Figure 13. Isothermal and isohaline profiles at CTD stations in the North study area                                                                                         | 71 |
|   | Figure 14. Locations of CTD stations used to examine horizontal variation in the water column in the Central study area                                                      | 72 |
|   | Figure 15. Isothermal and isohaline profiles at CTD stations in the Central study area                                                                                       | 73 |

5

| Figure 16. Locations of CTD stations used to examine horizontal variation in the water column in the South study area   | 74 |
|-------------------------------------------------------------------------------------------------------------------------|----|
| Figure 17. Isothermal and isohaline profiles at CTD stations in the South study area                                    | 75 |
| Figure 18. Distribution of biomass on individual transects in the: A. North, B. Central, C. South study areas           | 76 |
| Figure 19. Geographic distribution of biomass along nearshore transects in the North study area                         | 77 |
| Figure 20. Geographic distribution of biomass along nearshore transects in the Central study area                       | 78 |
| Figure 21. Geographic distribution of biomass along nearshore transects in the South study area                         | 79 |
| Figure 22. Example of a herring school on an individual nearshore transect (S06-04B) in the South study area            | 80 |
| Figure 23. Example of a sand lance schools on individual nearshore transects in the North study area                    | 81 |
| Figure 24. Example of a YOY pollock school on an individual nearshore transect (N10-08A) in the North study area        | 82 |
| Figure 25. Locations of CTD stations examined for evidence of tidal fronts in nearshore areas of the North study area   | 83 |
| Figure 26. Isothermal and isohaline profiles along the CTD transect in Port Fidalgo in the Northern study area          | 84 |
| Figure 27. Locations of CTD stations examined for evidence of tidal fronts in nearshore areas of the Central study area | 85 |
| Figure 28. Isothermal and isohaline profiles along the CTD transect at McPherson Passage in the Central study area      | 86 |
| Figure 29. Locations of CTD stations examined for evidence of tidal fronts in nearshore areas of the South study area   | 87 |

|                                                                                                                   | 7  |
|-------------------------------------------------------------------------------------------------------------------|----|
| Figure 30. Isothermal and isohaline profiles along the CTD transect in Bainbridge Passage in the South study area | 88 |
| Figure 31. Locations of CTD stations where 24 hour series of temperature and salinity profiles were sampled       | 89 |
| Figure 32. Isothermal and isohaline profiles over 24 hours<br>at station DS 2 in Bainbridge Passage               | 90 |
| Figure 33. Isothermal and isohaline profiles over 24 hours at station DS 8 in Bainbridge Passage                  | 91 |
| Figure 34. Cumulative frequency distribution of catches in beach seine samples                                    | 92 |
| Figure 35. Frequency of occurrence of fishes in beach seine samples from the North, Central and South areas       | 93 |

## ACKNOWLEDGMENTS

This research program was conducted with the aid of many individuals. Especially valuable were the contributions in field work by Jennifer Boldt, Cathy Coon, Lee Hulbert, Malcolm McEwen, Jill Mooney, Chris Rooper and Molly Sturdevant. Lyman MacDonald provided very valuable assistance in sampling design and data analyses.

## INTRODUCTION

Prince William Sound (PWS) is one of the largest areas of protected waters bordering the Gulf of Alaska (GOA), and provides a foraging area for large populations of apex predators including piscivorous seabirds. These avian predators were severely impacted by the EXXON VALDEZ oil spill (EVOS), and many - especially common murres, marbled murrelets, pigeon guillemots - suffered population declines that have not recovered to pre-EVOS levels (Agler et al. 1994). Piscivorous seabirds in PWS are near the apex of food webs based on pelagic production. They feed on an assemblage of forage species that include several fishes and may also prey on invertebrates such as euphausiids, shrimps and squid. Recovery of apex predator populations in PWS depends on restoration of important habitats and the availability of a suitable forage base. Since the 1970's there has apparently been a decline in populations of apex predators of the pelagic plankton production system, and it is not clear if failure to recover from EVOS-related reductions is due to long-term changes in forage species abundance or to EVOS effects.

Forage species include planktivorous fishes and pelagic invertebrates. Planktivorous fish species that occur in PWS and are known or likely prey of apex predators include Pacific herring, *Clupea pallasi*; Pacific sand lance, *Ammodytes hexapterus* (Drury et al. 1981, Springer et al. 1984, Wilson and Manuwal 1984); walleye pollock,*Theragra chalcogramma* (Springer and Byrd 1989, Divoky 1981); capelin, *Mallotus villosus*, and eulachon, *Thaleichthys pacificus* (Warner and Shafford 1981, Baird and Gould 1985). Pelagic invertebrates; including euphausiids, shrimp, mysids, amphipods; are found in the diets of sand lance, capelin and pollock, as well as young salmon (Clausen 1983, Coyle and Paul 1992, Livingston et al. 1986, Straty 1972). When aggregated in sufficient densities, macrozooplankton are fed on directly by marine birds (Coyle et al. 1992, Hunt et al 1981, Oji 1980).

We used hydroacoustics to estimate the distribution and abundance of forage fishes. Hydroacoustics measure horizontal and vertical abundance at scales not possible by traditional net sampling techniques, and have been used to quantify fish (Thorne et al. 1977, Thorne et al. 1982, Mathisen et al. 1978) and the spatial patterns of a variety of aquatic populations (Gerlotto 1993; Baussant et al. 1993; Simard et al. 1993). In Alaskan waters, acoustics have been used to measure biomass relative to tidally-generated frontal features (Coyle and Cooney 1993) and the relationship between murre foraging, tidal currents and water masses in the southeast Bering Sea (Coyle et al. 1992). Acoustic sampling cannot positively identify the species of targets; consequently, other sampling must be conducted concurrently with acoustics to identify species and to provide size distribution data necessary for biomass estimations.

This report describes the second year of research that is part of a program (APEX) designed to determine if forage species availability is limiting the recovery of seabird populations that were impacted by the EVOS. In the first year of the study (1995), the most significant aggregation of forage species occurred offshore in the central part of the Sound where large schools of young-of-the year walleye pollock were found at depths from 30 - 70 m. Studies of seabirds in 1995 indicated they foraged principally within 1 km of the shoreline. As a consequence of those observations our research program in 1996 directed much more effort to quantifying the abundance of forage species in the nearshore area, and we added a nearshore acoustic survey and a beach seine survey.

## **OBJECTIVES**

1. Provide an estimate of the abundance and distribution of forage species in nearshore (within 1 km) and offshore zones of three study areas in Prince William Sound.

2. Describe size distributions of the most abundant forage species.

3. Provide samples of forage fishes to NMFS for food habits studies, and other samples of forage species to other APEX and EVOS funded researchers.

4. Describe oceanographic conditions in the study area, and determine if forage fish distributions are associated with hydrographic features such as tidal fronts.

## FIELD METHODS

Field studies were conducted in July 1996. The survey was conducted in three areas designated as the north, central and south study sites (Figure 1). The study began on 14 July and ended on 28 July:

- 14 July Loaded gear on vessels in Cordova, traveled to South study area
- 15-19 Conducted surveys in South study area
- 19-22 Conducted surveys in Central study area
- 23-27 Conducted surveys in North study area.
- 28 July Traveled to Cordova, unloaded equipment.

## Offshore Survey.

The offshore survey was conducted from two vessels, an acoustic/bird observation vessel (F/V CAPE ELRINGTON) and a mid-water trawl vessel (F/V CARAVELLE). Surveys were conducted during daylight hours, typically between 0600 and 2000. The acoustic vessel surveyed a series of transects. The transects were in a pattern of parallel transects through each area, terminating at shorelines as close as possible to the shore. Patterns to be run in each area followed a pre-selected series of transects spaced at two mile intervals (Table 1, Figures 2 - 4). Data were collected with a 120 kHz BioSonics Model 101 Scientific Echosounder, with the transducer deployed in downlooking mode from the towed vehicle. Signal processing was accomplished with a BioSonics Model 221 ESP Echo Integrator.

The F/V CARAVELLE collected mid-water trawl samples of targets designated by the acoustic vessel (Table 2). The location of net sampling was determined by acoustic and bird observations. Where acoustic signals or bird activity indicated the presence of forage species, scientists on the acoustic vessel directed the midwater trawl vessel to the location and depth where collections were desired.

CTD profiles were collected at net collection stations and on each transect line (Table 3). A Seabird SEACAT SBE 19 CTD was used to sample the water column from the surface to 200 m depth, or to within 10 m of the bottom at shallower stations.

#### Nearshore Survey

The F/V MISS KAYLEE conducted a series of hydroacoustic transects in the three study areas, working in the same general area as the offshore survey on each day. On July 26 and 27 the CAPE ELRINGTON conducted the nearshore survey due to failure of acoustic equipment on the MISS KAYLEY. The equipment on the MISS KAYLEE was a Biosonics ESP 420 kHz analog downlooking and side-looking system multiplexed with a 130 kHz DT6000 digital down-looking system. On July 19th the ESP 420 kHz system failed and beginning on July 20th the inshore survey was continued with only the DT6000 system. On July 25th the DT6000 system also failed, and it was replaced with a DT5000 system. The DT5000 system failed almost immediately; consequently, the nearshore survey was completed using the CAPE ELRINGTON and the ESP 120 kHz system.

Inshore transects were in a pattern of zig-zags within 12 km segments of shoreline. The 12 km study site segments were laid out sequentially through the shoreline within each study area. The number of 12 km study sites within each study are: North - 26, Central - 8, South 21 (Figures 5 - 7). Since time constraints precluded sampling all of the shoreline in the North and South areas, a systematic sampling plan was followed, and every other study site segment was sampled, with random removal of additional segments to further reduce the number as necessary. Segments sampled were:

North 1, 3, 5, 7, 9, 13, 15. 17, 19 Central 1-8 South 2, 4, 6, 10, 14, 16, 18, 20

Each 12 km study site was further divided into ten 1.2 km beach sections, with the starting and ending points of each beach section marking the shoreward turning point in a series of 20 transects were laid out following a zig-zag pattern (10 zigs, 10 zags), with each transect about 1.2 km long (Table 4, Figure 8). The acoustic transects are identified by a alpha-numeric designation, for example: N03-02A

N - indicates the North study area

- 03 indicates the third 12 km shoreline segment
- 02 indicates the second beach section, or second set of zig-zags
- A indicates the first of the two zig-zag transects off beach section 2.

Acoustic targets found by the survey vessel in the inshore study areas were sampled by the F/V PAGAN using purse seine, dip nets, cast nets (Table 5) or a video-equipped ROV (Remote Operated Video) (Table 6).

CTD profiles were collected at representative sites at each 12 km segment sampled acoustically (Table 7). A Seabird SEACAT SBE 19 CTD was used to sample the water column from the surface to 200 m depth, or to within 10 m of the bottom at shallower stations.

## Beach-seine survey

Beach seining was conducted in each study area in the same 12 km beach segments that were sampled in the inshore survey. The beach sections within each segment sampled were chosen randomly. The ten 1.2 km sections within each study site segment were randomly ranked, using a random number table (Table 8). The first three ranked sections had one seine haul made on any beach that was thought to be fishable. If there were no fishable beaches in a top-ranked beach section, the next ranked section was used.

## Net Sampling methods

A mid-water trawl was the primary sampling tool used to sample acoustic targets offshore. This net is a research-scale version of a mid-water commercial herring trawl used in Canada. Although the absolute net mouth opening is about 100 m<sup>2</sup>, the effective opening is about 50 m<sup>2</sup>. This size net has proven effective on larger nektonic forage fishes such as herring (Mike Halstead, Research Nets Inc. Seattle, Personal communication). The mesh sizes diminish stepwise from about 2" in the wings to 3/8" (9.5 mm) in the codend. An additional cod end liner with 1/8" (3.2 mm) mesh netting was sewn into the midwater trawl, this inner liner terminated in a plankton bucket with 0.5 mm nytex mesh that retained smaller macroplanktonic organisms. Midwater trawl samples were collected at locations and depths specified by the researchers monitoring the acoustic sampling.

A purse seine was the primary net sampling gear used to collect samples of acoustic targets in the nearshore survey, although dip nets and cast nets were used occasionally to collect fishes very near the surface. The purse seine was 200 m long by 20 m deep with 25 mm stretched mesh.

The beach seine is a 37 m long net equipped with bridles and 30 m long lines attached to each bridle. The net tapers from 5 m depth at the center to 1.5 m depth at the end of each wing. The mesh size is 20 mm stretched mesh except for a center panel 9 m long that has 10 mm stretched mesh.

#### Sample Processing

#### MacroInvertebrates.

Gelatinous zooplankton were identified to the lowest possible taxon in the field. All other zooplankton were either frozen for future energetic studies or preserved in buffered 5% formalin.

#### Fishes.

Fish larger than about 50 mm were identified in the field and sorted to species. All fish were measured (fork length) unless net hauls contain large numbers of individuals of some species. Large catches were randomly subsampled by splitting the catch down to 100 - 200 individuals for measurement. Subsamples of all forage fish species were frozen and returned to the laboratory for future life history and energetics studies.

#### ANALYTIC AND STATISTICAL METHODS

#### Acoustic data

#### Offshore survey.

Averages were caculated for each transect within two depth strata: 1 - 25 m and 26 - 100 m. the deeper stratum exends further than the previous year (100 m ve. 65 m) because of the lower frequency (120 kHz vs. 420 kHz) used in 1996. A scaling factor of - 30 dB/Kg of fish biomass was used to convert echo integration measurements to fish density.

Nearshore survey.

Biomass estimates were developed by scaling down-looking acoustic data based on the length distributions of the dominant fish species collected in each study area. Estimates of the number of individual fish per cubic meter are determined by an equation relating acoustic target strength to fish length. Data were collected using the default target strength of -42.2 dB. Equations to convert fish length (L, in cm, log base 10) to target strength (TS) were:

| pollock    | TS = 20 (log L) - 66   |
|------------|------------------------|
| herring    | TS = 20 (log L) - 68   |
| sand lance | TS = 20 (log L) - 93.7 |

Differences between the computed target strength and the default target strength were used to rescale the data.

Estimates of fish numbers were converted to an estimate of biomass per cubic meter using the length-weight relationship for the dominant species. Equations to compute biomass (W - in grams, L - in mm) were:

(based on 38 kHz system)

| pollock    | W = (1.89 x 10 <sup>-6</sup> ) L 3.272 |
|------------|----------------------------------------|
| herring    | W = $(5.007 \times 10^{-6}) L^{3.196}$ |
| sand lance | W = $(4.81 \times 10^{-7}) L 3.451$    |

Biomass per cubic meter estimates were converted to biomass per square meter of surface by integrating the results over the depth of the sampled water column. Length to target strength relationships were taken from the literature, and the length-weight equations were from our unpublished data in PWS. Geographic distributions of forage species were assessed by developing area plots of biomass density gradients determined through a kriging routine. The kriging method has a gridding algorithm (we used a minimum curvature algorithm) that estimates the data between transect lines based on spatial variation along the transect lines. Therefore, the most accurate point estimates are those occurring closest to the lines in regions where transect density is highest. Land masses were overlaid on the area plots after the gridding algorithm had been run.

Biomass estimates for each of the nearshore 12 km sampling sites were developed by calculating the mean for each set of zigs and zags separately, and an overall estimate was calculated by including all transects (zigs and zags) in the average. The estimate of nearshore biomass in each of the three study areas (North, Central, and South) was produced by averaging the overall estimate from each of the sampling sites.

Depth profiles of temperature, salinity and sigma-t were plotted for all CTD casts. We also evaluated geographic patterns in offshore water structure by plotting isotherm and isohaline lines over series of stations in the North (Valdez Arm), Central (east of Knight Is.) and South (Knight Island Passage) study areas.

Geographic patterns of temperature and salinity were plotted for series of CTD stations extending from nearshore to offshore in the North (Port Fidalgo), Central (MacPherson Passage), and South (Knight Island Passage) study areas to determine if tidal fronts were found in the nearshore areas of the Sound. In addition, two diel CTD stations were sampled every 6 hours over a 24 hour period in Bainbridge Passage to determine if tidal currents were strong enough to break down the vertical stratification of the water column.

## **RESULTS - OFFSHORE SURVEY**

#### <u>Hydroacoustic</u>

Aggregations of forage fishes were seldom encountered in the offshore survey. This was a sharp contrast to the results from the 1995 survey, when large aggregations of young-of-the-year walleye pollock were found in the Central area east of Knight Island (Figures 9, 10). In most cases densities were low, less than one gram/square meter (Table 9). The North area had average densities of acoustic biomass that were over three times higher than either the Central or South areas (Table 10).

#### Net Sampling

Midwater trawl samples were collected at twelve stations in the offshore survey (Table 11). The only fish in midwater catches were walleye pollock at stations 65 (Central area, mean fork length 281 mm) and 119 (North area, mean fork length 260 mm), these lengths indicate they were at least two years of age. Jellyfish were the dominant component of midwater trawl catches, the most abundant genera of jellyfish were *Aequorea* and *Cyanea* (Table 11).

#### <u>Hydrographic</u>

Prince William Sound is a large estuary, with large amounts of freshwater input from rainwater and meltwater from glaciers and snowfields. The resultant salinity gradients are largely responsible for stratification of the water column in the Sound. In the summer of 1996 all three study areas had gradients in temperature and salinity in the upper 50 m, with surface temperatures ranging from 12 - 15 ° C. and salinities from 17 - 30 °/oo (Figure 11). Below about 50 m temperatures were typically <5° C with salinities above 32 °/oo.

Physical conditions in the three study areas were very similar, both in termperature and salinity. Unlike 1995, there was no layer of cold water near the surface in the South, and the Central area was not notably less saline at the surface than the North or South areas. The upper 20 meters of the Sound was generally more saline in 1996 than in 1995. All of these observations are consistent with the lower rainfall that occurred in the Prince William Sound area in 1996, relative to 1995; and the consequent reduction in fresh water run-off into the Sound.

Conditions within a survey area were relatively uniform. In the North area a south to north series of stations on transect lines 2 - 8 (Figure 12, stations are spaced every 2 nautical miles) have quite flat isothermal and isohaline profiles, except for colder surface water near glaciers (station N03A) and colder, less saline water at the north end of the transect. (Figure 13) . In a south to north transect of stations in the Central area (Figure 14), temperatures and salinities are more uniform (Figure 15). At 9 stations through Knight Island Passage in the South area (Figure 16), the water column is colder and more saline at shallow depths at the southern end of the transect (Figures 17).

#### **RESULTS - NEARSHORE SURVEY**

#### **Hydroacoustics**

Biomass estimates varied among the three major study areas, largely due to the variability in the rate at which schools of forage fishes were encountered. Within each of the 12 km sampling sites, the mean biomass for each set of zigs and zags often differed sharply - reflecting the fact that usually much of the biomass within a sampling site was due to the presence of one or two schools of fish that occurred on one or two of the 20 transects that made up the set of zigs and zags at a site. As a consequence of this pattern the standard errors for each set of zigs and zags are relatively large (Table 12). The distribution of biomass estimates of individual transects provides an index of the number of schools of forage fishes in each of the study areas (Figure 18). The North area had substantially more transects where fish schools were encountered than did the South or Central areas. Large schools on a transect typically resulted in average biomass exceeding 10 g/m2. The North area had 21 such transects, whereas the South and Central areas had 7 and 2 high value transects, respectively. The mean biomass estimates of zigs only, zags only, and total transects were all also higher in the North study area (Table 12).

The geographic distribution of biomass among the transects in the study areas indicated that schools of forage fishes were not randomly distributed (Figures 19, 20, 21). In the North, Port Gravina had the highest concentration of biomass which was comprised of sand lance, YOY herring, and YOY walleye pollock. In the Central area most biomass occurred around the north end of Knight Island. In the South, biomass was concentrated in Prince of Wales Passage, where schools of juvenile and adult herring occurred.

Acoustic returns from herring, sand lance and walleye pollock displayed distinctively different patterns. Herring schools were typically tightly organized in roughly symetrical oval shapes in the upper water column with high acoustic backscattering (Figure 22). Sand lance schools were widely spread above the bottom with relatively low acoustic backscatter (Figure 23). YOY pollock were found in patchy schools, well off the bottom with moderately high acoustic backscatter (Figure 24).

## Net and Video Sampling

Net samples were collected in the three study areas (Tables 13, 14, 15) to identify acoustic targets and to collect samples for size, condition and energetics studies. More samples were collected in the North study area as the acoustic survey found many more schools of forage fishes in that area.

Video sampling was used extensively in all study areas, and proved to be an effective way to identify species of fish schools that were located by the acoustic survey vessel. Herring were by far the most commonly identified species in video sampling of acoustic targets (Table 16).

Fishes collected by the nearshore net/video sampling vessel were mostly herring with size distributions indicating they were young-of-the year (< 100 mm), 1+ years (100 - 130 mm) 2+ years (130 - 170 mm) or older adults (>180 mm). Lengths of fishes sampled varied among the study areas (Table 17).

## **Hydrographic**

Physical conditions in the nearshore were very similar to those in the offshore stations in all three study areas. We examined geographic patterns in temperature and salinity at a series of CTD stations extending from nearshore to offshore to determine if tidal fronts were present nearshore in

the Sound. At a series in Port Fidalgo (Figures 25, 26), Naked Island (Figures 27, 28) and Bainbridge/Knight Is. Passage (Figures 29, 30), we found no indication that the strong vertical stratification that exists offshore was being being broken down in the nearshore. Examination of temporal variation in temperature and salinity at two stations in Bainbridge passage on July 18 also indicated that the vertical structure was not disrupted over several tide changes in this narrow passage that experiences considerable tidal flushing (Figures 31, 32, 33). In that series, high tides occurred at about 3:20 AM (+ 12.3 ft) and 4:20 PM (+ 11.2 ft), and low tides at about 9:50 AM (- 0.9 ft) and10:00 PM (+2.5 ft). This date had the greatest tide range that occurred during our field season.

#### **RESULTS - BEACH SEINE SURVEY**

Catches in beach seine sampling were highly variable, as most of the fish were caught in a few hauls in each of the three study areas. Among the 73 hauls that comprised the beach seine survey, ten hauls accounted for over 95% of the total catch (Figure 34). Large samples typically occurred when schools of herring or sand lance were intercepted by the seine. Highest catches occurred in the North study area, and fewest in the South (Tables 18, 19, 20). The differences were not tested statistically because of the extremely high variability in catches; however, the data suggest that there were differences in the species composition and abundance among the three areas. The proportions of beach seine samples that included the most commonly occurring species also suggest that there were differences among the three study areas. Pink salmon and tomcod were the most frequently occurring species in the South and Central study areas, whereas herring and sand lance had the highest frequency of occurrence in the North (Figure 34).

Pronounced water column structure in the form of strong vertical gradients in temperature, salinity and density were evident throughout the North, Central and South sampling areas in Prince William Sound in summer 1996. This is expected in an estuarine ecosystem such as PWS which receives large amounts of rain, snowmelt and glacial meltwater discharge. Surface temperatures ranged from 12 - 15 °C and decreased rapidly with depth. Temperatures below 50 m were 3 - 5 °C. Surface salinities varied from 19 - 30 ppt, while salinities below 50 m were relatively isohaline at 31-33 ppt. In general, offshore stations had warmer temperatures and higher salinities in surface waters than inshore stations. Surface waters at stations in the North area were generally colder and less saline than stations in the South area, but the proximity of stations to glacial meltwater and riverine discharge introduces considerable variability. Although considerable spatial variability existed, in general waters in PWS during our cruise in summer 1996 were warmer and more saline than in 1995. This is consistent with the lower amounts of rainfall in the area in 1996.

Differences in the relative abundance of birds in the offshore and nearshore areas led to a hypothesis that differences in water column structure from offshore to inshore might explain the larger abundance of seabirds feeding nearshore. Nearshore frontal zones - boundaries between stratified offshore waters and well-mixed nearshore waters - occur when turbulence from tidal currents is strong enough to break down stratification. Such frontal zones may concentrate zooplankton, which could cause planktivorous fishes to aggregate nearshore; and, consequently, result in more birds foraging nearshore.

To examine the possible changes of hydrographic structure from offshore to nearshore waters, a series of CTD transects were established in several locations within the North (Port Fidalgo), Central (McPherson Bay) and South (Bainbridge Passage) areas. In the north and central parts of Bainbridge Passage, CTD samples were collected at 6 hour intervals for 24 hours, spanning two spring cycles. No differences in hydrographic structure were evident from offshore to inshore, or over tidal cycles. Horizontal thermopleths and halopleths were uniformly smooth between stations located along transects extending from offshore to inshore, indicating that tidal fronts are not consistent features of the nearshore environment. Similarly, only a few deep anomalies in thermal and salinity isopleths are obvious in diel hydrographic sampling over a spring tide series. Although the concept sounds plausible, we found no evidence to support the hypothesis that water column structure might explain changes in availability of forage species to seabirds.

In 1996 we repeated the offshore survey of 1995, and added extensive nearshore acoustic and beach seine surveys. The main difference in the offshore survey in 1996 relative to 1995 was the absence of large schools of young-of-the-year walleye pollock that were a dominant feature of the forage fish complex in 1995. The YOY walleye pollock may have been absent from the 1996 survey if they were located outside the three study areas we surveyed; or, there may have been relatively few pollock produced in Prince William Sound in 1996. Walleye pollock populations in the Gulf of Alaska and the Bering Sea typically have high variability in year-class abundance; consequently, it would not be surprising to observe similar variability in Prince William Sound. We suspect that relatively low numbers of YOY walleye pollock in 1996 was due to a weak year class, although we cannot rule out the possibility that there were large numbers of pollock outside the study areas. Except for the areas where walleye pollock schools occurred in 1995, the acoustic biomass estimates for 1996 were similar in scale to those observed in 1995. As in 1995, the 1996 survey found distinctly higher acoustic biomass in the North study area than in the Central or South areas.

The nearshore acoustic survey found that herring were by far the most abundant forage species in nearshore areas, although there were some differences in herring age and size composition in the three study areas. In all areas, juvenile herring that were probably age 1+ or 2+ were the most commonly encountered sizes; young-of-the-year herring were encountered mainly in the North study area, whereas adult herring occurred mainly in the South. Larger herring are probably less vulnerable to bird predation;

21

therefore, these observations suggest that the North study area provided enhanced foraging conditions for avian predators.

Acoustic biomass estimates in the nearshore survey were mainly a function of the number of fish schools encountered on transects. The North area had the highest mean biomass estimates, followed by the South and Central areas. This result was due to the substantially higher number of transects with fish schools in the North. The fish schools were principally herring, although the North was the only area where schools of sand lance and schools of YOY pollock were found in the nearshore acoustic survey. It appears that the North study area provided substantially more opportunities for birds to encounter schools of fish in the nearshore area than did the South or Central study areas. Within the North area, schools of fish appeared to be concentrated in Port Gravina and to a lesser extent in the outer parts of Port Fidalgo. Port Gravina was also the area where schools of sand lance and YOY pollock were found.

The beach seine survey provided highly variable results, with total catches dominated by a few hauls that caught schools of forage species. Nevertheless, beach seine data provide indications of forage species distributions that are consistent with the nearshore acoustic results. The beach seine survey caught the highest total of fish in the North study area, followed by the South and Central areas. In addition, the frequency of occurrence of commonly caught species differed among areas, as herring and sandlance were ranked first and second in frequency of occurrence in the North, whereas in the South and Central areas pink salmon and tomcod ranked first and second. Statistically, the beach seine data set has very limited power to identify differences among areas, due mainly to the high variability within areas. Nevertheless, trends in beach seine results are similar to results from the acoustic surveys, and reinforce a conclusion that the North study area, especially waters around Port Gravina, provided substantially enhanced availability of forage fishes within Prince William Sound.

٥

## REFERENCES

Agler, B. A., P. E. Seiser, S. J. Kendall and D. B. Irons. 1994. Marine bird and sea otter population abundance of Prince William Sound, Alaska: trends following the T/V Exxon Valdex oil Spill, 1989-93. Exxon Valdez oil spill restoration fial reports, Restoration Project 93045. U.S. Fish and Wildlife Service, Anchorage.

Baird, P. A. and P. J. Gould. (eds.). 1985. The breeding biology and feeding ecology of marine birds in the Gulf of Alaska. OCSEAP Final Reports 45:121-504.

Baussant, T., F. Ibanez and M. Etienne. 1993. Numeric analysis of planktonic spatial patterns revealed by echograms. Aquatic Living Resources 6:175-184.

Clausen, D. 1983. Food of walleye pollock, *Theragra chalcogramma*, in an embayment of southeastern Alaska. Fish. Bull. 81:637-642.

Coyle, K. O. and R. T. Cooney. 1993. Water column sound scattering and hydrography around the Pribiliof Islands, Bering Sea. Cont. Shelf. Res. 13:803-827.

Coyle, K. O., G. Hunt, M. Decker and T. Weingartner. 1992. Murre foraging, epibenthic sound scattering and tidal advection over a shoal near St. George Island, Bering Sea. Mar. Ecol. Prog. Ser. 83:1-14.

Coyle, K. O. and A. J. Paul. 1992. Inteannual differences in prey taken by capelin, herring and red salmon relative to zooplankton abundance during the spring bloom in a southeast Alaskan embayment. Fish. Oceanog. 14:294-305.

Divoky, G. J. 1981. Birds of the ice-edge ecosystem in the Bering Sea. In: D. W. Hood and J. A. Calder (eds.) The eastern Bering Sea shelf: Oceanography and Resources, Vol 2. Office of Marine Pollution Assessment, NOAA, Juneau.

Drury, W. H., C. Ramshell and J. B. French, Jr. 1981. Ecological studies in the Bering Strait. U.S. Dept. Commer., NOAA OCSEAP Final Rept. Biol. Studies. 11:175-487. RU-237.

Gerlotto, F. 1993. Identification and spatial stratification of tropical fish concentrations using acoustic populations. Aquatic Living Resources 6:243-254.

Hunt, G. L., Jr., Z. Eppley, B. Burgeson and R. Squibb. 1981. Reproductiveecology, food and foraging areas of sea birds nesting on the Pribilof Islands. U.S. Dept. Commerce, NOAA OCSEAP Final Report 2.

Livingston, P. A. D. A. Dwyer, D. L. Wencker, M. S. Yang and G. M. Lang. 1986. Trophic interactions of key fish species in the eastern Bering Sea. Int. No. Pac. Fish. Comm. Bull. 47:49-65.

Mathisen, O., R. Thorne, R. Trumble and M. Blackburn. 1978. Food composition of pelagic fish in an upwelling area. Pp. 111-123 in: R. Boje and M. Tomczak (eds.) Upwelling Ecosystmes. Springer-Verlag.

Oji, H. 1980. The pelagic feeding ecology of thick-billed murres in the north Pacific, March-June. Bull. Fac. Fish. Hokkaido Univ. 31:50-72.

Simard, Y., D. Marcotte and G. Bourgault. 1993. Exploration of geostatistical methods for mapping and estimating acoustic biomass of pelagic fish in the Gulf of St. Lawrence: size of echo integration unit and auxiliary environmental variables. Aquatic Living Resources 6:185-199.

Springer, A. M. and G. V. Byrd. 1989. Seabird dependence on walleye pollock in the southeastern Bering Sea. In: Proc. Int. Symp. Biol. Mgmt. Walleye Pollock. Alaska Sea Grant Program. University of Alaska Fairbanks.

Springer, A. M., D. G. Roseneau, E. C. Murphy and M. I Springer. 1984. Environmental controls of marine food webs: Food habits of seabirds in the eastern Chukchi Sea. Can. J. Fish. Aquat. Sci. 41:1202-1215. Straty, R. R. 1972. Ecology an behavior of juvenile sockeye salmon (*Oncorhynchus nerka*) in Bristol Bay and the eastern Bering Sea. In D. W. Hood and E. J. Kelly (eds.) Oceanography of the Bering Sea. pp 285-319. occasional Publ. 2. Inst. Mar. Sci. U. of Alaska, Fairbanks.

Thorne, R., O. Mathisen, R. Trumble and M. Blackburn. 1977. Distribution and abundance of pelagic fish off Spanish Sahara during CUEA Expedition Joint 1. Deep-Sea Reserch 24:75-82.

Thorne, R., R. Trumbel and N. Lemberg. 1982. The Strait of Georgia herring fishery: a case history of timely management aided by hydroacoustic surveys. Fisheries Bulletin 80:381-388.

Warner, I. M. and P. Shafford. 1981. Forage fish spawining surveys - southern Bering Sea. pp 1 - 64. In: Environ. Assess. Alaskan Cont. Shelf. Final Rept. Biol. Studies. Vol 10. OCSEAP/ NOAA. Boulder, Colorado.

Wilson, U. W. and Manuwal. 1984. Breeding biology of the Rhinoceros auklet (*Cerorhinca monocerata*) in Washington. Condor 88:143-155).

Table 1. Offshore transect locations in APEX Prince William Sound study areas.

North Area Transect Number Latitude General Location N01A 60º 46.2 S Port Fidalgo 60° 48.2' N02A S Bligh Is. N03LLB 60° 50.2 Landlocked Bay N03TT 60º 50.2 S Tatitlek Narrows N03VA 60º 50.2 Bligh Reef 60° 52.2 Boulder Bay N04BB N04VA 60º 52.2' E Glacier Is. 60º 54.2' Valdez Arm N05VA N05GIW 60º 54.2 W. Glacier Is. inner Galena Bay N06GBE 60º 56.2' N06GBW 60° 56.2' outer Galena Bay N06VA 60º 56.2' Valdez Arm N06CB 60º 56.2' Columbia Bay ent. N06LB 60° 56.2' Long Bay ent. Valdez Arm 60º 58 2' N07VA 61º 0.2' Valdez Arm N08VA 61º 2.2' Valdez Arm/ Jack B. N09VA 61º 4.2' Valdez Narrows N10VN N11PV 61º 6.2' Port Valdez Outer Port Fidalgo 60º 44 2' N12 A N13W 60º 42.2' Goose Island Port Gravina N13E 60º 42.2' 60º 40.2' Port Gravina N14W N14E 60º 40.2' Port Gravina **Central Area** General Location Transect Number Latitude C01A 60º 22.3' N Montague St. 60º 24.3' Manning Rocks C02A C03A 60º 26.3' N Seal Is. C04A 60º 28.3' N Knight Is. 60º 30.3' S Smith Is. C05A 60º 32.3' N Smith Is. C06A 60º 34.3' NE Eleanor is. C07E C07W 60º 34.3' NW Eleanor Is. C08A 60º 36.3' Eleanor Pass. 60º 38.3' SE Naked Is. C09E C09W 60º 38.3' SW Naked Is. C10E 60º 40.3' E Naked Is. 60º 40.3' C10C McPherson Bay 60º 40.3' C10W W. Naked Is. 60º 42.3' E Peak is. C11E 60º 42.3' C11W W Peak Is. C12E 60º 44.3' E. Storey Is. C12W 60º 44.3' W. Storey Is. South Area Transect Number Latitude General Location 60º 15.0' Whale Bay Entr. S01E S01W 60º 15.0' Icy Bay Lower Dang, Pass. S02W 60º 17.0 S02E 60º 17.0° Knight Is Pass. 60º 19.0' S03W S Jackpot Is. S03F 60º 19.0' Knight Is. Pass. S04W 60º 21.0' Dangerous Pass. S04E 60º 21.0 Knight Is. Pass S06W 60º 11.0' Bainbridge Pass. 60º 11.0' Bainbridge Pass. S06F S07A 60º 09.0' Shelter Bay to Pt. Hele S08A 60º 07.0' So, end Knight Is. Pass

60º 23.0'

60º 23.0

Dangerous Passage

Knight Is, Pass.

S09W

S09E

From/To shore to 147º 0' 146º 0.0 to 147º 5' shore to shore shore to shore shore to 147º 0' shore to shore shore to shore shore to shore shore to 147º 0' shore to shore 146º 50.0' to shore 146º 55.0' to shore shore to shore 146º 45.0' to Red Head Red Head east to shore Erom/To 147º 12.0' to shore 147º 12.0' to shore 147º 12.0' to shore 147º 12.0' to shore 147º 2.0' to shore 147º 2.0' to shore 147º 2.0' to shore

147° 12.0' to shore 147° 12.0' to shore 147° 2.0' to shore 147° 2.0' to shore 147° 2.0' to shore 147° 2.0' to shore shore to 147° 2.0' 147° 12.0' to 147° 42.0' 147° 12.0' to shore shore to 147° 42.0' 147° 12.0' to shore shore to 147° 42.0' 147° 12.0' to shore shore to 147° 42.0' 147° 12.0' to shore

shore to 147º 42.0'

|    | Erom/To             |
|----|---------------------|
|    | 148º 5' to shore    |
|    | shore to shore      |
|    | shore to shore      |
|    | shore to shore      |
|    | shore to shore      |
|    | shore to shore      |
|    | shore to shore      |
|    | shore to shore      |
|    | shore to shore      |
|    | shore to shore      |
| en | shore to shore      |
| S. | shore to 147º 46.0' |
|    | shore to shore      |
|    | shore to shore      |

| DATE  | TIME  | STN # | LOCATION              | LATITUDE  | LONGITUDE  | DEPTH (m) | GEAR<br>DEPTH (m) |
|-------|-------|-------|-----------------------|-----------|------------|-----------|-------------------|
| 15/07 | 13:51 | 5     |                       | 60 07.271 | 147 50.285 | 340       | 40                |
| 16/07 | 11:56 | 12    | Prince of Wales Pass. | 60 2.464  | 148 07.928 | 76        | 35                |
| 16/07 | 13:20 | 12    | Prince of Wales Pass. | 60 03.872 | 148 07.668 | 90        | 40-50             |
| 20/07 | 12:36 | 48    | C02A                  | 60 24.008 | 147 32.043 | 173       | 70                |
| 20/07 | 13:30 | 48    | C02A                  | 60 24.186 | 147 28.153 | 128       | 60                |
| 21/07 | 14:23 | 65    | C04A                  | 60 28.156 | 147 21.516 | 80.6-163  | 128               |
| 23/07 | 12:23 | 83    | Galena Bay            | 60 56.429 | 146 40.391 | 220       | 170               |
| 23/07 | 13:51 | 84    | Galena Bay            | 60 56.350 | 146 41.557 | 780       | 230               |
| 25/07 | 9:50  | 102   | 1 km from shore       | 60 47.51  | 146 25.84  | 102       | 55                |
| 25/07 | 15:46 | 111   | off Knowles Head      | 60 40.156 | 146 38.946 | 31        | 25                |
| 26/07 | 11:54 | 119   | N01-13E               | 60 41.855 | 146 12.848 | 136       | 125-130           |
| 26/07 | 14:07 | 122   | N14E                  | 60 40.000 | 146 17.557 | 135       | 60                |

TABLE 2. Midwater trawl samples collected in the offshore survey during APEX cruise 96-1

.

Table 3. CTD data collected in the offshore survey during APEX cruise 96-1.

| DATE  | TIME  | STN # | LOCATION      | LATITUDE   | LONGITUDE  | DEPTH (m) | GEAR<br>DEPTH (m) |
|-------|-------|-------|---------------|------------|------------|-----------|-------------------|
| 15/07 | 13:27 | 5     | SOBA          | 60 07.4    | 147 49.9   | 292       | 200               |
| 15/07 | 15:04 | 6     | S07A          | 60 09.0    | 147 50     | 289       | 200               |
| 15/07 | 16:10 | 8     | S06E          | 60 10.966  | 147 55.077 | 382       | 200               |
| 15/07 | 16:50 | 9     | S05E          | 60 12.877  | 148 0.00   | 368       | 200               |
| 15/07 | 17:27 | 10    | S01E          | 60 14.93   | 147 59.96  | 592       | 200               |
| 16/07 | 17:15 | 17    | S01E          | 60 15      | 148 10     | 324       | 200               |
| 17/07 | 10:36 | 19    | S02W          | 60 17      | 148 09.85  | 288       | 200               |
| 17/07 | 11:15 | 21    | S03W          | 60 19.031  | 148 10.000 | 260       | 200               |
| 17/07 | 12:23 | 22    | S02E          | 60 16.980  | 148 00.059 | 522       | 200               |
| 17/07 | 12:50 | 23    | S03E          | 60 18.991  | 147 57.924 | 404       | 200               |
| 17/07 | 13:16 | 24    | S04E          | 60 20.986  | 147 57.983 | 368       | 200               |
| 17/07 | 13:43 | 25    | S09E; S18-10A | 60 22.970  | 147 57.956 | 270       | 200               |
| 20/07 | 9:54  | 45    | C01A          | 60 22.293  | 147 30.033 | 151       | 140               |
| 20/07 | 10:19 | 46    | C02A          | 60 24.390  | 147 29.853 | 161       | 140               |
| 20/07 | 10:53 | 47    | C03A          | 60 26.318  | 147 30.030 | 159       | 140               |
| 20/07 | 15:01 | 49    | C04A          | 60 28.311  | 147 29.989 | 185       | 180               |
| 20/07 | 15:28 | 50    | C05A          | 60 30.273  | 147 30.022 | 196       | 180               |
| 21/07 | 8:56  | 55    | C08A          | 60 36.311  | 147 15.020 | 196       | 180               |
| 21/07 | 9:20  | 56    | C09E          | 60 38.274  | 147 14.999 | 167       | 160               |
| 21/07 | 9:45  | 57    | C10E          | 60 40.350  | 147 15.013 | 125       | 120               |
| 21/07 | 10:05 | 58    | C11E          | 60 42.333  | 147 15.968 | 172       | 160               |
| 21/07 | 10:30 | 59    | C12E          | 60 44.276  | 147 14.891 | 275       | 200               |
| 21/07 | 15:21 | 65    | C04A          | 60 28.233  | 147 18.554 | 179       | 160               |
| 21/07 | 16:40 | 66    | C06A          | 60 32.271  | 147 29.930 | 191       | 180               |
| 21/07 | 17:13 | 67    | C07A          | 60 34.304  | 147 30.090 | 196       | 180               |
| 21/07 | 18:31 | 68    | C08A          | 60 36.374  | 147 35.020 | 334       | 200               |
| 22/07 | 8:53  | 69    | C09W          | 60 38.306  | 147 34.992 | 350       | 200               |
| 22/07 | 9:15  | 70    | C10W          | 60 40.307  | 147 34.965 | 498       | 200               |
| 23/07 | 8:57  | 77    | N09A          | 61 02.036、 | 146 43.828 | 337       | 200               |
| 23/07 | 9:27  | 78    | N08A          | 61 00.22   | 146 47.522 | 346       | 200               |
| 23/07 | 9:52  | 79    | N07A          | 60 58.250  | 146 50.140 | 374       | 200               |
| 23/07 | 10:23 | 80    | N06A          | 60 56.224  | 146 53.309 | 322       | 200               |
| 24/07 | 9:53  | 89    | N05A          | 60 54.279  | 146 56.568 | 341       | 200               |
| 24/07 | 10:59 | 90    | N04A          | 60 52.326  | 146 56.466 | 359       | 200               |
| 24/07 | 11:33 | 91    | NO3A          | 60 50.322  | 146 59.947 | 372       | 200               |
| 24/07 | 11:56 | 92    | N02A          | 60 48.326  | 147 00.021 | 320       | 200               |
| 24/07 | 12:20 | 93    | N01A          | 60 46.274  | 146 59.981 | 444       | 200               |
| 24/07 | 12:30 | 93    | N01A          | 60 46.301  | 146 59.881 | 446       | 200               |
| 25/07 | 14:10 | 109   | N01A          | 60 46.180  | 146 40.037 | 102       | 100               |

Table 4. Locations of nearshore transects sampled in APEX cruise 96-1.

| TRANSECT | LAT START | LONG START | LAT END             | LONG END  |
|----------|-----------|------------|---------------------|-----------|
| N0101A   | 60 37.25  | 146 15.6   | 60 37.4             | 146 16 9  |
| N0101B   | 60 37 4   | 146 16 9   | 60 37 8             | 146 16 1  |
| NOTOTO   | 60 37 9   | 146 16 1   | 60 38 0             | 146 17 0  |
| NOTOZA   | 60 37.0   | 140 10.1   | 60 38.0<br>60 38.4E | 140 17.2  |
| NUTU2B   | 60 38.0   | 140 17.2   | 00 38.45            | 140 10.4  |
| N0103A   | 60 38.45  | 146 16.4   | 60 38.8             | 146 17.6  |
| N0103B   | 60 38.8   | 146 17.6   | 60 39.0             | 146 16.3  |
| N0104A   | 60 39.0   | 146 16.3   | 60 39.6             | 146 16.5  |
| N0104B   | 60 39.6   | 146 16.5   | 60 39.5             | 146 15.1  |
| N0105A   | 60 39.5   | 146 15,1   | 60 40.05            | 146 15.5  |
| N0105B   | 60 40.05  | 146 15.5   | 60 39.9             | 146 14.5  |
| N0106A   | 60 39 9   | 146 14 5   | 60 40 55            | 146 14 6  |
| NOTOGR   | 60 40 55  | 146 14 6   | 60 40 4             | 146 137   |
| NOTOOD   | 00 40.00  | 140 19.0   | 00 40.4             | 140 10.7  |
| NOTO7A   | 60 40.4   | 140 13.7   | 00 41.0             | 140 13.0  |
| N0107B   | 60 41.0   | 146 13.6   | 60 40.8             | 146 12.4  |
| N0108A   | 60 40.8   | 146 12.4   | 60 41.9             | 146 12.0  |
| N0108B   | 60 41.9   | 146 12.0   | 60 41.35            | 146 11.3  |
| N0109A   | 60 41.35  | 146 11.3   | 60 41.95            | 146 11.8  |
| N0109B   | 60 41.95  | 146 11.8   | 60 41.8             | 146 10.8  |
| N0110A   | 60 41.8   | 146 10.8   | 60 42.45            | 146 11    |
| N0110B   | 60 42.45  | 146 11     | 60 43.3             | 146 9.6   |
|          |           |            |                     |           |
| N0301A   | 60 42 8   | 146 15 4   | 60 42 3             | 146 163   |
| NO201P   | 60 42.3   | 146 16 2   | 60 40 75            | 146 16 9  |
| NOSOTE   | 00 42.3   | 140 10.3   | 00 42.75            | 140 10.0  |
| NUSUZA   | 60 42.75  | 140 10.8   | 60 42.2             | 140 17.4  |
| N0302B   | 60 42.2   | 146 17.4   | 60 42,75            | 146 18.1  |
| N0303A   | 60 42.75  | 146 18.1   | 60 42.45            | 146 19.2  |
| N0303B   | 60 42.45  | 146 19.2   | 60 43.0             | 146 18.9  |
| N0304A   | 60 43.0   | 146 18.9   | 60 43.3             | 146 20.8  |
| N0304B   | 60 43.3   | 146 20.8   | 60 43.5             | 146 19.1  |
| N0305A   | 60 43.5   | 146 19.1   | 60 44.05            | 146 20.5  |
| N0305B   | 60 44 05  | 146 20 5   | 60 44 2             | 146 18.8  |
| NOSOGA   | 60 44 2   | 146 18 8   | 60 44 75            | 146 19 7  |
| NOSCOR   | 60 44 75  | 146 10.7   | 60 45 2             | 146 19.7  |
| NOSOOD   | 60 44.75  | 140 19.7   | 00 45.2<br>CO 45.05 | 140 10.2  |
| NU307A   | 60 45.2   | 146 18.2   | 60 45.95            | 146 17.8  |
| N0307B   | 60 45.95  | 146 17.8   | 60 45.6             | 146 19.35 |
| N0308A   | 60 45.6   | 146 19.35  | 60 44. <del>9</del> | 146 18.8  |
| N0308B   | 60 44.9   | 146 18.8   | 60 44.8             | 146 19.6  |
| N0309A   | 60 44.8   | 146 19.6   | 60 43.7             | 146 17.7  |
| N0309B   | 60 43.7   | 146 17.7   | 60 43.8             | 146 20.3  |
| N0310A   | 60 43 8   | 146 20.3   | 60 43.2             | 146 19.8  |
| NO310B   | 60 43 2   | 146 19 8   | 60 42 5             | 146 21 5  |
| NUSTUD   | 00 40.2   | 140 13.0   |                     | 140 21.0  |
| N0501A   | 60 40 7   | 146 26 8   | 60 39 95            | 146 27 0  |
| NO501R   | 60 30 05  | 146 27.0   | 60 40 35            | 146 26 9  |
| NOSOTA   | 00 00.00  | 140 27.0   | 60 20 7             | 140 20.5  |
| NUSUZA   | 60 40.35  | 140 20.9   | 60 39.7             | 140 20.1  |
| N0502B   | 60 39.7   | 146 28.1   | 60 40.1             | 146 29.3  |
| N0503A   | 60 40.1   | 146 29.3   | 60 39.4             | 146 29.7  |
| N0503B   | 60 39.4   | 146 29.7   | 60 40.05            | 146 30.3  |
| N0504A   | 60 40.05  | 146 30.3   | 60 39.75            | 146 31.4  |
| N0504B   | 60 39.75  | 146 31.4   | 60 40.5             | 146 31.2  |
| N0505A   | 60 40.5   | 146 31.2   | 60 40.3             | 146 32.4  |
| N0505B   | 60 40.3   | 146 32.4   | 60 40.95            | 146 32.3  |
| N0506A   | 60 40 95  | 146 32 3   | 60 40 35            | 146 33 1  |
| NOSOGR   | 60 40 35  | 146 33 1   | 60 41 0             | 146 33 55 |
| NOSOOD   | 60 41 0   | 146 22 65  | 60 40 4             | 146 24 2  |
| NOE07R   | 60 40 4   | 146 04 0   | 60 40 0             | 140 34.2  |
| NUSU/B   | 00 40.4   | 140 34.2   | 00 40.9             | 140 35.1  |
| NUSUBA   | 60 40.9   | 140 35.1   | 60 40.25            | 146 35.6  |
| N0508B   | 60 40.25  | 146 35.6   | 60 60.8             | 146 36.4  |
| N0509A   | 60 60.8   | 146 36,4   | 60 40.15            | 146 36.9  |
| N0509B   | 60 40.15  | 146 36.9   | 60 40.7             | 146 37.8  |
| N0510A   | 60 40.7   | 146 37.8   | 60 40.2             | 146 38.6  |
| N0510B   | 60 40.2   | 146 38.6   | 60 40.8             | 146 39.0  |

| N0701A | 60 | 44.0          | 146 | 44.55        | 60 | 43.4          | 146 | 44.5        |
|--------|----|---------------|-----|--------------|----|---------------|-----|-------------|
| N0701B | 60 | 43.4          | 146 | 44.5         | 60 | 43.9          | 146 | 43.2        |
| N0702A | 60 | 43.9          | 146 | 43.2         | 60 | 43.9          | 146 | 42.3        |
| N0702B | 60 | 43.9          | 146 | 42.3         | 60 | 44.3          | 146 | 42.3        |
| N0703A | 60 | 44.3          | 146 | 42.3         | 60 | 44.8          | 146 | 43.4        |
| N0703B | 60 | 44.8          | 146 | 43.4         | 60 | 44.9          | 146 | 42.1        |
| N0704A | 60 | 44.9          | 146 | 42.1         | 60 | 45.4          | 146 | 41.3        |
| N0704B | 60 | 45.4          | 146 | 41.3         | 60 | 44.6          | 146 | 40.8        |
| N0705A | 60 | 44.6          | 146 | 40.8         | 60 | 45.05         | 146 | 39.5        |
| N0705B | 60 | 45.05         | 146 | 39.5         | 60 | 44.4          | 146 | 39.4        |
| N0706A | 60 | 44.4          | 146 | 39.4         | 60 | 44.5          | 146 | 38.2        |
| N0706B | 60 | 44.5          | 146 | 38.2         | 60 | 44.8          | 146 | 36.7        |
| N0707A | 60 | 44.8          | 146 | 36.7         | 60 | 45.45         | 146 | 38.2        |
| N0707B | 60 | 45 45         | 146 | 38.2         | 60 | 45.05         | 146 | 37.3        |
| N0708A | 60 | 45.05         | 146 | 37.3         | 60 | 45.75         | 146 | 37.9        |
| N0708B | 60 | 45 75         | 146 | 37.9         | 60 | 45 75         | 146 | 36.0        |
| N0709A | 60 | 45.75         | 146 | 36.0         | 60 | 46.3          | 146 | 35.6        |
| N0709B | 60 | 46.70         | 146 | 35.6         | 60 | 45.6          | 146 | 35          |
| N07104 | 60 | 45.6          | 146 | 35           | 60 | 45.65         | 146 | 33 4        |
| NO710R | 60 | 45.65         | 146 | 33 4         | 60 | 45.65         | 146 | 24.2        |
| NOTIOD | 00 | 40.00         | 140 | 55.4         | 00 | 40.0          | 140 | J4.2        |
| N0901A | 60 | 48.4          | 146 | 31.9         | 60 | 47 4          | 146 | 31.15       |
| N0901B | 60 | 47 4          | 146 | 31.15        | 60 | 48.4          | 146 | 30.5        |
| N0902A | 60 | 48.4          | 146 | 30.5         | 60 | 47.3          | 146 | 29.5        |
| N0902B | 60 | 47.3          | 146 | 29.5         | 60 | 48.15         | 146 | 20.0        |
| N0903A | 60 | 48 15         | 146 | 29.1         | 60 | 46.65         | 146 | 28.3        |
| N0903B | 60 | 46.65         | 146 | 28.3         | 60 | 46.55         | 140 | 20.5        |
| NOGOZA | 60 | 46.55         | 146 | 27.8         | 60 | 40.00         | 140 | 27.0        |
| N0904R | 60 | 47.2          | 146 | 27.5         | 60 | 47.2          | 140 | 27.5        |
| NOODEA | 60 | 47.2          | 140 | 27.5         | 60 | 40.00         | 140 | 20.5        |
| NOODER | 60 | 40.05         | 140 | 20.5         | 60 | 47.5          | 140 | 20.2        |
| NOODEA | 60 | 46.05         | 140 | 20.2         | 60 | 40.95         | 140 | 23.1        |
| NOODER | 60 | 40.95         | 140 | 20.1         | 60 | 47.7          | 140 | 24.75       |
| N0907A | 60 | 47.7          | 140 | 24.75        | 60 | 47.2          | 140 | 23.0        |
| N0907R | 60 | 47.2          | 140 | 23.0         | 60 | 47.70         | 140 | 23.25       |
| NOODBA | 60 | 47.73         | 140 | 23.25        | 60 | 47.5          | 140 | 22.0        |
| NOOOR  | 60 | 47.3          | 140 | 22.5         | 60 | 47.90         | 140 | 22.05       |
| NOSOOD | 60 | 47.90         | 140 | 22.05        | 60 | 47.5          | 146 | 21.05       |
| NUSUSA | 60 | 47.5          | 140 | 21.05        | 60 | 48.1          | 146 | 20.6        |
| NOOTOA | 60 | 40.1          | 140 | 20.6         | 60 | 47.7          | 140 | 19.6        |
| NU91UA | 60 | 47.7          | 146 | 19.6         | 60 | 47.85         | 146 | 19.9        |
| N0910B | 60 | 47.85         | 146 | 19.9         | 60 | 48.1          | 146 | 18.7        |
| N1301A | 60 | 50.9          | 146 | 35.1         | 60 | 50 35         | 146 | 34 5        |
| N1301B | 60 | 50.35         | 146 | 34.5         | 60 | 50.35         | 146 | 36.05       |
| N1302A | 60 | 50.35         | 146 | 35 95        | 60 | 49.85         | 140 | 35.55       |
| N1302R | 60 | 40.85         | 146 | 35.1         | 60 | 49.05         | 140 | 35.T        |
| N13034 | 60 | 49.05         | 146 | 36.45        | 60 | 49.05         | 140 | 36.45       |
| N1303B | 60 | 49.00         | 146 | 35.7         | 60 | 40.05         | 140 | 36.5        |
| N1304A | 60 | 49.15         | 140 | 36.5         | 60 | 49.00         | 140 | 30.5        |
| N1304R | 60 | 49.00         | 146 | 37.4         | 60 | 40.4          | 140 | 30.4        |
| N1305A | 60 | 48.9          | 146 | 38.3         | 60 | 40.9          | 140 | 20.3        |
| N1305R | 60 | 48.5          | 146 | 30.3         | 60 | 40.0          | 140 | 39.3        |
| N13064 | 60 | 40.5          | 140 | 39.3         | 60 | 49.2          | 140 | 30.9        |
| N1306B | 60 | -9.2<br>10 15 | 140 | 40.0         | 60 | 49.40         | 140 | 40.0        |
| N1307A | 60 | 43.43         | 140 | 40.0         | 60 | 49.0<br>50.2  | 140 | 30.7        |
| N1307A | 60 | 49.0<br>50.0  | 140 | 30.7         | 00 | 90.2<br>E0.6E | 140 | 39.8<br>207 |
| N13070 | 60 | 50.2          | 140 | 39.0         | 00 | 50.05         | 146 | 30.7        |
| NIDOR  | 60 | 50.05         | 140 | 30.7         | 00 | 51,05         | 146 | 39.3        |
| N1200A | 60 | 51.05         | 140 | 39.3<br>20 E | 60 | 51,1<br>E1 7  | 146 | 38.5        |
| NIJOOP | 60 | 51.1<br>61.7  | 140 | 30.5<br>29.6 | 00 | 51./<br>51.F  | 146 | 38.6        |
| N13090 | 60 | 51.7<br>E1 E  | 146 | 38.0         | 60 | 51.5          | 146 | 37.4        |
| NISTOR | 00 | 50.05         | 140 | 37.4         | 60 | 52.05         | 146 | 37.9        |
| N1310B | 60 | 52.05         | 146 | 37.9         | 60 | 52.7          | 146 | 38.0        |

30

| N1501A    | 60 | 48.65 | 146  | 42.5  | 60 | 48.0  | 146 | 42.5  |
|-----------|----|-------|------|-------|----|-------|-----|-------|
| N1501B    | 60 | 48.0  | 146  | 42.5  | 60 | 48.4  | 146 | 43.9  |
| N1502A    | 60 | 48.4  | 146  | 43.9  | 60 | 47.9  | 146 | 44.5  |
| N1502B    | 60 | 47.9  | 146  | 44.5  | 60 | 48.45 | 146 | 45.3  |
| N1503A    | 60 | 48 45 | 146  | 45.3  | 60 | 47.65 | 146 | 45.8  |
| N1503B    | 60 | 47.65 | 146  | 45.8  | 60 | 48 15 | 146 | 46.85 |
| N15030    | 60 | 47.05 | 146  | 46.85 | 60 | 47.5  | 146 | 47.1  |
| NISO4A    | 00 | 40.15 | 140  | 40.00 | 60 | 49.0  | 140 | 49.0  |
| NISU4B    | 60 | 47.5  | 140  | 47.1  | 60 | 48.0  | 140 | 48.0  |
| NISUSA    | 00 | 48.0  | 140  | 40.0  | 00 | 47.9  | 140 | 49.5  |
| N1505B    | 60 | 47.9  | 146  | 49.5  | 60 | 48.6  | 140 | 48.9  |
| N1506A    | 60 | 48.6  | 146  | 48.9  | 60 | 48.85 | 146 | 50.3  |
| N1506B    | 60 | 48.85 | 146  | 50.3  | 60 | 49.3  | 146 | 49.3  |
| N1507A    | 60 | 49.3  | 146  | 49.3  | 60 | 49.65 | 146 | 50.45 |
| N1507B    | 60 | 49.65 | 146  | 50.45 | 60 | 50.05 | 146 | 49.3  |
| N1508A    | 60 | 50.05 | 146  | 49.3  | 60 | 50.8  | 146 | 49.5  |
| N1508B    | 60 | 50.8  | 146  | 49.5  | 60 | 50.3  | 146 | 50.65 |
| N1509A    | 60 | 50.3  | 146  | 50.65 | 60 | 50.45 | 146 | 52.0  |
| N1509B    | 60 | 50.45 | 146  | 52.0  | 60 | 50.9  | 146 | 51.0  |
| N1510A    | 60 | 50.9  | 146  | 51.0  | 60 | 51.55 | 146 | 51.4  |
| N1510B    | 60 | 51.55 | 146  | 51.4  | 60 | 51.45 | 146 | 50.0  |
|           |    |       |      |       |    |       |     |       |
| N1701A    | 60 | 45 15 | 146  | 47.4  | 60 | 54.7  | 146 | 474   |
| N1701B    | 60 | 54 7  | 146  | 47.4  | 60 | 54.0  | 146 | 46.25 |
| N1 70 2 A | 60 | 54.0  | 146  | 46.25 | 60 | 54.3  | 146 | 40.20 |
| N1702A    | 60 | 54.0  | 140  | 40.25 | 60 | 54.5  | 140 | 44.3  |
| N1/02B    | 60 | 54.3  | 140  | 44.9  | 60 | 53.05 | 140 | 43.05 |
| N1703A    | 60 | 53.65 | 146  | 43.65 | 60 | 54.35 | 146 | 44.4  |
| N1703B    | 60 | 54.35 | 146  | 44.4  | 60 | 54.35 | 146 | 44.4  |
| N1704A    | 60 | 54.35 | 146  | 44.4  | 60 | 54.6  | 146 | 45.7  |
| N1704B    | 60 | 54.6  | 146  | 45.7  | 60 | 54.9  | 146 | 44.4  |
| N1705A    | 60 | 54.9  | 146  | 44.4  | 60 | 55.0  | 146 | 45.8  |
| N1705B    | 60 | 55.0  | 146  | 45.8  | 60 | 55.55 | 146 | 45.0  |
| N1706A    | 60 | 55.55 | 146  | 45.0  | 60 | 56.2  | 146 | 46.45 |
| N1706B    | 60 | 56.2  | 146  | 46.45 | 60 | 56.25 | 146 | 45.95 |
| N1707A    | 60 | 56.25 | 146  | 45.95 | 60 | 56.8  | 146 | 47.25 |
| N1707B    | 60 | 56.8  | 146  | 47.25 | 60 | 57.4  | 146 | 46.55 |
| N1708A    | 60 | 57.4  | 146  | 46.55 | 60 | 57.55 | 146 | 47.4  |
| N1708B    | 60 | 57.55 | 146  | 47.4  | 60 | 57.55 | 146 | 46.1  |
| N1709A    | 60 | 57.55 | 146  | 46.1  | 60 | 58.1  | 146 | 46.6  |
| N1709B    | 60 | 58.1  | 146  | 46.6  | 60 | 58.15 | 146 | 45.3  |
| N1710A    | 60 | 58.15 | 146  | 45.3  | 60 | 58.5  | 146 | 43.95 |
| N1710B    | 60 | 58.5  | 146  | 43 95 | 60 | 57.8  | 146 | 43.95 |
| NT/ TOB   | 00 | 00.0  | 1.10 | 10.00 | •• | 07.0  |     | 10.00 |
| N1901A    | 60 | 55 85 | 146  | 36.0  | 60 | 55.85 | 146 | 37.35 |
| N1001R    | 60 | 55.85 | 146  | 37.35 | 60 | 56.3  | 146 | 36.7  |
| N10024    | 60 | 56.3  | 146  | 36.7  | 60 | 56.25 | 146 | 379   |
| N1002R    | 60 | 56.25 | 146  | 37.0  | 60 | 56.85 | 146 | 37 55 |
| N10020    | 60 | 50.25 | 146  | 37.55 | 60 | 56.00 | 146 | 20 1  |
| NIGOOD    | 00 | 50.05 | 140  | 37.35 | 60 | 50.4  | 140 | 30.4  |
| N1903B    | 60 | 50.4  | 140  | 38.4  | 60 | 50.95 | 140 | 38.8  |
| N1904A    | 60 | 56.95 | 140  | 38.8  | 60 | 0.00  | 140 | 39.0  |
| N1904B    | 60 | 56.6  | 146  | 39.6  | 60 | 56.3  | 146 | 40.95 |
| N1905A    | 60 | 56.3  | 146  | 40.95 | 60 | 56.5  | 146 | 41.05 |
| N1905B    | 60 | 56.5  | 146  | 41.05 | 60 | 57.0  | 146 | 42.3  |
| N1906A    | 60 | 57.0  | 146  | 42.3  | 60 | 57.1  | 146 | 43.6  |
| N1906B    | 60 | 57.1  | 146  | 43.6  | 60 | 57.65 | 146 | 42.8  |
| N1907A    | 60 | 57.65 | 146  | 42.8  | 60 | 56.7  | 146 | 44.2  |
| N1907B    | 60 | 56.7  | 146  | 44.2  | 60 | 58.2  | 146 | 43.5  |
| N1908A    | 60 | 58.2  | 146  | 43.5  | 60 | 58.6  | 146 | 44.6  |
| N1908B    | 60 | 58.6  | 146  | 44.6  | 60 | 59.15 | 146 | 43.7  |
| N1909A    | 60 | 59.15 | 146  | 43.7  | 60 | 59.8  | 146 | 43.7  |
| N1909B    | 60 | 59.8  | 146  | 43.7  | 60 | 59.45 | 146 | 42.55 |
| N1910A    | 60 | 59.45 | 146  | 42.55 | 60 | 59.9  | 146 | 43.3  |
| N1910B    | 60 | 59.9  | 146  | 43.3  | 61 | 0.1   | 146 | 42.0  |

31

| C0101A | 60 | 21.3  | 147  | 37.6             | 60 | 21.45 | 147 | 36.9  |
|--------|----|-------|------|------------------|----|-------|-----|-------|
| C0101B | 60 | 21.45 | 147  | 36.9             | 60 | 21.85 | 147 | 37.9  |
| C0102A | 60 | 21.85 | 147  | 37.9             | 60 | 22.2  | 147 | 35.9  |
| C0102B | 60 | 22.2  | 147  | 35.9             | 60 | 22.5  | 147 | 37.0  |
| C0103A | 60 | 22.5  | 147  | 37.0             | 60 | 22.8  | 147 | 35.9  |
| C0103B | 60 | 22.8  | 147  | 35.9             | 60 | 23.1  | 147 | 37.9  |
| C0104A | 60 | 23.1  | 147  | 37.9             | 60 | 23.8  | 147 | 36.6  |
| C0104B | 60 | 23.8  | 147  | 36.6             | 60 | 23.65 | 147 | 37.9  |
| C0105A | 60 | 23.65 | 147  | 37.9             | 60 | 23.85 | 147 | 39.1  |
| C0105B | 60 | 23.85 | 147  | 39.1             | 60 | 23.4  | 147 | 40.1  |
| C0106A | 60 | 23.4  | 147  | 40.1             | 60 | 23.9  | 147 | 41.1  |
| C0106B | 60 | 23.9  | 147  | 41.1             | 60 | 24.15 | 147 | 40.0  |
| C0107A | 60 | 24.15 | 147  | 40.0             | 60 | 23.75 | 147 | 41.1  |
| C0107B | 60 | 23.75 | 147  | 41.1             | 60 | 24.5  | 147 | 41.1  |
| C0108A | 60 | 24.5  | 147  | 41.1             | 60 | 23.9  | 147 | 40.0  |
| C0108B | 60 | 23.9  | 147  | 40.0             | 60 | 24.5  | 147 | 40.0  |
| C0109A | 60 | 24.5  | 147  | 40.0             | 60 | 24.05 | 147 | 37.8  |
| C0109B | 60 | 24.05 | 147  | 37.8             | 60 | 24.71 | 147 | 37.9  |
| C0110A | 60 | 24.71 | 147  | 37. <del>9</del> | 60 | 24.55 | 147 | 36.7  |
| C0110B | 60 | 24.55 | 147  | 36.7             | 60 | 25.25 | 147 | 36.8  |
|        |    |       |      |                  |    |       |     |       |
| C0201A | 60 | 25.25 | 147  | 36.8             | 60 | 25.35 | 147 | 35.4  |
| C0201B | 60 | 25.35 | 147  | 35.4             | 60 | 25.8  | 147 | 36.2  |
| C0202A | 60 | 25.8  | 147  | 36.2             | 60 | 26.5  | 147 | 35.9  |
| C0202B | 60 | 26.5  | 147  | 35.9             | 60 | 26.35 | 147 | 37.2  |
| C0203A | 60 | 26.35 | 147  | 37.2             | 60 | 27.0  | 147 | 37.0  |
| C0203B | 60 | 27.0  | 147  | 37.0             | 60 | 27.05 | 147 | 38.6  |
| C0204A | 60 | 27.05 | 147  | 38.6             | 60 | 27.05 | 147 | 37.3  |
| C0204B | 60 | 27.05 | 147  | 37.3             | 60 | 27.65 | 147 | 37.1  |
| C0205A | 60 | 27 65 | 147  | 37 1             | 60 | 28.1  | 147 | 36.2  |
| C0205B | 60 | 28.1  | 147  | 36.2             | 60 | 28.3  | 147 | 37.4  |
| C0206A | 60 | 28.3  | 147  | 37.4             | 60 | 28.85 | 147 | 36.4  |
| C0206B | 60 | 28.85 | 147  | 36.4             | 60 | 28.9  | 147 | 37.5  |
| C0207A | 60 | 28.9  | 147  | 37.5             | 60 | 29.1  | 147 | 37.8  |
| C0207B | 60 | 29.1  | 147  | 37.8             | 60 | 28.85 | 147 | 38.3  |
| C0208A | 60 | 28.85 | 147  | 38.3             | 60 | 29.2  | 147 | 39.6  |
| C02088 | 60 | 29.2  | 147  | 39.6             | 60 | 28.85 | 147 | 36.3  |
| C0209A | 60 | 28.85 | 147  | 36.3             | 60 | 29.2  | 147 | 35.1  |
| C0209R | 60 | 29.2  | 147  | 35.1             | 60 | 29.5  | 147 | 36.2  |
| C0210A | 60 | 29.5  | 147  | 36.2             | 60 | 30.15 | 147 | 35.3  |
| C0210B | 60 | 30.15 | 147  | 35.3             | 60 | 30.5  | 147 | 36.4  |
| 002100 | 00 | 50.15 | 1-47 | 00.0             | 00 | 00.0  | 147 | 00.4  |
| C0301A | 60 | 30.5  | 147  | 36.4             | 60 | 30.5  | 147 | 35 3  |
| C0301B | 60 | 30.5  | 147  | 35.3             | 60 | 31 3  | 147 | 35.0  |
| C0302A | 60 | 31 3  | 147  | 35.0             | 60 | 31.15 | 147 | 33.6  |
| C0302A | 60 | 31.15 | 147  | 33.6             | 60 | 31 75 | 147 | 34.0  |
| C0303A | 60 | 31 75 | 147  | 34.0             | 60 | 31.6  | 147 | 32.9  |
| C0303B | 60 | 31.6  | 147  | 32.9             | 60 | 32.25 | 147 | 33.1  |
| C0304A | 60 | 32.25 | 147  | 33.1             | 60 | 32.1  | 147 | 31.9  |
| C0304B | 60 | 32.1  | 147  | 31.9             | 60 | 32.7  | 147 | 30.25 |
| C0305A | 60 | 32.7  | 147  | 30.25            | 60 | 33.1  | 147 | 31.3  |
| C0305B | 60 | 33.1  | 147  | 31 3             | 60 | 33 35 | 147 | 32.6  |
| C0306A | 60 | 33 35 | 147  | 32.6             | 60 | 33.8  | 147 | 31.5  |
| C0306B | 60 | 33.8  | 147  | 31.5             | 60 | 33.5  | 147 | 32.9  |
| C03074 | 60 | 33.5  | 147  | 32.9             | 60 | 34 55 | 147 | 32.0  |
| C0307B | 60 | 34 55 | 147  | 32.0             | 60 | 34.65 | 147 | 33 3  |
| C0308A | 00 | 34.65 | 147  | 33.3             | 60 | 35.25 | 147 | 32.6  |
| C0308B | 00 | 35.25 | 147  | 32.6             | 60 | 35.25 | 147 | 33.9  |
| C0309A | 60 | 35.25 | 147  | 33.9             | 60 | 35.35 | 147 | 35,25 |
| C0309B | 60 | 35.35 | 147  | 35.25            | 60 | 34.75 | 147 | 34,9  |
| C0310A | 60 | 34.75 | 147  | 34.9             | 60 | 34.65 | 147 | 36.1  |
| C0310B | 60 | 34.65 | 147  | 36.1             | 60 | 34.2  | 147 | 35.4  |

.

| C0401A | 60 | 38.0              | 147  | 23.1         | 60        | 38.05 | 147  | 24.5  |
|--------|----|-------------------|------|--------------|-----------|-------|------|-------|
| C0401B | 60 | 38.05             | 147  | 24.5         | 60        | 37.45 | 147  | 23.6  |
| C0402A | 60 | 37.45             | 147  | 23.6         | 60        | 37.05 | 147  | 22.6  |
| C0402B | 60 | 37.05             | 147  | 22.6         | 60        | 37.4  | 147  | 21.5  |
| C0403A | 60 | 37.4              | 147  | 21.5         | 60        | 37.0  | 147  | 20.3  |
| C0403B | 60 | 37.0              | 147  | 20.3         | 60        | 37.7  | 147  | 20.2  |
| C0404A | 60 | 37.7              | 147  | 20.2         | 60        | 37.65 | 147  | 18.9  |
| C0404B | 60 | 37.65             | 147  | 18.9         | 60        | 38.2  | 147  | 19.55 |
| C0405A | 60 | 38.2              | 147  | 19.55        | 60        | 38.2  | 147  | 18.2  |
| C0405B | 60 | 38.2              | 147  | 18.2         | 60        | 38 75 | 147  | 18.8  |
| C0406A | 60 | 38.75             | 147  | 18.8         | 60        | 38 75 | 147  | 175   |
| C0406B | 60 | 38 75             | 147  | 17.5         | 60        | 39.35 | 147  | 18.1  |
| C0407A | 60 | 39.35             | 147  | 18.1         | 60        | 39.75 | 147  | 17.1  |
| C0407B | 60 | 39.75             | 147  | 17 1         | 60        | 40.05 | 147  | 18.3  |
| C0408A | 60 | 40.05             | 147  | 18.3         | 60        | 40.65 | 147  | 17.8  |
| C0408B | 60 | 40.65             | 147  | 17.8         | 60        | 40.5  | 147  | 19.1  |
| C0409A | 60 | 40.5              | 147  | 19.1         | 60        | 41 2  | 147  | 19.3  |
| C0409B | 60 | 41.2              | 147  | 19.3         | 60        | 40.8  | 147  | 20.4  |
| C0410A | 60 | 40.8              | 147  | 20.4         | 60        | 40.7  | 147  | 21 7  |
| C0410B | 60 | 40.7              | 147  | 21.7         | 60        | 40.1  | 147  | 20.8  |
| 004100 | 00 | 40.7              | 1-11 | 21.7         | 00        | 40.1  | 1-4/ | 20.0  |
| C0501A | 60 | 40.15             | 147  | 20.8         | 60        | 40 5  | 147  | 21.9  |
| C0501B | 60 | 40.5              | 147  | 21.9         | 60        | 39.9  | 147  | 22.0  |
| C0502A | 60 | 39.9              | 147  | 22.0         | 60        | 39.3  | 147  | 21 9  |
| C0502B | 60 | 39.3              | 147  | 21.9         | 60        | 38.85 | 147  | 23.2  |
| C0503A | 60 | 38.85             | 147  | 23.2         | 60        | 40.35 | 147  | 21 0  |
| C0503B | 60 | 40.35             | 147  | 21 9         | 60        | 40.5  | 147  | 23.6  |
| C0504A | 60 | 40.5              | 147  | 23.6         | 60        | 40.5  | 147  | 20.0  |
| C0504R | 60 | 40.5              | 147  | 20.0         | 60        | 41 15 | 147  | 22.0  |
| C05054 | 60 | 40.5              | 147  | 22.2         | 60        | 41.15 | 147  | 22.0  |
| C0505A | 60 | 41.15             | 147  | 22.0         | 60        | 41.1  | 147  | 20.7  |
| C0506A | 60 | 41.7              | 147  | 21.2         | 60        | 41.05 | 147  | 10.0  |
| COSOGR | 60 | 41.7              | 147  | 10.0         | 60        | 41.95 | 147  | 20.0  |
| C0507A | 60 | 41.95             | 147  | 19.9         | 60        | 42.5  | 147  | 20.9  |
| C0507R | 60 | 42.9              | 147  | 20.9         | 60        | 43.1  | 147  | 20.0  |
| C0508A | 60 | 43.1              | 147  | 20.0         | 60        | 40.0  | 147  | 21.5  |
| C0508R | 60 | 43.5              | 147  | 21.5         | 60        | 42.00 | 147  | 22.4  |
| C0500D | 60 | 42.05             | 147  | 22.4         | 60        | 42.05 | 147  | 22.0  |
| COSOSA | 60 | 42.00             | 147  | 22.0         | 60        | 43.1  | 147  | 24.0  |
| C0510A | 60 | 43.1              | 147  | 24.0         | 60        | 43.75 | 147  | 23.0  |
| COSTOR | 60 | 43.75             | 147  | 23.0         | 60        | 43.95 | 147  | 21.0  |
| CUSTUB | 60 | 43.95             | 147  | 21.0         | 60        | 44.4  | 147  | 22.1  |
| C0601A | 60 | 44.4              | 147  | 22.7         | 60        | 45.1  | 147  | 23.0  |
| C0601B | 60 | 45.1              | 147  | 23.0         | 60        | 44.6  | 147  | 23.8  |
| C0602A | 60 | 44.6              | 147  | 23.8         | 60        | 45.15 | 147  | 24.9  |
| C0602B | 60 | 45.15             | 147  | 24.9         | 60        | 44.4  | 147  | 25.2  |
| C0603A | 60 | 44 4              | 147  | 25.2         | 60        | 45.0  | 147  | 26.2  |
| C0603B | 60 | 45.0              | 147  | 26.2         | 60        | 44 3  | 147  | 26.4  |
| C0604A | 60 | 44.3              | 147  | 26.4         | 60        | 44.7  | 147  | 27.6  |
| C0604B | 60 | 44.7              | 147  | 27.6         | 60        | 44.05 | 147  | 27.8  |
| C0605A | 60 | 44.05             | 147  | 27.8         | 60        | 44.6  | 147  | 28.6  |
| C0605B | 60 | 44.6              | 147  | 28.6         | 60        | 43.9  | 147  | 29.1  |
| C0606A | 60 | 43.9              | 147  | 29.1         | 60        | 43.5  | 147  | 30.3  |
| C0606B | 60 | 43.5              | 147  | 30.3         | 60        | 43.25 | 147  | 29.0  |
| C0607A | 60 | 43 25             | 147  | 29.0         | 60        | 42.6  | 147  | 28.5  |
| C0607B | 60 | 42.6              | 147  | 28.5         | 60        | 43.05 | 147  | 27.6  |
| C0608A | 60 | 43.05             | 147  | 27.6         | 60        | 42 45 | 147  | 27.3  |
| C0608B | 60 | 42.45             | 147  | 27.3         | 60        | 42.9  | 147  | 26.3  |
| C0609A | 60 | 42.9              | 147  | 26.3         | 60        | 42.55 | 147  | 25.1  |
| C0609B | 60 | 42.55             | 147  | 25.1         | 60        | 42 1  | 147  | 26.1  |
| C0610A | 60 | 42.1              | 147  | 26.1         | 60        | 42.4  | 147  | 27.3  |
| C0610B | 60 | 42 4              | 147  | 27 3         | 60        | 41.9  | 147  | 28.0  |
| 000100 | 50 | · • • • • • • • • | 1-47 | <b>L</b> 7.0 | <b>~v</b> |       | 1-47 | 20.0  |

.

| C0701A 60 41.9 147 28.0 60 42.05 147   C0701B 60 41.4 147 29.4 60 41.4 147   C0702A 60 41.2 147 30.5 60 40.75 147   C0703B 60 40.75 147 29.4 60 40.1 147   C0703B 60 40.1 147 29.35 60 40.4 147   C0704A 60 40.4 147 28.3 60 39.8 147   C0704B 60 39.8 147 28.7 60 39.65 147   C0705A 60 39.65 147 29.1 60 39.95 147   C0705B 60 39.3 147 30.3 60 39.3 147   C0706A 60 39.3 147 30.25 60 38.6 147   C0707B 60 38.6 147 29.5 60 38.45 147   C0708A 60 38.45 147 2                                                                                                                                         |        |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|
| C0701B 60 42.05 147 29.4 60 41.4 147   C0702A 60 41.4 147 29.1 60 41.2 147   C0702B 60 40.75 147 29.4 60 40.1 147   C0703A 60 40.75 147 29.4 60 40.1 147   C0703B 60 40.1 147 29.35 60 40.4 147   C0704A 60 40.4 147 28.3 60 39.8 147   C0704B 60 39.65 147 29.1 60 39.95 147   C0705A 60 39.95 147 30.3 60 39.95 147   C0706A 60 39.3 147 30.25 60 38.95 147   C0707B 60 38.6 147 28.8 60 38.45 147   C0708A 60 38.45 147 27.5 60 38.45 147   C0709B 60 37.65 147 <                                                                                                                                     | C0701A | 29.4  |
| C0702A 60 41.4 147 29.1 60 41.2 147   C0702B 60 41.2 147 30.5 60 40.75 147   C0703A 60 40.75 147 29.4 60 40.1 147   C0703B 60 40.1 147 29.35 60 40.4 147   C0704A 60 40.4 147 28.3 60 39.8 147   C0704B 60 39.8 147 28.7 60 39.65 147   C0705A 60 39.65 147 29.1 60 39.95 147   C0705B 60 39.65 147 29.1 60 39.95 147   C0706A 60 39.3 147 30.3 60 39.3 147   C0707B 60 38.6 147 30.25 60 38.6 147   C0707B 60 38.6 147 27.5 60 38.4 147   C0708A 60 38.45 147 2                                                                                                                                         | C0701B | 29.1  |
| C0702B 60 41.2 147 30.5 60 40.75 147   C0703A 60 40.75 147 29.4 60 40.1 147   C0703B 60 40.1 147 29.35 60 40.4 147   C0704A 60 40.4 147 28.3 60 39.8 147   C0704B 60 39.8 147 28.7 60 39.65 147   C0705A 60 39.65 147 29.1 60 39.95 147   C0705B 60 39.95 147 30.3 60 39.3 147   C0706B 60 39.3 147 30.25 60 38.6 147   C0707A 60 38.6 147 20.25 60 38.6 147   C0707B 60 38.6 147 29.5 60 38.6 147   C0708A 60 38.45 147 27.5 60 38.4 147   C0709B 60 37.65 147                                                                                                                                          | C0702A | 30.5  |
| C0703A 60 40.75 147 29.4 60 40.1 147   C0703B 60 40.1 147 29.35 60 40.4 147   C0704A 60 40.4 147 28.3 60 39.8 147   C0704B 60 39.8 147 28.7 60 39.65 147   C0705A 60 39.65 147 29.1 60 39.95 147   C0705B 60 39.95 147 30.3 60 39.3 147   C0706A 60 39.3 147 30.25 60 38.6 147   C0707B 60 38.6 147 29.5 60 38.6 147   C0708A 60 38.6 147 27.5 60 38.4 147   C0709A 60 38.45 147 27.5 60 38.35 147   C0709B 60 37.65 147 28.8 60 37.6 147   C07010A 60 37.6 147                                                                                                                                          | C0702B | 29.4  |
| C0703B 60 40.1 147 29.35 60 40.4 147   C0704A 60 40.4 147 28.3 60 39.8 147   C0704B 60 39.8 147 28.7 60 39.65 147   C0705A 60 39.65 147 29.1 60 39.95 147   C0705B 60 39.95 147 30.3 60 39.3 147   C0706A 60 39.3 147 30.25 60 38.6 147   C0707B 60 38.6 147 29.5 60 38.6 147   C0708A 60 38.6 147 28.8 60 38.45 147   C0708B 60 38.45 147 27.5 60 38.35 147   C0709B 60 38.35 147 28.8 60 37.6 147   C0709B 60 37.65 147 28.8 60 37.6 147   C07010A 60 37.6 147 <td< td=""><td>C0703A</td><td>29.35</td></td<>                                                                                          | C0703A | 29.35 |
| C0704A 60 40.4 147 28.3 60 39.8 147   C0704B 60 39.8 147 28.7 60 39.65 147   C0705A 60 39.65 147 29.1 60 39.95 147   C0705B 60 39.95 147 30.3 60 39.3 147   C0706A 60 39.3 147 30.25 60 38.6 147   C0706B 60 38.95 147 31.5 60 38.6 147   C0707A 60 38.6 147 29.5 60 38.6 147   C0707B 60 38.6 147 28.8 60 38.45 147   C0708A 60 38.45 147 27.5 60 38.35 147   C0709B 60 38.35 147 28.8 60 37.6 147   C0700B 60 37.6 147 28.8 60 37.6 147   C0700B 60 37.6 147 2                                                                                                                                         | C0703B | 28.3  |
| C0704B 60 39.8 147 28.7 60 39.65 147   C0705A 60 39.65 147 29.1 60 39.95 147   C0705B 60 39.95 147 30.3 60 39.3 147   C0706A 60 39.3 147 30.25 60 38.95 147   C0706B 60 38.95 147 31.5 60 38.6 147   C0707A 60 38.6 147 29.5 60 38.6 147   C0708A 60 38.6 147 27.5 60 38.45 147   C0709A 60 38.45 147 27.5 60 38.35 147   C0709B 60 38.35 147 28.8 60 37.6 147   C0701B 60 37.65 147 28.8 60 37.6 147   C0709B 60 37.6 147 28.8 60 37.6 147   C07010A 60 37.6 147 <t< td=""><td>C0704A</td><td>28.7</td></t<>                                                                                            | C0704A | 28.7  |
| C0705A 60 39.65 147 29.1 60 39.95 147   C0705B 60 39.95 147 30.3 60 39.3 147   C0706A 60 39.3 147 30.25 60 38.95 147   C0706B 60 38.95 147 31.5 60 38.6 147   C0707A 60 38.6 147 29.5 60 38.6 147   C0708A 60 38.6 147 27.5 60 38.45 147   C0709A 60 38.45 147 27.5 60 38.35 147   C0709B 60 38.35 147 28.8 60 37.65 147   C0709B 60 38.35 147 28.9 60 37.6 147   C0710A 60 37.6 147 28.8 60 37.6 147   C0701B 60 37.6 147 28.5 60 36.4 147   C0801A 60 36.4 147 <td< td=""><td>C0704B</td><td>29.1</td></td<>                                                                                           | C0704B | 29.1  |
| C0705B 60 39.95 147 30.3 60 39.3 147   C0706A 60 39.3 147 30.25 60 38.95 147   C0706B 60 38.95 147 31.5 60 38.6 147   C0707A 60 38.6 147 30.25 60 38.6 147   C0707B 60 38.6 147 29.5 60 38.6 147   C0708A 60 38.6 147 27.5 60 38.4 147   C0709A 60 38.4 147 27.5 60 38.35 147   C0709B 60 38.35 147 28.9 60 37.65 147   C0710A 60 37.6 147 28.8 60 37.6 147   C0701B 60 37.6 147 28.8 60 37.6 147   C0801A 60 36.4 147 28.5 60 36.45 147   C0802A 60 36.45 147 2                                                                                                                                         | C0705A | 30.3  |
| C0706A   60   39.3   147   30.25   60   38.95   147     C0706B   60   38.95   147   31.5   60   38.6   147     C0707A   60   38.6   147   30.25   60   38.6   147     C0707B   60   38.6   147   29.5   60   38.6   147     C0708A   60   38.6   147   28.8   60   38.45   147     C0708B   60   38.45   147   27.5   60   38.35   147     C0709B   60   38.35   147   28.9   60   37.65   147     C0710A   60   37.65   147   28.8   60   37.6   147     C0710B   60   37.6   147   29.4   60   36.4   147     C0801A   60   36.4   147   28.5   60   36.95   147     C0802B   60   36.45   147   28.0  | C0705B | 30.25 |
| C0706B   60   38.95   147   31.5   60   38.6   147     C0707A   60   38.6   147   30.25   60   38.05   147     C0707B   60   38.6   147   29.5   60   38.6   147     C0708A   60   38.6   147   28.8   60   38.45   147     C0708B   60   38.45   147   27.5   60   38.35   147     C0709B   60   38.35   147   28.9   60   37.65   147     C0709B   60   37.65   147   28.8   60   37.6   147     C0710A   60   37.6   147   28.8   60   37.6   147     C0710B   60   37.6   147   29.4   60   36.4   147     C0801A   60   36.4   147   28.5   60   36.95   147     C0802A   60   36.45   147   28.0   | C0706A | 31.5  |
| C0707A 60 38.6 147 30.25 60 38.05 147   C0707B 60 38.05 147 29.5 60 38.6 147   C0708A 60 38.6 147 28.8 60 38.45 147   C0708B 60 38.45 147 27.5 60 38.4 147   C0709A 60 38.45 147 27.5 60 38.35 147   C0709B 60 38.35 147 28.9 60 37.65 147   C0710A 60 37.65 147 28.8 60 37.6 147   C0710B 60 37.6 147 30.3 60 37.0 147   C0801A 60 36.4 147 28.5 60 36.4 147   C0801B 60 36.4 147 28.5 60 36.45 147   C0802A 60 36.45 147 28.0 60 36.45 147   C0803A 60 37.1 147 <t< td=""><td>C0706B</td><td>30.25</td></t<>                                                                                           | C0706B | 30.25 |
| C0707B   60   38.05   147   29.5   60   38.6   147     C0708A   60   38.6   147   28.8   60   38.45   147     C0708B   60   38.45   147   27.5   60   38.4   147     C0709A   60   38.4   147   27.5   60   38.35   147     C0709B   60   38.35   147   28.9   60   37.65   147     C0710A   60   37.65   147   28.8   60   37.6   147     C0710B   60   37.6   147   28.8   60   37.6   147     C0801A   60   37.6   147   29.4   60   36.4   147     C0801B   60   36.4   147   28.5   60   36.95   147     C0802A   60   36.45   147   28.0   60   36.45   147     C0802B   60   36.45   147   28.0   | C0707A | 29.5  |
| C0708A   60   38.6   147   28.8   60   38.45   147     C0708B   60   38.45   147   27.5   60   38.4   147     C0709A   60   38.45   147   27.5   60   38.35   147     C0709B   60   38.35   147   28.9   60   37.65   147     C0710A   60   37.65   147   28.8   60   37.6   147     C0710B   60   37.65   147   28.8   60   37.6   147     C0801A   60   37.6   147   29.4   60   36.4   147     C0801B   60   36.4   147   28.5   60   36.95   147     C0802A   60   36.45   147   28.0   60   36.45   147     C0802B   60   36.45   147   28.0   60   36.45   147     C0803A   60   37.1   147   28.0 | C0707B | 28.8  |
| C0708B   60   38.45   147   27.5   60   38.4   147     C0709A   60   38.4   147   27.5   60   38.35   147     C0709B   60   38.35   147   28.9   60   37.65   147     C0710A   60   37.65   147   28.8   60   37.6   147     C0710B   60   37.6   147   28.8   60   37.6   147     C0710B   60   37.6   147   29.4   60   36.4   147     C0801A   60   37.0   147   29.4   60   36.4   147     C0801B   60   36.4   147   28.5   60   36.95   147     C0802A   60   36.45   147   28.0   60   36.45   147     C0802B   60   36.45   147   27.0   60   37.1   147     C0803A   60   37.1   147   26.5     | C0708A | 27.5  |
| C0709A   60   38.4   147   27.5   60   38.35   147     C0709B   60   38.35   147   28.9   60   37.65   147     C0710A   60   37.65   147   28.8   60   37.6   147     C0710B   60   37.6   147   28.8   60   37.6   147     C0710B   60   37.6   147   29.4   60   36.4   147     C0801A   60   37.0   147   29.4   60   36.4   147     C0801B   60   36.4   147   28.5   60   36.95   147     C0802A   60   36.45   147   28.0   60   36.45   147     C0802B   60   36.45   147   28.0   60   36.45   147     C0803A   60   37.1   147   26.5   60   36.8   147     C0803B   60   36.8   147   25.2     | C0708B | 27.5  |
| C0709B   60   38.35   147   28.9   60   37.65   147     C0710A   60   37.65   147   28.8   60   37.6   147     C0710B   60   37.65   147   28.8   60   37.6   147     C0710B   60   37.6   147   30.3   60   37.0   147     C0801A   60   37.0   147   29.4   60   36.4   147     C0801B   60   36.4   147   28.5   60   36.95   147     C0802A   60   36.45   147   28.0   60   36.45   147     C0802B   60   36.45   147   27.0   60   37.1   147     C0803A   60   37.1   147   26.5   60   36.8   147     C0803B   60   36.8   147   25.2   60   37.65   147     C0804A   60   37.5   147   24.0     | C0709A | 28.9  |
| C0710A   60   37.65   147   28.8   60   37.6   147     C0710B   60   37.6   147   30.3   60   37.0   147     C0801A   60   37.0   147   29.4   60   36.4   147     C0801B   60   36.4   147   28.5   60   36.95   147     C0802A   60   36.45   147   28.0   60   36.45   147     C0802B   60   36.45   147   27.0   60   37.1   147     C0803A   60   37.1   147   26.5   60   36.8   147     C0803B   60   36.8   147   25.2   60   37.65   147     C0803B   60   37.65   147   25.45   60   37.5   147     C0804A   60   37.5   147   24.0   60   38.2   147     C0805A   60   38.2   147   24.7      | C0709B | 28.8  |
| C0710B   60   37.6   147   30.3   60   37.0   147     C0801A   60   37.0   147   29.4   60   36.4   147     C0801B   60   36.4   147   28.5   60   36.95   147     C0802A   60   36.45   147   28.0   60   36.45   147     C0802B   60   36.45   147   27.0   60   37.1   147     C0803A   60   37.1   147   26.5   60   36.8   147     C0803B   60   36.8   147   25.2   60   37.65   147     C0804A   60   37.65   147   25.45   60   37.5   147     C0804B   60   37.5   147   24.0   60   38.2   147     C0805A   60   38.2   147   24.7   60   38.1   147                                           | C0710A | 30.3  |
| C0801A   60   37.0   147   29.4   60   36.4   147     C0801B   60   36.4   147   28.5   60   36.95   147     C0802A   60   36.45   147   28.0   60   36.45   147     C0802B   60   36.45   147   27.0   60   37.1   147     C0803A   60   37.1   147   26.5   60   36.8   147     C0803B   60   36.8   147   25.2   60   37.65   147     C0804A   60   37.5   147   25.45   60   37.5   147     C0805A   60   36.2   147   24.7   60   38.1   147                                                                                                                                                        | C0710B | 29.4  |
| CO801B   60   36.4   147   28.5   60   36.95   147     C0802A   60   36.95   147   28.0   60   36.45   147     C0802B   60   36.45   147   27.0   60   37.1   147     C0803A   60   37.1   147   26.5   60   36.8   147     C0803B   60   36.8   147   25.2   60   37.65   147     C0804A   60   37.65   147   25.45   60   37.5   147     C0804B   60   37.5   147   24.0   60   38.2   147     C0805A   60   38.2   147   24.7   60   38.1   147                                                                                                                                                       | C0801A | 28.5  |
| C0802A   60   36.95   147   28.0   60   36.45   147     C0802B   60   36.45   147   27.0   60   37.1   147     C0803A   60   37.1   147   26.5   60   36.8   147     C0803B   60   36.8   147   25.2   60   37.65   147     C0804A   60   37.65   147   25.45   60   37.5   147     C0804B   60   37.5   147   24.0   60   38.2   147     C0805A   60   38.2   147   24.7   60   38.1   147                                                                                                                                                                                                              | C0801B | 28.0  |
| C0802B   60   36.45   147   27.0   60   37.1   147     C0803A   60   37.1   147   26.5   60   36.8   147     C0803B   60   36.8   147   25.2   60   37.65   147     C0804A   60   37.65   147   25.45   60   37.5   147     C0804B   60   37.5   147   24.0   60   38.2   147     C0805A   60   38.2   147   24.7   60   38.1   147                                                                                                                                                                                                                                                                      | C0802A | 27.0  |
| C0803A6037.114726.56036.8147C0803B6036.814725.26037.65147C0804A6037.6514725.456037.5147C0804B6037.514724.06038.2147C0805A6038.214724.76038.1147                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C0802B | 26.5  |
| C0803B6036.814725.26037.65147C0804A6037.6514725.456037.5147C0804B6037.514724.06038.2147C0805A6038.214724.76038.1147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C0803A | 25.2  |
| C0804A   60   37.65   147   25.45   60   37.5   147     C0804B   60   37.5   147   24.0   60   38.2   147     C0805A   60   38.2   147   24.7   60   38.1   147                                                                                                                                                                                                                                                                                                                                                                                                                                          | C0803B | 25.45 |
| C0804B   60 37.5   147 24.0   60 38.2   147     C0805A   60 38.2   147 24.7   60 38.1   147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C0804A | 24.0  |
| C0805A 60 38.2 147 24.7 60 38.1 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C0804B | 24.7  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C0805A | 23.5  |
| C0805B 60 38.1 147 23.5 60 38.5 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C0805B | 24.3  |

34
| S0201A | 60 1.3            | 147 57.3  | 60 1.9           | 147 58.0  |
|--------|-------------------|-----------|------------------|-----------|
| S0201B | 60 1.9            | 147 58.0  | 60 1.85          | 147 56.7  |
| S0202A | 60 1.85           | 147 56.7  | 60 2.35          | 147 57.4  |
| S0202B | 60 2.35           | 147 57.4  | 60 2.4           | 147 56.2  |
| 50203A | 60 2.4            | 147 56.2  | 60 3.1           | 147 56.4  |
| S0203R | 60 3 1            | 147 56.4  | 60 3.0           | 147 55.1  |
| 502000 | 60 3 0            | 147 55.1  | 60 3.5           | 147 55.6  |
| 50204A | 60 3 5            | 147 55.6  | 60 3.4           | 147 54.4  |
| 502040 | 60 3 4            | 147 54 4  | 60 3.95          | 147 54.7  |
| 50205A | 60 3 95           | 147 54.7  | 60 3.85          | 147 53.4  |
| S02030 | 60 3.85           | 147 53 4  | 60 4.5           | 147 53.8  |
| SO200A | 60 4 5            | 147 53.8  | 60 4 4           | 147 52.6  |
| SU2066 | 60 4.5            | 147 52.6  | 60 5 0           | 147 528   |
| 50207A | 60 5 0            | 147 52.0  | 60 4 85          | 147 51 5  |
| S0207B | 60 5.0            | 147 JZ.0  | 60 5 4           | 147 51.0  |
| S0208A | 60 4.85           | 147 51.5  | 50 50 05         | 149 70    |
| S0208B | 60 5.4            | 147 51.2  | 59 59.05         | 140 7.0   |
| S0209A | 59 59.05          | 148 7.0   | 59 58.95         | 140 0.0   |
| S0209B | 59 58.95          | 148 6.0   | 29 29.0          | 140 0.0   |
| S0210A | 59 59.6           | 148 6.6   | 59 59.45         | 148 5.2   |
| S0210B | 59 59.45          | 148 5.2   | 60 1.15          | 148 5.7   |
| S0401A | 60 3.6            | 147 58.6  | 60 3.4           | 147 57.35 |
| S0401B | 60 3.4            | 147 57.35 | 60 4.1           | 147 57.4  |
| S0402A | 60 4.1            | 147 57.4  | 60 3.85          | 147 56.1  |
| S0402B | 60 3.85           | 147 56.1  | 60 4.5           | 147 56.5  |
| S0403A | 60 4.5            | 147 56.5  | 60 4.3           | 147 55.1  |
| S0403B | 60 4.3            | 147 55.1  | 60 4.95          | 147 55.5  |
| S0404A | 60 4.95           | 147 55.5  | 60 4.8           | 147 54.1  |
| S0404B | 60 4.8            | 147 54.1  | 60 5.45          | 147 54.5  |
| S0405A | 60 5.45           | 147 54.5  | 60 5.2           | 147 53.1  |
| S0405B | 60 5.2            | 147 53.1  | 60 5.85          | 147 53.4  |
| S0406A | 60 5.85           | 147 53.4  | 60 6.1           | 147 52.0  |
| S0406B | 60 6.1            | 147 52.0  | 60 6.5           | 147 53.1  |
| S0407A | 60 6.5            | 147 53.1  | 60 6.8           | 147 52.0  |
| S0407B | 60 6.8            | 147 52.0  | 60 7.05          | 147 53.1  |
| S0408A | 60 7.05           | 147 53.1  | 60 7.65          | 147 52.6  |
| S0408B | 60 7.65           | 147 52.6  | 60 7.7           | 147 53.8  |
| S0409A | 60 7.7            | 147 53.8  | 60 8.25          | 147 53.4  |
| SO409R | 60 8 25           | 147 53.4  | 60 8.2           | 147 54.8  |
| S0403D | 60 8 2            | 147 54 8  | 60 8.5           | 147 55.7  |
| S0410B | 60 8.5            | 147 55.7  | 60 7.9           | 147 56.1  |
| 506014 | 60 1 05           | 148 11 3  | 60 08            | 148 10.0  |
| S0601R | 60 08             | 148 10.0  | 60 1.45          | 148 10.3  |
| 506075 | 60 1 45           | 148 10.3  | 60 1 2           | 148 9.0   |
| 50602A | 60 1 2            | 148 9 0   | 60 1.85          | 148 9.2   |
| 506020 | 60 1.85           | 148 9 2   | 60 1 75          | 148 7.9   |
| SOCOR  | 60 1.75           | 148 7 9   | 60 2 4           | 148 8.3   |
| S0603B | 60 0 4            | 149 9 3   | 60 2 85          | 148 7 45  |
| 50604A | 60 2.4            | 148 7 45  | 60 3 4           | 148 8 1   |
| 50604D | 60 2.85           | 148 8 1   | 60 3 45          | 148 6 8   |
| SUBUSA | 60 3.4<br>CO 2.45 | 140 0.1   | 60 4 0           | 148 7 0   |
| S0605B | 60 3.45           | 140 0.0   | 60 4.05          | 148 6 3   |
| 50606A | 60 4.0            | 140 7.0   | 60 4.05          | 148 6 6   |
| 50606B | 60 4.05           | 148 0.3   | 60 4.0           | 140 0.0   |
| 50607A | 60 4.6            | 140 0.0   | 60 F 2           | 149 6 2   |
| S0607B | 60 4.7            | 148 5.4   | 60 5.2<br>60 5.2 | 140 0.2   |
| S0608A | 60 5.2            | 148 6.2   |                  | 140 4.0   |
| S0608B | 60 5.3            | 148 4.8   |                  | 140 0.3   |
| S0609A | 60 5.8            | 148 5.3   | 60 5.9           | 148 4.1   |
| S0609B | 60 5.9            | 148 4.1   |                  | 140 5.0   |
| S0610A | 60 6.4            | 148 5.0   |                  | 140 4.3   |
| S0610B | 60 6.95           | 148 4.3   | 60 7.0           | 148 5.0   |

| S0801A | 60 9.9   | 148 0.04  | 60 10.3  | 147 58.9  |
|--------|----------|-----------|----------|-----------|
| S0801B | 60 10.3  | 147 58.9  | 60 10.6  | 148 0.15  |
| S0802A | 60 10.6  | 148 0.15  | 60 11.3  | 147 59.7  |
| S0802B | 60 11.3  | 147 59.7  | 60 11.2  | 148 1.0   |
| S0803A | 60 11.2  | 148 1.0   | 60 11.7  | 148 1.5   |
| S0803B | 60 11.7  | 148 1.5   | 60 11.2  | 148 2.3   |
| S0804A | 60 11.2  | 148 2.3   | 60 11.8  | 148 1.9   |
| S0804B | 60 11.8  | 148 1.9   | 60 12.1  | 148 3.0   |
| S0805A | 60 12.1  | 148 3.0   | 60 12.6  | 148 3.95  |
| S0805B | 60 12.6  | 148 3.95  | 60 11.95 | 148 4.2   |
| S0806A | 60 11.95 | 148 4.2   | 60 12.2  | 148 5.45  |
| S0806B | 60 12.2  | 148 5.45  | 60 11.45 | 148 5.3   |
| S0807A | 60 11.45 | 148 5.3   | 60 11.2  | 148 6.5   |
| S0807B | 60 11.2  | 148 6.5   | 60 10.9  | 148 5.15  |
| S0808A | 60 10.9  | 148 5.15  | 60 10.6  | 148 6.3   |
| S0808B | 60 10.6  | 148 6.3   | 60 10.25 | 148 5.1   |
| S0809A | 60 10.25 | 148 5.1   | 60 10.15 | 148 6.45  |
| S0809B | 60 10.15 | 148 6.45  | 60 9.6   | 148 5.7   |
| S0810A | 60 9.6   | 148 5.7   | 60 9.2   | 148 6.7   |
| S0810B | 60 9.2   | 148 6.7   | 60 8.85  | 148 5.7   |
|        |          |           |          |           |
| S1001A | 60 12.8  | 148 4.5   | 60 13.4  | 148 4.2   |
| S1001B | 60 13.4  | 148 4.2   | 60 13.35 | 148 5.4   |
| S1002A | 60 13.35 | 148 5.4   | 60 14    | 148 5.1   |
| S1002B | 60 14    | 148 5.1   | 60 13.8  | 148 6.45  |
| S1003A | 60 13.8  | 148 6.45  | 60 14.5  | 148 5.1   |
| S1003B | 60 14.5  | 148 5.1   | 60 14.35 | 148 7.5   |
| S1004A | 60 14.35 | 148 7.5   | 60 15.05 | 148 7.9   |
| S1004B | 60 15.05 | 148 7.9   | 60 14.45 | 148 8.55  |
| S1005A | 60 14.45 | 148 8.55  | 60 14.5  | 148 9.9   |
| S1005B | 60 14.5  | 148 9.9   | 60 13.9  | 148 9.4   |
| S1006A | 60 13.9  | 148 9.4   | 60 13.55 | 148 10.8  |
| S1006B | 60 13.55 | 148 10.8  | 60 13.15 | 148 9.5   |
| S1007A | 60 13.15 | 148 9.5   | 60 12.95 | 148 10.9  |
| S1007B | 60 12.95 | 148 10.9  | 60 12.5  | 148 9.6   |
| S1008A | 60 12.5  | 148 9.6   | 60 12.5  | 148 11.05 |
| S1008B | 60 12.5  | 148 11.05 | 60 11.9  | 148 10.4  |
| S1009A | 60 11.9  | 148 10.4  | 60 11.7  | 148 11.6  |
| S1009B | 60 11.7  | 148 11.6  | 60 11.15 | 148 10.6  |
| S1010A | 60 11.15 | 148 10.6  | 60 10.9  | 148 10.7  |
| S1010B | 60 10.9  | 148 10.7  | 60 10.4  | 148 10.9  |
|        |          |           |          |           |
| S1201A | 60 12.9  | 148 16.5  | 60 12.2  | 148 15.2  |
| S1201B | 60 12.2  | 148 15.2  | 60 13.8  | 148 14.5  |
| S1202A | 60 13.8  | 148 14.5  | 60 13.6  | 148 13.2  |
| S1202B | 60 13.6  | 148 13.2  | 60 14.1  | 148 12.4  |
| S1203A | 60 14.1  | 148 12.4  | 60 13.75 | 148 11.2  |
| S1203B | 60 13.75 | 148.11.2  | 60 13.4  | 148 11.2  |
| S1204A | 60 13.4  | 148 11.2  | 60 14.7  | 148 9.9   |
| S1204B | 60 14.7  | 148 9.9   | 60 15.15 | 148 10.9  |
| S1205A | 60 15.15 | 148 10.9  | 60 15.8  | 148 10.8  |
| S1205B | 60 15.8  | 148 10.8  | 60 15.55 | 148 12.0  |
| S1206A | 60 15.55 | 148 12.0  | 60 16.3  | 148 12.4  |
| S1206B | 60 16.3  | 148 12.4  | 60 15.7  | 148 13.3  |
| S1207A | 60 15.7  | 148 13.3  | 60 16.2  | 148 14.4  |
| S1207B | 60 16.2  | 148 14.4  | 60 15.5  | 148 14.6  |
| S1208A | 60 15.5  | 148 14.6  | 60 15.95 | 148 15.6  |
| S1208B | 60 15.95 | 148 15.6  | 60 15.2  | 148 16.0  |
| S1209A | 60 15.2  | 148 16.0  | 60 15.7  | 148 17.3  |
| S1209B | 60 15.7  | 148 17.3  | 60 15.0  | 148 17.3  |
| S1210A | 60 15.0  | 148 17.3  | 60 14.9  | 148 18.4  |
| S1210B | 60 14.9  | 148 18.4  | 60 14.35 | 148 17.5  |

| S1401A | 60 17.8             | 148 12.0  | 60 18.25            | 148 10.9  |
|--------|---------------------|-----------|---------------------|-----------|
| S1401B | 60 18.25            | 148 10.9  | 60 18.45            | 148 12.2  |
| S1402A | 60 18.45            | 148 12.2  | 60 18.9             | 148 11.0  |
| S1402B | 60 18.9             | 148 11.0  | 60 19.2             | 148 12.3  |
| S1403A | 60 19.2             | 148 12.3  | 60 19.6             | 148 11.2  |
| S1403B | 60 19.6             | 148 11.2  | 60 19.85            | 148 12.3  |
| S1404A | 60 19.85            | 148 12.3  | 60 20.5             | 148 11.9  |
| S1404B | 60 20.5             | 148 11.9  | 60 20.65            | 148 13.3  |
| S1405A | 60 20.65            | 148 13.3  | 60 21.4             | 148 13.6  |
| S1405B | 60 21.4             | 148 13.6  | 60 20.9             | 148 14.5  |
| S1406A | 60 20.9             | 148 14.5  | 60 20.5             | 148 15.8  |
| S1406B | 60 20.5             | 148 15.8  | 60 20.9             | 148 15.2  |
| S1407A | 60 20.9             | 148 15.2  | 60 21.4             | 148 14.4  |
| S1407B | 60 21.4             | 148 14.4  | 60 20.15            | 148 11.4  |
| S1408A | 60 20.15            | 148 11.4  | 60 19.5             | 148 10.9  |
| S1408B | 60 19.5             | 148 10.9  | 60 20.15            | 148 10.0  |
| S1409A | 60 20.15            | 148 10.0  | 60 19.9             | 148 8.6   |
| S1409B | 60 19.9             | 148 8.6   | 60 20.65            | 148 8.8   |
| S1410A | 60 20.65            | 148 8.8   | 60 20.15            | 148 7.7   |
| S1410B | 60 20 15            | 148 7.7   | 60 20.8             | 148 7.21  |
| 077700 | 00 20.10            |           |                     |           |
| S1601A | 60 24 65            | 148 4 9   | 60 24 2             | 148 5.8   |
| S1601B | 60 24 2             | 148 5 8   | 60 23 75            | 148 4 8   |
| S1602A | 60 23 75            | 148 4 8   | 60 23 2             | 148 5 2   |
| S1602R | 60 23 2             | 148 5 2   | 60 23 35            | 148 4 1   |
| S16034 | 60 23 35            | 148 4 1   | 60 22 75            | 149 4.1   |
| S1603A | 60 20 75            | 140 4.1   | 60 22.75            | 140 4.5   |
| S1603D | 60 22.75            | 140 4.9   | 60 23.0             | 140 3.3   |
| S1604A | 60 23.0             | 140 3.3   | 60 22.8             | 140 2.2   |
| S16054 | 60 22.8             | 140 2.2   | 60 23.4             | 140 2.9   |
| STOUSA | 60 23.4<br>60 22 0E | 140 2.9   | 60 22.95            | 140 1.7   |
| S16050 | 60 22.95            | 140 1.7   | 60 23.0<br>60 23.25 | 148 1.0   |
| SIGUDA | 60 23.6<br>60 00 05 | 146 1,0   | 60 23.35            | 148 0.3   |
| S1000B | 60 23,35            | 148 0.3   | 60 24.1             | 148 0.5   |
| S1607A | 60 24.1<br>CO 00 0  | 146 0.5   | 60 23.8<br>C0 04 5  | 147 59.1  |
| S1607B | 60 23.8             | 147 59.1  | 60 24.5             | 147 59.3  |
| STOUGA | 60 24.5             | 147 59.3  | 60 24.1             | 147 58.3  |
| S1608B | 60 24.1<br>60 04 0  | 147 58.3  | 6U 24.8             | 147 58.0  |
| STOUGA | 60 24.8             | 147 58.0  | 60 24.8             | 147 56.6  |
| S1609B | 60 24.8             | 14/ 56.6  | 60 25.35            | 14/ 5/.0  |
| S1610A | 60 25,35            | 147 57.0  | 60 25.6             | 147 55.8  |
| S1610B | 60 25.6             | 147 55.8  | 60 26.0             | 147 56.5  |
| C1001A | CO 10 0             | 140 1 0   | 60 15 15            | 140.00    |
| SIBULA | 60 16.3<br>60 15 45 | 148 1.3   | 60 17 0             | 148 0.0   |
| S1001D | 60 15.45            | 148 0.0   | 60 17.0<br>10 17.0  | 148 1.2   |
| 51802A | 60 17.0<br>16 17.0  | 140 1.2   | 10 17.3             | 147 59.6  |
| S1802B | 10 17.3             | 147 59.6  | 60 17.6             | 148 0.9   |
| S1803A | 60 17.6             | 148 0.9   | 60 17.9             | 147 59.4  |
| S1803B | 60 17.9             | 147 59.4  | 60 18.3             | 148 0.6   |
| S1804A | 60 18.3             | 148 0.6   | 60 18.6             | 14/ 59.3  |
| S1804B | 60 18.6             | 147 59.3  | 60 19.1             | 148 0.4   |
| S1805A | 60 19.1             | 148 0.4   | 60 19.3             | 147 59.1  |
| S1805B | 60 19.3             | 14/ 59.1  | 60 19.6             | 148 0.0   |
| S1806A | 60 19.6             | 148 0.0   | 60 19.8             | 147 58.7  |
| 518068 | 60 19.8             | 147 58.7  | 60 20.4             | 14/ 59.6  |
| 5180/A | ь0 20.4<br>co co с  | 14/ 59.6  | 60 20.5             | 147 58.0  |
| 518078 | DU 20.5             | 147 58.0  | 60 20.95            | 147 59.1  |
| 51808A | 60 20.95            | 147 59.1  | 60 21.4<br>60 01 67 | 147 58.1  |
| 518088 | 0U 21.4             | 14/ 58.1  | 00 21,65            | 147 59.2  |
| 51809A | 00 21.65            | 147 59.2  | 60 22.0             | 147 58,1  |
| 2180AR | 60 22.0             | 147 58.1  | 60 22.3             | 147 59 .1 |
| SISTUA | 60 22.3             | 14/ 59 .1 | 60 22.8             | 14/ 58.6  |
| 51810B | 60 22.8             | 14/ 58.6  | 60 23.0             | 14/ 59.6  |

| S2001A | 60 | 17.35 | 147 | 56.8             | 60 | 17.1  | 147 | 58.2 |
|--------|----|-------|-----|------------------|----|-------|-----|------|
| S2001B | 60 | 17.1  | 147 | 58.2             | 60 | 16.5  | 147 | 57.4 |
| S2002A | 60 | 16.5  | 147 | 57.4             | 60 | 16.4  | 147 | 58.9 |
| S2002B | 60 | 16.4  | 147 | 58.9             | 60 | 15.8  | 147 | 58.0 |
| S2003A | 60 | 15.8  | 147 | 58.0             | 60 | 15.7  | 147 | 59.5 |
| S2003B | 60 | 15.7  | 147 | 59.5             | 60 | 15.15 | 147 | 58.5 |
| S2004A | 60 | 15.15 | 147 | 58.5             | 60 | 14.65 | 147 | 59.6 |
| S2004B | 60 | 14.65 | 147 | 59.6             | 60 | 14.45 | 147 | 58.1 |
| S2005A | 60 | 14.45 | 147 | 58.1             | 60 | 13.85 | 147 | 58.9 |
| S2005B | 60 | 13.85 | 147 | 58.9             | 60 | 13.75 | 147 | 57.6 |
| S2006A | 60 | 13.75 | 147 | 57.6             | 60 | 13.0  | 147 | 57.9 |
| S2006B | 60 | 13.0  | 147 | 57. <del>9</del> | 60 | 13.2  | 147 | 56.6 |
| S2007A | 60 | 13.2  | 147 | 56.6             | 60 | 12.5  | 147 | 55.9 |
| S2007B | 60 | 12.5  | 147 | 55.9             | 60 | 13.1  | 147 | 55.1 |
| S2008A | 60 | 13.1  | 147 | 55.1             | 60 | 12.5  | 147 | 54.6 |
| S2008B | 60 | 12.5  | 147 | 54.6             | 60 | 13.0  | 147 | 53.6 |
| S2009A | 60 | 13.0  | 147 | 53.6             | 60 | 12.35 | 147 | 53.1 |
| S2009B | 60 | 12.35 | 147 | 53.1             | 60 | 12.9  | 147 | 52.5 |
| S2010A | 60 | 12.9  | 147 | 52.5             | 60 | 12.3  | 147 | 51.6 |
| S2010B | 60 | 12.3  | 147 | 51.6             | 60 | 12.8  | 147 | 50.7 |
|        |    |       |     |                  |    |       |     |      |

.

Table 5. Net samples collected by the inshore survey of cruise 96-1. P - Purse Seine, D - Dip Net, C - Cast Net

,

| TIME IN    | STN #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GEAR                                                                                                                                                                                                                                                                                                                                                         | LOCATION                                                                        | LATITUDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LONGITUDE                                                                                                                                                                          | DEPTH (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JDY AREA   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14:46      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Р                                                                                                                                                                                                                                                                                                                                                            |                                                                                 | 60 03.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 147 53.47                                                                                                                                                                          | 47.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16:28      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Р                                                                                                                                                                                                                                                                                                                                                            | N. end La touche                                                                | 60 04.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 147 51.14                                                                                                                                                                          | 36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15:48      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Р                                                                                                                                                                                                                                                                                                                                                            |                                                                                 | 60 03.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 148 08.22                                                                                                                                                                          | 35.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| STUDY AREA | L .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12:30      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р                                                                                                                                                                                                                                                                                                                                                            | C01-05B                                                                         | 60 23.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 147 40.60                                                                                                                                                                          | 18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15:30      | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р                                                                                                                                                                                                                                                                                                                                                            | C01-07B                                                                         | 60 23.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 147 40.38                                                                                                                                                                          | 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12:00      | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р                                                                                                                                                                                                                                                                                                                                                            | C02-10A                                                                         | 60 29.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 147 35.97                                                                                                                                                                          | 76.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9:00       | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р                                                                                                                                                                                                                                                                                                                                                            | C04-01B                                                                         | 60 37.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 147 23.05                                                                                                                                                                          | 27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12:00      | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ٩                                                                                                                                                                                                                                                                                                                                                            | C04-08A                                                                         | 60 40.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 147 18.20                                                                                                                                                                          | 25.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| JDY AREA   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13:00      | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р                                                                                                                                                                                                                                                                                                                                                            | C07-02B                                                                         | 60 40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 147 29.73                                                                                                                                                                          | 24.4-30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9:30       | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р                                                                                                                                                                                                                                                                                                                                                            | N19-09A                                                                         | 60 58.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146 42.43                                                                                                                                                                          | 16.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12:30      | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р                                                                                                                                                                                                                                                                                                                                                            | N19-01A                                                                         | 60 55.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146 36.05                                                                                                                                                                          | 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 17:30      | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | С                                                                                                                                                                                                                                                                                                                                                            | N17-03A                                                                         | 60 53.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146 45.16                                                                                                                                                                          | 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16:15      | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р                                                                                                                                                                                                                                                                                                                                                            | N17-03A                                                                         | 60 53.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146 44.60                                                                                                                                                                          | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10:30      | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р                                                                                                                                                                                                                                                                                                                                                            | N15-07B                                                                         | 60 49.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146 49.59                                                                                                                                                                          | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15:00      | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р                                                                                                                                                                                                                                                                                                                                                            | N13-07B                                                                         | 60 50.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146 38.87                                                                                                                                                                          | 36.6-38.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16:50      | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D                                                                                                                                                                                                                                                                                                                                                            |                                                                                 | 60 49.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146 36.38                                                                                                                                                                          | 36.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13:30      | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р                                                                                                                                                                                                                                                                                                                                                            | N09-01A                                                                         | 60 46.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146 33.13                                                                                                                                                                          | 18.3-24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13:30      | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р                                                                                                                                                                                                                                                                                                                                                            | N07-05B                                                                         | 60 44.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146 39.18                                                                                                                                                                          | 36.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9:30       | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р                                                                                                                                                                                                                                                                                                                                                            | St. Matthews Bay                                                                | 60 43.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146 19.70                                                                                                                                                                          | 33.5-35.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19:00      | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р                                                                                                                                                                                                                                                                                                                                                            | N07-01B                                                                         | 60 43.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146 42.96                                                                                                                                                                          | 24.4-27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9:00       | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D                                                                                                                                                                                                                                                                                                                                                            | N03-06B                                                                         | 60 45.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146 18.94                                                                                                                                                                          | 35.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | TIME IN<br>JDY AREA<br>14:46<br>16:28<br>15:48<br>STUDY AREA<br>12:30<br>12:00<br>9:00<br>12:00<br>JDY AREA<br>13:00<br>9:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:30<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00 | TIME IN  STN #    JDY AREA  14:46  1    16:28  2  15:48  3    STUDY AREA  1  16:28  2    15:48  3  3  3    STUDY AREA  12:30  18  15:30  19    12:00  24  9:00  26  12:00  29    JDY AREA  13:00  38  9:30  41    12:30  44  17:30  47    16:15  47  10:30  48    15:00  52  16:50  55    13:30  58  13:30  58    13:30  59  9:30  62    19:00  68  9:00  69 | TIME IN  STN #  GEAR    14:46  1  P    16:28  2  P    15:48  3  P    STUDY AREA | TIME IN  STN #  GEAR  LOCATION    JDY AREA  14:46  1  P    16:28  2  P  N. end La touche    15:48  3  P  STUDY AREA    12:30  18  P  C01-05B    15:30  19  P  C01-07B    12:00  24  P  C02-10A    9:00  26  P  C04-01B    12:00  29  P  C04-08A    JDY AREA  J  N19-09A    12:30  41  P  N19-09A    12:30  44  P  N19-01A    17:30  47  C  N17-03A    16:15  47  P  N17-03A    16:50  55  D  J    13:30  58  P  N09-01A    13:30  58  P  N07-05B    9:30  62  P  St. Matthews Bay    19:00  68  P  N07-01B    9:00 </td <td>TIME IN  STN #  GEAR  LOCATION  LATITUDE    JDY AREA  14:46  1  P  60  03.97    16:28  2  P  N. end La touche  60  04.97    15:48  3  P  K. end La touche  60  03.20    STUDY AREA </td> <td>TIME IN  STN #  GEAR  LOCATION  LATITUDE  LONGITUDE    JDY AREA  14:46  1  P  60  03.97  147  53.47    16:28  2  P  N. end La touche  60  03.97  147  51.14    15:48  3  P  N. end La touche  60  03.20  148  08.22    STUDY AREA  12:30  18  P  C01-05B  60  23.13  147  40.60    15:30  19  P  C01-07B  60  29.88  147  35.97    9:00  26  P  C04-01B  60  37.90  147  23.05    12:00  29  P  C04-08A  60  40.20  147  18.20    JDY AREA  1  P  N19-09A  60  58.81  146  42.43    12:30  44  P  N19-01A  60  53.29  146  45.16    16:15  47  P  N17-03A</td> | TIME IN  STN #  GEAR  LOCATION  LATITUDE    JDY AREA  14:46  1  P  60  03.97    16:28  2  P  N. end La touche  60  04.97    15:48  3  P  K. end La touche  60  03.20    STUDY AREA | TIME IN  STN #  GEAR  LOCATION  LATITUDE  LONGITUDE    JDY AREA  14:46  1  P  60  03.97  147  53.47    16:28  2  P  N. end La touche  60  03.97  147  51.14    15:48  3  P  N. end La touche  60  03.20  148  08.22    STUDY AREA  12:30  18  P  C01-05B  60  23.13  147  40.60    15:30  19  P  C01-07B  60  29.88  147  35.97    9:00  26  P  C04-01B  60  37.90  147  23.05    12:00  29  P  C04-08A  60  40.20  147  18.20    JDY AREA  1  P  N19-09A  60  58.81  146  42.43    12:30  44  P  N19-01A  60  53.29  146  45.16    16:15  47  P  N17-03A |

Table 6. Video samples collected on inshore survey of cruise 96-1

| DATE      | TIME    | STN # | LOCATION          | LATITUDE | LONGITUDE             | DEPTH (m) | SAMPLE D (m) |
|-----------|---------|-------|-------------------|----------|-----------------------|-----------|--------------|
| SOUTH STU | DY AREA |       |                   |          |                       |           |              |
| 16/07     | 15:40   | 3     |                   | 60 03.24 | 148 08.0 <del>9</del> | 33.5      | 12.2         |
| 17/07     | 9:15    | 4     | Whale Bay         | 60 12.90 | 148 10.7              | 30.5      | 30.5         |
| 17/07     | 10:14   | 5     | Whale Bay         | 60 12.51 | 148 09.45             | 32.0      | 30.5         |
| 17/07     | 10:58   | 6     | Whale Bay, S107A  | 60 12.52 | 148 10.86             | 76.2      | 15.2-18.3    |
| 17/07     | 13:15   | 7     | near S10-02A      | 60 13.28 | 148 05.61             | 31.1      | 15.2         |
| 17/07     | 15:08   | 8     | S14-01A           | 60 17.98 | 148 12.56             | 36.6      | 12.2         |
| 17/07     | 17:13   | 9     | S14-08A           | 60 20.17 | 148 11.45             | 32.0      | 12.2         |
| 17/07     | 17:55   | 10    | S14-09            | 60 20.55 | 148 08.96             | 18.3      | 16.8         |
| 18/07     | 8:42    | 11    | Paddy Bay         | 60 24.45 | 148 04.94             | 15.2-21.3 | 12.2-15.2    |
| 18/07     | 9:25    | 12    | S16-04B           | 60 23.45 | 148 03.76             | 10.7-15.2 | 3.0-4.6      |
| 18/07     | 10:30   | 13    | S6-04B            | 60 23.72 | 148 01.63             | 19.8-24.4 | 12.2-18.3    |
| 18/07     | 11:06   | 14    | S16-04B           | 60 23.72 | 148 01.63             |           |              |
| 18/07     | 11:55   | 14    |                   | 60 24,93 | 147 58.24             | 36.6      | 15.2-18.3    |
| 18/07     | 14:12   | 15    | S02-01A           | 60 17.01 | 147 56.37             | 12.2      | 10.7         |
| 18/07     | 17:06   | 16    | S02-07A           | 60 13.10 | 147 52.51             | 67.1      | 15.2         |
| 18/07     | 17:33   | 17    | S02-09A           | 60 12.72 | 147 51.79             | 19.8      | 9.1-15.2     |
| CENTRAL S |         | L L   |                   |          |                       |           |              |
| 19/07     | 12:00   | 18    | C01-05B           | 60 23.13 | 147 40.06             | 30.5      | 12.2-15.2    |
| 19/07     | 14:55   | 19    | C01-07B           | 60 23,75 | 147 40.19             | 67.1      | 10.7-12.2    |
| 19/07     | 16:45   | 20    | C02-04B           | 60 27.37 | 147 38.29             |           | 6.1          |
| 19/07     | 17:05   | 21    | C02-04B           | 60 27.57 | 147 37.11             | 85.6      | 6.1          |
| 19/07     | 18:15   | 22    | C02-06B           | 60 28.75 | 147 36.54             |           | 12.2-18.3    |
| 19/07     | 18:41   | 23    | C02-06B           | 60 29.05 | 147 36.85             | 33.5      | 12.2         |
| 20/07     | 11:10   | 24    | C02-10A           | 60 29.88 | 147 35.97             | 76.2      | 9.1          |
| 20/07     | 14:07   | 25    | C03-08A           | 60 34.72 | 147 33.45             | 22.9      | 9.1-12.2     |
| 20/07     | 14:35   | 25    | C03-08A           | 60 34.40 | 147 33.51             | 15.2      | 12.2         |
| 20/07     | 14:55   | 25    | C03-08A           | 60 34.86 | 147 33,36             | 12.2-15.2 | 18.3         |
| 21/07     | 8:20    | 26    | C04-01B           | 60 37.81 | 147 23.11             | 15.2      | 12.2         |
| 21/07     | 8:40    | 26    | C04-01B           | 60 37.90 | 147 23.05             | 27.4      | 9.1          |
| 21/07     | 10:45   | 27    | C04-05B           | 60 38.64 | 147 18.71             | 30.5-39.6 | 12.2-15.2    |
| 21/07     | 11:15   | 28    | C04-06B           | 60 39,34 | 147 18.13             | 24.4-27.4 | 15.2         |
| 21/07     | 11:36   | 29    | C04-08A           | 60 40.20 | 147 18.20             | 25.9      | 12.2-15.2    |
| 21/07     | 12:40   | 30    | McPherson Passage | 60 40.88 | 147 19.87             | 15,2-30,5 | 12.2-16.8    |
| 21/07     | 13:36   | 31    |                   | 60 39.43 | 147 22.00             | 27.4-36.6 | 30.5         |
| 21/07     | 14:30   | 32    | C05-03A           | 60 40.30 | 147 22.36             | 45.7      | 18.3-30.5    |
| 21/07     | 15:53   | 33    | C05-10B           | 60 43.00 | 147 21.65             | 22.9      | 21.3         |
| 22/07     | 8:50    | 34    | C07-10A           | 60 37,58 | 147 29.30             | 30.5-36.6 | 24.4-36.6    |
| 22/07     | 10:03   | 35    | C07-07A           | 60 38.65 | 147 29.29             | 1.5-9.1   | 1,5-7.6      |
| 22/07     | 11:10   | 36    | C07-04B           | 60 39,54 | 147 27.76             | 9.1-12.2  | 7.6-9.1      |
| 22/07     | 11:45   | 37    | C07-03B           | 60 40.56 | 147 28.11             | 3.0-6.1   | 3.0-6.1      |
| 22/07     | 16:15   | 39    | C07-06A           | 60 47.63 | 147 29.69             | 29.0      | 18.3         |
| 22/07     | 17:05   | 40    | C06-03B           | 60 44.59 | 147 26.49             | 27.4-36.0 | 30.5         |
| NORTH STU | DY AREA |       |                   |          |                       |           |              |
| 23/07     | 10:00   | 42    |                   | 60 57.79 | 146 43.14             | 36.6      | 3.0-6.1      |
| 23/07     | 11:30   | 43    | N19-02B           | 60 56.48 | 146 36.46             | 22.9      | 3.0-9.1      |
| 23/07     | 11:48   | 44    | N19-01A           | 60 55.94 | 146 36.16             | 25.9      | 15.2         |
| 23/07     | 12:10   | 44    | N19-01A           | 60 55.71 | 146 36.39             | 16.8      | 15.2         |
| 23/07     | 14:26   | 45    | N17-05B           | 60 55.23 | 146 44.34             | 24.4      | 12.2         |
| 23/07     | 14:43   | 46    | N17-04B           | 60 54.88 | 146 44.52             | 45.7-48.8 | 13.7-15.2    |
| 24/07     | 10:10   | 48    | N15-07B           | 60 49,95 | 146 49.59             | 24.4      | 9.1-12.2     |

| DATE  | TIME  | STN # | LOCATION         | LATITUDE             | LONGITUDE | DEPTH (m) | SAMPLE D (m) |
|-------|-------|-------|------------------|----------------------|-----------|-----------|--------------|
| 24/07 | 11:15 | 49    | N15-06A          | 60 49.93             | 146 49,14 | 9.1-10.7  | 6.1-9.1      |
| 24/07 | 12:12 | 50    | N15-02A          | 60 48.18             | 146 44.78 | 22.9-27.4 | 12.2-18.3    |
| 24/07 | 13:00 | 51    |                  | 60 48.62             | 146 42.21 | 30.5-38.1 | 12.2-15.2    |
| 24/07 | 14:37 | 52    | N13-07B          | 60 50.40             | 146 38.87 | 36.6-38.1 | 12.2         |
| 24/07 | 15:45 | 53    | N13-05B          | 60 48.76             | 146 39.25 | 45.7      | 18.3-21.3    |
| 24/07 | 16:00 | 54    | N13-04B          | 60 48.52             | 146 38.57 | 36.6-42.7 | 21.3         |
| 24/07 | 16:13 | 54    | N13-04B          | 60 48.58             | 146 38.12 | 51.8-53.3 | 22.9         |
| 24/07 | 17:15 | 56    | N13-03A          | 60 49.52             | 146 36.48 | 30.5      | 21.3-24.4    |
| 25/07 | 10:07 | 57    | N09-07B          | 60 47.27             | 146 23.18 | 54.7      | 1.5-4.6      |
| 25/07 | 13:08 | 58    | N09-01A          | 60 46.59             | 146 33.13 | 18.3-24.4 | 10.7-13.7    |
| 25/07 | 13:15 | 59    | N07-05B          | 60 44.68             | 146 39.18 | 36.6      | 9.1-13.7     |
| 25/07 | 16:35 | 60    |                  | 60 43.55             | 146 42.64 | 13.7      | 10.7         |
| 25/07 | 17:43 | 61    |                  | 60 41.01             | 146 36.35 | 7.6-10.7  | 7.6-10.7     |
| 26/07 | 9:03  | 62    | St. Matthews Bay | 60 43.5 <del>9</del> | 146 19.70 | 33.5-35.1 | 10.7-15.2    |
| 26/07 | 11:04 | 63    | St. Matthews Bay | 60 43.82             | 146 19.87 | 29.0-30.5 | 24.4-30.5    |
| 26/07 | 14:00 | 64    | N05-10A          | 60 40.01             | 146 27.12 | 18.3      | 12.2         |
| 26/07 | 14:18 | 65    | N05-09B          | 60 40.05             | 146 28.06 | 10.7-12.2 | 4.6-6.1      |
| 26/07 | 16:00 | 66    | N05-06A          | 60 40.95             | 146 32.80 | 9.1-10.7  | 6.1          |
| 26/07 | 16:20 | 66    | N05-06A          | 60 40.86             | 146 33.14 | 9.1-10.7  | 4.6          |
| 26/07 | 17:05 | 67    | N05-03A          | 60 41.02             | 146 36.30 | 7.6-9.1   | 7.6-9.1      |
| 26/07 | 18:51 | 68    | N07-02B          | 60 43.94             | 146 42.96 | 18.3-19.8 | 6.1-9.1      |
| 27/07 | 9:54  | 70    | N03-05B          | 60 44.48             | 146 19.19 | 42.9      | 42.7         |
| 27/07 | 12:00 | 71    | N03-08B          | 60 42.25             | 146 14.31 | 121.9     | 36.6         |
| 27/07 | 12:21 | 72    | N03-09A          | 60 42.98             | 146 13.45 | 70.1      | 30.5         |
| 27/07 | 13:17 | 73    | N01-10A          | 60 42.06             | 146 09.87 | 29.0-38.1 | 15.2-18.3    |
| 27/07 | 13:44 | 74    | N01-09A          | 60 41.85             | 146 11.39 | 45.7      | 15.2-18.3    |
| 27/07 | 14:23 | 75    | N01-07B          | 60 40.55             | 146 13.41 | 38.1-61.0 | 15.2-30.5    |

Table 7. CTD data collected in the inshore survey during APEX cruise 96-1

| DATE      | TIME IN | LOCATION    | LATITUDE  | LONGITUDE  | DEPTH (m) | GEAR D (m) |
|-----------|---------|-------------|-----------|------------|-----------|------------|
|           |         |             |           |            |           |            |
| SOUTH STU |         | 01 // 0     |           |            |           |            |
| 15/07     | 10:00   | Shelter Bay | 60 07.580 | 147 55.564 | 27        | 10         |
| 15/07     | 11:41   | S02-01A     | 60 1.93   | 147 58.0   | /3        | 60         |
| 15/07     | 10:57   | 504-01A     | 60 03.4   | 147 57.3   | 161       | 140        |
| 15/07     | 12.33   | 502-08A     | 60 8 25   | 147 51.24  | 247       | 300        |
| 15/07     | 11.32   | S06-01A     | 60 00 92  | 148 09 82  | 117       | 100        |
| 16/07     | 14:01   | S06-10A     | 60 07 021 | 148 04 252 | 108       | 100        |
| 16/07     | 14:45   | S08-01A     | 60 10 245 | 147 58.835 | 162       | 140        |
| 16/07     | 16:00   | S08-091A    | 60 09.378 | 148 06.179 | 132       | 120        |
| 16/07     | 16:38   | S10-01A     | 60 13,458 | 148 04.259 | 480       | 200        |
| 16/07     | 17:56   | S10-10A     | 60 10.910 | 148 11.165 | 106       | 100        |
| 17/07     | 10:58   | S14-01A     | 60 18.331 | 148 11.049 | 281       | 200        |
| 17/07     | 14:23   | S16-10A     | 60 25.58  | 147 55.841 | 296       | 200        |
| 17/07     | 15:18   | S16-09A     | 60 23.213 | 148 04.864 | 73        | 60         |
|           |         |             |           |            |           |            |
| CENTRAL S | R-04    | C02.06A     | 60 29 709 | +47 97 026 | 160       | 140        |
| 20/07     | 8.04    | C02-00A     | 60 25 440 | 147 37.030 | 111       | 140        |
| 20/07     | 9.12    | C01-01A     | 60 21 395 | 147 36 926 | 64        | 60         |
| 20/07     | 16:05   | C03-01A     | 60 30 390 | 147 34 776 | 28.6      | 20         |
| 20/07     | 17:51   | C03-07A     | 60 34 588 | 147 32 868 | 191       | 180        |
| 20/07     | 18:43   | C04-02A     | 60 37.205 | 147 22.152 | 29        | 20         |
| 21/07     | 8:12    | C08-03      | 60 37.522 | 147 24.940 | 52        | 40         |
| 21/07     | 11:08   | C05-10A     | 60 43.915 | 147 21.676 | 53        | 40         |
| 21/07     | 11:41   | C05-05A     | 60 41.113 | 147 20.529 | 71        | 60         |
| 21/07     | 11:53   | C05-04A     | 60 40.545 | 147 21.858 | 44        | 40         |
| 21/07     | 12:14   | C04-08A     | 60 40.685 | 147 17.864 | 62        | 60         |
| 21/07     | 12:37   | C04-06A     | 60 38.862 | 147 17.302 | 106       | 100        |
| 22/07     | 9:59    | C07-07A     | 60 38.108 | 147 29.652 | 92        | 80         |
| 22/07     | 10:33   | C07-03A     | 60 40.111 | 147 29.408 | 56        | 40         |
| 22/07     | 11:00   | C07-01A     | 60 42.028 | 147 29.270 | 43        | 40         |
| 22/07     | 11:12   | C06-07A     | 60 42.563 | 147 28.530 | 107       | 100        |
| 22/07     | 11:38   | C06-05A     | 60 44.557 | 147 28.557 | 151       | 140        |
| NORTH STU | DY AREA |             |           |            |           |            |
| 23/07     | 8:28    | N17-08A     | 61 59.765 | 146 43.681 | 338       | 200        |
| 23/07     | 11:22   | N19-05A     | 60 56.804 | 146 42.631 | 210       | 200        |
| 23/07     | 11:54   | N19-02A     | 60 56.228 | 146 37.580 | 106       | 100        |
| 23/07     | 15:34   | N17-08A     | 60 57.447 | 146 47.301 | 348       | 200        |
| 23/07     | 15:59   | N17-06A     | 60 55.654 | 146 46.505 | 252       | 200        |
| 23/07     | 16:16   | N17-01A     | 60 54.722 | 146 46.344 | 66        | 60         |
| 23/07     | 16:56   | N15-10A     | 60 51.800 | 146 51.089 | 68        | 60         |
| 24/07     | 13:57   | N15-08A     | 60 24.6   | 146 50.015 | 66        | 60         |
| 24/07     | 14:25   | N15-05A     | 60 47.871 | 146 49.477 | 40        | 35         |
| 24/07     | 14:54   | N15-01A     | 60 47,953 | 146 42.917 | 81        | 80         |
| 24/07     | 15.45   | NO2 01A     | 60 52.095 | 140 37.930 | 51        | 40         |
| 24/07     | 17:01   | N13-04A     | 60 48 447 | 146 37 738 | 103       | 00         |
| 24/07     | 18:31   | N13-01A     | 60 50 35  | 146 34 67  | 94        | 80         |
| 25/07     | 9.20    | N09-01A     | 60 47 4   | 146 31 15  | 197       | 180        |
| 25/07     | 10:27   | N09-05A     | 60 47.533 | 146 26.178 | 186       | 180        |
| 25/07     | 12:05   | N09-01A     | 60 47.872 | 146 19.925 | 182       | 180        |
| 25/07     | 13:19   | N07-10A     | 60 45.674 | 146 33.811 | 36        | 20         |
| 25/07     | 13:53   | N07-05A     | 60 45,148 | 146 39,552 | 43        | 20         |
| 25/07     | 14:40   | N07-01A     | 60 44.492 | 146 43.39  | 4 1       | 40         |
| 25/07     | 16:28   | N05-10A     | 60 40.227 | 146 38.643 | 26        | 20         |
| 25/07     | 17:12   | N05-05A     | 60 40.037 | 146 32.535 | 21        | 20         |
| 25/07     | 17:38   | N05-01A     | 60 39.749 | 146 27.036 | 21        | 20         |
| 26/07     | 10:06   | N03-01      | 60 45.449 | 146 19.013 | 32        | 20         |
| 26/07     | 10:36   | N03-07      | 60 43.021 | 146 20.702 | 32        | 20         |
| 26/07     | 11:01   | N03-01A     | 60 42.282 | 146 16.400 | 63        | 60         |
| 26/07     | 11:36   | N01-10A     | 60 42.456 | 146 11.030 | 165       | 160        |
| 26/07     | 12:57   | N01-05A     | 60 40.524 | 146 15.478 | 108       | 100        |
| 26/07     | 13:37   | N01-01A     | 60 37.441 | 146 17.009 | 35        | 20         |

Table 8. Beach seine samples collected on APEX cruise 96-1

| DATE      | TIME      | STN #  | LOCATION         | LATITUDE | LONGITUDE |
|-----------|-----------|--------|------------------|----------|-----------|
| SOUTH STI |           |        |                  | ,        |           |
| 15/07     | 13.15     | 1      | 502-03           | 60 02 24 | 147 55 02 |
| 15/07     | 14:30     | 2      | 502-05           | 60 03 02 | 147 53.03 |
| 15/07     | 16:00     | 2      | S02-04           | 60 03.00 | 147 53.00 |
| 15/07     | 16:30     | 4      | S04-01           | 60 04 01 | 147 59 25 |
| 15/07     | 17:20     | 5      | S04-02           | 60 04 15 | 147 56 95 |
| 15/07     | 18.15     | 6      | S04-04           | 60 05 52 | 147 55.05 |
| 16/07     | 11:05     | 7      | S06-01           | 60 01 40 | 147 55.05 |
| 16/07     | 13:00     | ,<br>8 | S06-09           | 60 06 00 | 140 11.50 |
| 16/07     | 13.35     | a      | S06-10           | 60 05 50 | 148 05.50 |
| 16/07     | 15:30     | 10     | S08-05           | 60 11 90 | 148 03.70 |
| 16/07     | 17:25     | 11     | 509-05           | 60 11.59 | 148 03.83 |
| 16/07     | 17.23     | 11     | 508-00<br>508 06 | 60 11.59 | 140 04.53 |
| 17/07     | 8.30      | 10     | S10.09           | 60 11.59 | 148 04.53 |
| 17/07     | 0.30      | 12     | S10-08           | 60 12.05 | 148 09.09 |
| 17/07     | 9.33      | 1.4    | S10-05           | 60 13.95 | 148 09.00 |
| 17/07     | 12:20     | 15     | S14.06           | 60 20 90 | 148 07.40 |
| 17/07     | 12:30     | 16     | S14-00           | 60 20.80 | 140 14.40 |
| 17/07     | 15:25     | 17     | S14-07           | 60 20 50 | 140 15.40 |
| 17/07     | 16:30     | 10     | S16.02           | 60 20.50 | 140 09.59 |
| 17/07     | 17:30     | 10     | S16-03           | 60 24 24 | 148 03.80 |
| 17/07     | 18.42     | 20     | S16-07           | 60 25 19 | 148 00.43 |
| 18/07     | Q.10      | 20     | S18-05           | 60 10 61 | 147 57.00 |
| 18/07     | 9.10      | 21     | S10-05           | 60 19.01 | 148 00.60 |
| 18/07     | 9.40      | 22     | S10-04<br>S10 02 | 60 18.70 | 148 01.10 |
| 18/07     | 12:00     | 23     | 510-03           | 60 12 54 | 148 01.30 |
| 18/07     | 12:35     | 2.4    | S20-08           | 00 13.54 | 147 53.70 |
| 18/07     | 15:00     | 25     | S20-10           | 60 14 44 | 147 56 90 |
| 18/07     | 15:35     | 26     | S20-04           | 60 15 40 | 147 56.60 |
| , 10/07   | 10.00     | 20     | 020-03           | 00 13.40 | 147 30.41 |
| CENTRAL S | TUDY AREA |        |                  |          |           |
| 19/07     | 11:48     | 27     | C01-05           | 60 23.60 | 147 38.20 |
| 19/07     | 13:15     | 28     | C01-06           | 60 22.11 | 147 40.00 |
| 19/07     | 15:30     | 29     | C01-10           | 60 23.26 | 147 36.91 |
| 19/07     | 17:20     | 30     | C02-03           | 60 26.54 | 147 37.26 |
| 19/07     | 17:50     | 31     | C02-04           | 60 26.47 | 147 36.96 |
| 19/07     | 19:05     | 32     | C02-01           | 60 27.89 | 147 37.29 |
| 20/07     | 9:10      | 33     | C03-03           | 60 32.54 | 147 34.47 |
| 20/07     | 9:30      | 33     | C03-03           | 60 32.54 | 147 34.47 |
| 20/07     | 11:05     | 34     | C03-07           | 60 34.28 | 147 32.70 |
| 20/07     | 12:30     | 35     | C03-09           | 60 34.67 | 147 33.13 |
| 20/07     | 14:40     | 36     | C04-02           | 60 37.67 | 147 21.10 |
| 20/07     | 15:50     | 37     | C04-05           | 60 38.69 | 147 19.69 |
| 20/07     | 16:55     | 38     | C04-07           | 60 39.60 | 147 17.31 |
| 21/07     | 8:40      | 39     | C08-01           | 60 37.13 | 147 28.10 |
| 21/07     | 9:00      | 39     | C08-01           | 60 37.13 | 147 28.10 |
| 21/07     | 10:30     | 40     | C08-03           | 60 37.15 | 147 25.99 |
| 21/07     | 11:35     | 41     | C08-04           | 60 37.77 | 147 25.70 |
| 21/07     | 13:30     | 42     | C05-01           | 60 39.90 | 147 20.77 |
| 21/07     | 14:45     | 43     | C05-02           | 60 39.16 | 147 22.64 |
| 21/07     | 15:45     | 44     | 005-03           | 60 40.22 | 14/ 23.75 |
| 21/07     | 16:20     | 45     | C05-04           | 60 41.07 | 147 23.17 |
| 22/07     | 9:10      | 46     | C07-03           | 60 40.77 | 147 28.68 |

| DATE      | TIME IN  | STN # | LOCATION | LATITUDE | LONGITUDE  |
|-----------|----------|-------|----------|----------|------------|
| 22/07     | 9:25     | 46    | C07-03   | 60 40.77 | 147 28.68  |
| 22/07     | 9:55     | 47    | C07-05   | 60 39.32 | 147 29.41  |
| 22/07     | 10:50    | 48    | C07-01   | 60 41.26 | 147 28.79  |
| 22/07     | 12:10    | 49    | C06-08   | 60 43,20 | 147 26.95  |
| 22/07     | 12:50    | 50    | C06-09   | 60 43.13 | 147 25.55  |
| 22/07     | 11:50    | 51    | C06-07   | 60 43.20 | 147 27.62  |
|           |          |       |          |          |            |
| NORTH STU | IDY AREA |       |          |          |            |
| 23/07     | 8:28     | 52    | N19-09   | 60 42.10 | 146 58.82? |
| 23/07     | 9:00     | 53    | N19-08   | 60 58.49 | 146 43.30  |
| 23/07     | 11:10    | 54    | N19-04   | 60 58.49 | 146 43.30? |
| 23/07     | 12:35    | 55    | N17-06   | 60 56.33 | 146 45.10  |
| 23/07     | 13:15    | 56    | N17-05   | 60 55,42 | 146 44.13  |
| 23/07     | 13:50    | 57    | N17-03   | 60 54.28 | 146 43.50  |
| 23/07     | 15:30    | 58    | N15-08   | 60 50,39 | 147 48.91  |
| 23/07     | 17:50    | 59    | N15-03   | 60 48.42 | 146 45.81  |
| 24/07     | 9:50     | 60    | N15-07   | 60 49,78 | 146 48.89  |
| 24/07     | 11:45    | 61    | N13-02   | 60 49.90 | 146 36.90  |
| 24/07     |          | 62    | N13-04   | 60 49,13 | 146 37.50  |
| 24/07     |          | 63    | N13-06   | 60 49.65 | 146 38.20  |
| 24/07     |          | 64    | N09-05   | 60 46.72 | 146 25.40  |
| 24/07     |          | 65    | N09-10   | 60 47.61 | 146 19.27  |
| 24/07     |          | 65    | N09-10   | 60 47.61 | 146 19.27  |
| 24/07     |          | 66    | N09-09   | 60 47.32 | 146 19.30  |
| 25/07     | 9:45     | 67    | N07-09   | 60 45.68 | 146 35.96  |
| 25/07     | 10:40    | 68    | N07-04   | 60 44.60 | 146 41.68  |
| 25/07     | 11:40    | 69    | N07-02   | 60 43.41 | 146 43.49  |
| 25/07     | 13:30    | 70    | N05-07   | 60 41.43 | 146 33.20  |
| 25/07     | 14:30    | 71    | N05-06   | 60 41.40 | 146 32.00  |
| 25/07     | 15:20    | 72    | N05-05   | 60 41.30 | 146 31.11  |
| 26/07     | 8:50     | 73    | N03-09   | 60 44.39 | 146 19.90  |
| 26/07     | 9:25     | 74    | N03-07   | 60 45.30 | 146 18.38  |
| 26/07     | 10:05    | 75    | N03-05   | 60 44.09 | 146 18.61  |
| 26/07     | 11:20    | 76    | N01-09   | 60 41.65 | 146 10.61  |
| 26/07     | 12:25    | 77    | N01-08   | 60 40.92 | 146 11.90  |
| 26/07     | 13:25    | 78    | N01-01   | 60 37.58 | 146 15.51  |
| 27/07     | 8:55     | 79    | N05-05   | 60 41.30 | 146 31.11  |
| 27/07     | 11:10    | 80    | N05-06   | 60 41.40 | 146 32.00  |
| 27/07     | 13:50    | 81    | N15-03   | 60 48.42 | 146 45.81  |
| 27/07     | 14:45    | 82    | N15-07   | 60 49.78 | 146 48.89  |
| 27/07     | 17:45    | 83    | N05-05   | 60 41.30 | 146 31.11  |
| 27/07     | 18:00    | 84    | N05-06   | 60 41.40 | 146 32.00  |
| 27/07     | 20:40    | 85    | N15-07   | 60 49.78 | 146 48.89  |
| 27/07     | 21:45    | 86    | N15-03   | 60 48.42 | 146 45.81  |
| 28/07     | 4:55     | 87    | N05-05   | 60 41.30 | 146 31.11  |
| 28/07     | 6:25     | 88    | N05-06   | 60 41.40 | 146 32.00  |
| 28/07     | 9:10     | 89    | N15-07   | 60 49.78 | 146 48.89  |
| 28/07     | 9:35     | 90    | N15-03   | 60 48.42 | 146 45.81  |

Table 9. Fish densities (g/square meter) in shallow and deep depth strata in offshore<br/>transects in South, Central and North areas.

## Biomass Estimate (g/sq.m)

| Transect           | <u>1-25m</u> | <u>26-100m</u> | TOTAL |
|--------------------|--------------|----------------|-------|
|                    |              |                |       |
|                    |              |                |       |
| NORTH STUDY AREA   |              |                |       |
| N01A-1             | 3 91         | 2 1 1          | 6 01  |
| No1A-2             | 0.32         | 1.66           | 1.99  |
| N01A-3             | 0.01         | 0.19           | 0.20  |
| N02A-1             | 0.22         | 0.15           | 0.37  |
| N02A-2             | 13.75        | 6.97           | 20.72 |
| N02A-3             | 0.23         | 2.85           | 3.08  |
| NZ02N              | 0.57         | 1.32           | 1.89  |
| NO3A-1             | 0.70         | 0.09           | 0.79  |
| N03A-2             | 10.36        | 9.92           | 20.28 |
| N03A-3             | 4.22         | 0.27           | 4.49  |
| NO3TT              | 0.08         | 0.21           | 0.29  |
| NO3LL              | 0.07         | 12.42          | 12.49 |
| NZ03S              | 0.60         | 3.09           | 3.69  |
| N04A               | 0.41         | 1.22           | 1.62  |
| NZ04N              | 4.69         | 0.23           | 4.92  |
| N05A-1             | 0.41         | 0.11           | 0.51  |
| N05A-2             | 0.38         | 0.44           | 0.83  |
| NZ05S              | 0.04         | 1.06           | 1.10  |
| N06A               | 0.41         | 0.24           | 0.65  |
| NZ06N              | 0.32         | 0.06           | 0.38  |
| NZ06S              | 2.41         | 0.86           | 3.26  |
| NO6GBW             | 0.52         | 0.93           | 1.45  |
| N06GBE             | 0.79         | 2.36           | 3.14  |
| N07A               | 0.26         | 0.38           | 0.64  |
| NZ07N              | 1.18         | 0.38           | 1.56  |
| · NZ07S            | 0.59         | 1.29           | 1.88  |
| NOBA               | 0.17         | 0.43           | 0.60  |
| NUSA               | 7.92         | 1.53           | 9.45  |
| N I DA             | 0.71         | 0.00           | 1.73  |
|                    | 0.39         | 1 70           | 1.29  |
|                    | 0.13         | 0.11           | 0.50  |
| NIAE               | 1 42         | 2 09           | 3.51  |
| N14W               | 0.81         | 1 48           | 2 28  |
|                    | 0.01         |                |       |
| CENTRAL STUDY AREA |              |                |       |
| C014-1             | 0 41         | 1.07           | 1.48  |
| C01A-2             | 0.50         | 0.04           | 0.54  |
| CZ01S              | 0.53         | 0.06           | 0.59  |
| C02A-1             | 0.72         | 0.44           | 1.16  |
| C02A-2             | 0.59         | 1.84           | 2.43  |
| CZ02N              | 0.82         | 0.06           | 0.88  |
| CZ02S              | 0.07         | 0.50           | 0.56  |
| C03A-1             | 0.34         | 0.21           | 0.55  |
| C03A-2             | 0.15         | 0.45           | 0.60  |
| CZ03N              | 0.28         | 0.61           | 0.89  |
| C04A-1             | 0.31         | 0.45           | 0.77  |
| C04A-2             | 0.34         | 0.08           | 0.42  |
| CZ04N              | 0.24         | 0.35           | 0.59  |
| CZ04S              | 0.32         | 0.00           | 0.33  |

## Biomass Estimate (g/sq.m)

| Transect         | <u>1-25m</u> | <u>26-100m</u> | TOTAL |
|------------------|--------------|----------------|-------|
| C05A-1           | 0.35         | 0.13           | 0.48  |
| C05A-2           | 0.19         | 0.14           | 0.33  |
| C06A-1           | 0.49         | 0.14           | 0.64  |
| C06A-A           | 0.53         | 0.20           | 0.74  |
| CZ06N            | 1.32         | 1.15           | 2.47  |
| CZ06S            | 0.11         | 0.28           | 0.38  |
| C07W             | 0.39         | 0.15           | 0.54  |
| C07E-1           | 0.20         | 0.13           | 0.32  |
| C07E-2           | 0.23         | 0.75           | 0.98  |
| C08A-1           | 0.32         | 0.01           | 0.33  |
| C08A-2           | 0.17         | 0.27           | 0.44  |
| C09E             | 0.09         | 0.40           | 0.48  |
| C10C             | .0.17        | 0.05           | 0.22  |
| C10W             | 0.36         | 0.01           | 0.37  |
| C10E             | 0.09         | 0.05           | 0.14  |
| C11E             | 0.28         | 0.05           | 0.33  |
| C12E             | 0.24         | 0.20           | 0.44  |
| SOUTH STUDY AREA |              |                |       |
| SO1W             | 1.22         | 0.09           | 1.31  |
| S01S             | 0.20         | 0.00           | 0.21  |
| S01E             | 0.32         | 0.13           | 0.45  |
| S01N             | 0.23         | 0.04           | 0.27  |
| S02E             | 0.22         | 0.06           | 0.28  |
| SO3N             | 0.27         | 0.07           | 0.34  |
| S03S             | 0.35         | 0.01           | 0.35  |
| S03W             | 0.12         | 0.17           | 0.29  |
| S04E             | 0.25         | 0.11           | 0.36  |
| S04W             | 0.19         | 0.00           | 0.20  |
| S05E             | 0.24         | 0.06           | 0.30  |
| S05W             | 0.09         | 0.02           | 0.11  |
| S06W             | 0.20         | 0.13           | 0.33  |
| S07A             | 0.17         | 1.25           | 1.42  |
| S08A             | 0.77         | 0.75           | 1.52  |
| S09E             | 0.01         | 0.01           | 0.02  |
| S09W             | 0.08         | 0.05           | 0.13  |

| <u>Depth (m)</u> | <u>North</u> | Biomass Estimate (g/sq.m)<br><u>Central</u> | South |
|------------------|--------------|---------------------------------------------|-------|
| 1-25             | 1.80         | 0.37                                        | 0.29  |
| 26-100           | 1.55         | 0.38                                        | 0.31  |
| TOTAL            | 3.34         | 0.75                                        | 0.60  |

Table 10. Average fish densities (g/square m) for South, Central and North areas

| Station | Pollock | Aequora | Cyanea | Aurelia | Eutonia | Other Jellyfish |
|---------|---------|---------|--------|---------|---------|-----------------|
| 5       |         | 960     | 16     |         |         | 4               |
| 12a     |         | 109     | 33     |         |         |                 |
| 12b     |         | 50      | 12     |         |         |                 |
| 48a     |         | 31      | 2      |         | 1       | 1               |
| 48b     |         | 35      |        |         |         |                 |
| 65      | 128     | 22      |        |         |         |                 |
| 83      |         | 7       | 9      | 6       | 4       |                 |
| 84      |         | 19      | 5      | 6       | 5       |                 |
| 102     |         |         | 6      | 3       | 1       |                 |
| 119     | 11      | 37      | 7      |         |         |                 |
| 122     |         | 40      | 1      |         |         |                 |
| TOTAL   | 139     | 1310    | 91     | 15      | 11      | 5               |

| Table 11. | Fish and jellyfish i | n midwater trawl samp | ples collected on APE | X cruise 96-1 in | Prince William sound |
|-----------|----------------------|-----------------------|-----------------------|------------------|----------------------|
|           |                      |                       |                       |                  |                      |

Table 12. Biomass estimates for nearshore study sites in three study areas of Prince William Sound in APEX cruise 96-1.

|             |                 | ZIGS    |    |          |           | ZAGS    |    |          |
|-------------|-----------------|---------|----|----------|-----------|---------|----|----------|
| SITE        | MEAN<br>BIOMASS | STD DEV | N  | STD ERR. | MEAN BIOM | STD DEV | N  | STD ERR. |
| NORTH STUD  | Y AREA          |         |    |          |           |         |    |          |
| N1          | 0.76            | 0.91    | 10 | 0.29     | 0.64      | 0.89    | 10 | 0.28     |
| NЗ          | 0.25            | 0.27    | 10 | 0.09     | 0.39      | 0.6     | 10 | 0.19     |
| N5          | 28.01           | 24.32   | 10 | 7.69     | 29.21     | 18.44   | 10 | 5,83     |
| N7          | 15.22           | 36.31   | 6  | 14.82    | 1.92      | 2.87    | 5  | 1.28     |
| N9          | 0.12            | 0.29    | 10 | 0.09     | 0.88      | 2.37    | 10 | 0.75     |
| N13         | 1.59            | 4.31    | 10 | 1.36     | 2.28      | 5.41    | 10 | 1.71     |
| N15         | 0.94            | 2.59    | 10 | 0.82     | 0.09      | 0.11    | 10 | 0.03     |
| N17         | 5.38            | 16.9    | 10 | 5.34     | 0.64      | 1.82    | 10 | 0.58     |
| N19         | 0.54            | 1.6     | 10 | 0.51     | 0.24      | 0.38    | 10 | 0.12     |
| MEAN        | 5.87            |         |    |          | 4.03      |         |    |          |
| STD ERR     | 3.21            |         |    |          | 3.16      |         |    |          |
|             |                 |         |    |          |           |         |    |          |
| CENTRAL STU | JDY AREA        |         |    |          |           |         |    |          |
| C1          | 0.28            | 0.5     | 10 | 0.16     | 1.85      | 3.16    | 10 | 1.00     |
| C2          | 4.48            | 12.81   | 10 | 4.05     | 1.27      | 2.7     | 10 | 0.85     |
| C3          | 0.93            | 2.09    | 10 | 0.66     | 5.08      | 15.28   | 10 | 4.83     |
| C6          | 0.16            | 0.2     | 10 | 0.06     | 1.23      | 1.81    | 10 | 0.57     |
| C7          | 0.24            | 0.46    | 10 | 0.15     | 0.2       | 0.46    | 10 | 0.15     |
| C8          | 0.01            | 0.01    | 5  | 0.00     | 0.12      | 0.26    | 5  | 0.12     |
| MEAN        | 1.02            |         |    |          | 1.63      |         |    |          |
| STDERR      | 0.70            |         | ,  |          | 0.74      |         |    |          |
| SOUTH STUD  | Y AREA          |         |    |          |           |         |    |          |
| S2          | 4.05            | 8.69    | 10 | 2.75     | 3.41      | 10.02   | 10 | 3.17     |
| S4          | 0.01            | 0.02    | 9  | 0.01     | 0.27      | 0.66    | 10 | 0.21     |
| S6          | 0.12            | 0.15    | 10 | 0.05     | 15.5      | 32.52   | 10 | 10.28    |
| S10         | 0.55            | 1.47    | 10 | 0.46     | 0.63      | 1.17    | 10 | 0.37     |
| S14         | 5.04            | 15.86   | 10 | 5.02     | 0.06      | 0.15    | 10 | 0.05     |
| S16         | 0.08            | 0.13    | 10 | 0.04     | 0.08      | 0.15    | 10 | 0.05     |
| S18         | 4.79            | 13.69   | 10 | 4.33     | 0.06      | 0.13    | 10 | 0.04     |
| MEAN        | 2.09            |         |    |          | 2.86      |         |    |          |
| STD ERR     | 0.91            |         |    |          | 2.16      |         |    |          |

| TABLE 13. Fish | catches in n | earshore net                            | sampling in | the North | Study Area | of Prince Wi | lliam Sound | on APEX c | ruise 96-1. |         |           |
|----------------|--------------|-----------------------------------------|-------------|-----------|------------|--------------|-------------|-----------|-------------|---------|-----------|
|                |              |                                         |             |           |            |              |             |           |             |         | · · · · · |
| STATION NO.    | 41           | 44                                      | 47          | 47        | 48         | 52           | 58          | 62        | 68          | 69      |           |
| SITE           | N19-09A      | N19-01A                                 | N17-03A     | N17-03A   | N15-07B    | N13-07B      | N09-01A     | ST MATT   | N07-018     | N03-06B |           |
| DATE           | 23-Jul       | 23-Jul                                  | 23-Jul      |           | 24-Jul     | 24-Jul       | 25-Jul      | 26-Jul    | 26-Jul      | 27-Jul  |           |
|                |              |                                         |             |           |            |              |             |           |             |         | TOTAL     |
|                |              |                                         |             | CAST NET  |            |              |             |           |             | DIPPNET |           |
| HERRING        |              |                                         | 176         | 414       |            |              |             | 10000     | 10000       | 450     | 21040     |
| PINK SALMON    | 5            |                                         |             |           | 2          | 7            | 61          |           |             |         | 75        |
| POLLOCK        |              | 1                                       | 2           |           |            |              |             |           |             |         | 3         |
| TOM COD        |              | 1                                       |             |           | 2          |              |             |           |             |         | 3         |
| PAC COD        |              |                                         | 32          |           |            |              |             |           |             |         | 32        |
| GREENLING      |              | · · · · · · - · - · - · - · - · - · - · |             |           |            |              |             |           |             |         |           |
| GREEN WH SP    |              |                                         | 1           |           |            |              |             |           |             |         | 1         |
| GREEN KELP     |              |                                         | 1           |           |            |              |             |           |             |         | 1         |
| ARCTIC SHANNY  |              |                                         | 3           |           |            |              |             |           |             |         | 3         |
| SNAKE PRICKL   |              |                                         |             |           |            |              |             |           |             |         |           |
| SCULPIN        |              |                                         | 3           |           |            |              |             |           |             | ·····   | 3         |
| STICKLEBACK    | 2            | 4                                       |             |           | 1          | 2            | 200         |           |             |         | 209       |
| CREST GUNN     | 1            | [                                       |             |           | 2          | 4            |             |           |             |         | 7         |
| PROWFISH       | 2            | 2                                       | 1           |           |            | 1            | 2           |           |             |         | 8         |
| WOLFFISH       | ļ            |                                         | 1           |           |            |              |             |           |             |         | 1         |
| ALL FISH       | 10           | 8                                       | 220         | 414       | 7          | 14           | 263         | 10000     | 10000       | 450     | 21386     |

| Table 14. Catches | of fish in purse | e seine samp | les in the Ce | ntral Study A | rea of Prince | William Sour | nd    |
|-------------------|------------------|--------------|---------------|---------------|---------------|--------------|-------|
| on                | APEX cruise      | 96-1         |               |               |               |              |       |
|                   |                  |              |               |               |               |              |       |
|                   |                  |              |               |               |               | L            |       |
| STATION NO.       | 18               | 19           | 24            | 26            | 29            | 38           |       |
| SITE              | C01-05B          | C01-07B      | C02-10A       | C04-01B       | C04-08A       | C07-02B      |       |
| DATE              | 19-Jul           | 19-Jul       | 20-Jul        | 21-Jul        | 21-Jul        | 22-Jul       |       |
|                   |                  |              |               |               |               |              | TOTAL |
|                   |                  |              |               |               |               |              |       |
| HERRING           | 1300             | 2            | 1             |               |               |              | 1303  |
| SANDLANCE         | 28               |              |               | _             |               |              | 28    |
|                   |                  |              |               |               |               |              |       |
| PINK SALMON       |                  | 2            | 200           |               |               |              | 202   |
| COHO SALMON       |                  |              |               | 3             |               |              | 3     |
| CHUM SALMON       |                  |              |               |               |               |              |       |
|                   |                  |              |               |               |               |              |       |
| POLLOCK           |                  |              |               |               | 1             | 2            | 3     |
| TOM COD           |                  |              |               |               |               | 1            | 1     |
|                   |                  |              |               |               |               |              |       |
| LINGCOD           |                  |              |               |               | 1             |              | 1     |
|                   |                  |              |               |               |               |              |       |
| STICKLEBACK       |                  | 2            |               |               |               |              | 2     |
| CREST GUNN        |                  | 7            |               |               |               |              | 7     |
|                   |                  |              |               |               |               |              |       |
| PROWFISH          |                  | 2            |               |               | 1             |              | 3     |
|                   |                  |              |               |               |               |              |       |
|                   |                  |              |               |               |               |              |       |
| ALL FISH          | 1328             | 15           | 201           | 3             | 3             |              | 1550  |
|                   |                  |              |               |               |               |              |       |

51

| Table 15. Catches c   | of fish in purse se | ine samples in | the South Stud | dy Area |
|-----------------------|---------------------|----------------|----------------|---------|
| of Prince William Sou | und in APEX cruis   | ie 96-1.       |                |         |
|                       |                     |                |                |         |
| STATION NO.           | 1                   | 2              | 3              |         |
| SITE                  |                     |                |                | TOTAL   |
| DATE                  | 15-Jul-96           | 15-Jul-96      | 16-Jul-96      |         |
|                       |                     |                |                |         |
| HERRING               |                     | 3              | 650            | 653     |
|                       |                     |                |                |         |
|                       |                     |                |                |         |
| PINK SALMON           | 472                 | 550            | 78             | 1100    |
| CHUM SALMON           | 107                 | 30             | 10             | 165     |
| GION SALMON           | 107                 |                |                |         |
| ALL FISH              | 579                 | 592            | 747            | 1918    |
|                       |                     |                |                |         |

Table 16. Video samples identifications on inshore survey of cruise 96-1

| DATE  | ПМЕ   | STN #    | LOCATION          | DEPTH (m)   | TARGET IDENTIFICATION |
|-------|-------|----------|-------------------|-------------|-----------------------|
|       |       |          | SOUTH STUDY AREA  |             |                       |
| 16/07 | 15:40 | 3        |                   | 12.2        | NONE                  |
| 17/07 | 9:15  | 4        | Whale Bay         | 30.5        | NONE                  |
| 17/07 | 10:14 | 5        | Whale Bay         | 30.5        | NONE                  |
| 17/07 | 10:58 | 6        | S107A             | 15.2-18.3   | HERRING >100 MM       |
| 17/07 | 13:15 | 7        | near S10-02A      | 15.2        | SALMON SHARKS         |
| 17/07 | 15:08 | 8        | S14-01A           | 12.2        | HERRING >100 MM       |
| 17/07 | 17:13 | 9        | S14-08A           | 12.2        | NONE                  |
| 17/07 | 17:55 | 10       | S14-09            | 16.8        | NONE                  |
| 18/07 | 8:42  | 11       | Paddy Bay         | 12.2-15.2   | YOY POLLOCK           |
| 18/07 | 9:25  | 12       | S16-04B           | 3.0-4.6     | NONE                  |
| 18/07 | 10:30 | 13       | S16-04B           | 12.2-18.3   | ROCKFISH              |
| 18/07 | 11:06 | 14       | S16-04B           | 15.2 - 18.3 | HERRING >100 MM       |
| 18/07 | 14:12 | 15       | S02-01A           | 10.7        | NONE                  |
| 18/07 | 17:06 | 16       | S02-07A           | 15.2        | UNIDENTIFIED SCHOOL   |
| 18/07 | 17:33 | 17       | S02-09A           | 9.1-15.2    | HERRING               |
|       |       | c        | ENTRAL STUDY AREA |             |                       |
| 19/07 | 12:00 | 18       | C01-05B           | 12.2-15.2   | HERRING > 100 MM      |
| 19/07 | 14:55 | 19       | C01-07B           | 10.7-12.2   | NONE                  |
| 19/07 | 16:45 | 20       | C02-04B           | 6.1         | NONE                  |
| 19/07 | 17:05 | 21       | C02-04B           | 6.1         | NONE                  |
| 19/07 | 18:15 | 22       | C02-06B           | 12.2-18.3   | HERRING > 100 MM      |
| 19/07 | 18:41 | 23       | C02-06B           | 12.2        | UNIDENTIFIED SCHOOL   |
| 20/07 | 11:10 | 24       | C02-10A           | 9.1         | HERRING > 100 MM      |
| 20/07 | 14:07 | 25       | C03-08A           | 9.1-12.2    | HERRING > 100 MM      |
| 20/07 | 14:35 | 25       | C03-08A           | 12.2        | NONE                  |
| 20/07 | 14:55 | 25       | C03-08A           | 18.3        | NONE                  |
| 21/07 | 8:20  | 26       | C04-01B           | 12.2        | NONE                  |
| 21/07 | 8:40  | 26       | C04-01B           | 9.1         | UNIDENTIFIED SCHOOL   |
| 21/07 | 10:45 | 27       | C04-05B           | 12.2-15.2   | NONE                  |
| 21/07 | 11:15 | 28       | C04-06B           | 15.2        | UNIDENTIFIED SCHOOL   |
| 21/07 | 11:36 | 29       | C04-08A           | 12.2-15.2   | HERRING > 100 MM      |
| 21/07 | 12:40 | 30       | McPherson Passage | 12.2-16.8   | ROCKFISH              |
| 21/07 | 13:36 | 31       |                   | 30.5        | ADULT SALMON          |
| 21/07 | 14:30 | 32       | C05-03A           | 18.3-30.5   | HERRING > 100 MM      |
| 21/07 | 15:53 | 33       | C05-10B           | 21.3        | ROCKFISH              |
| 22/07 | 8:50  | 34       | C07-10A           | 24.4-36.6   | NONE                  |
| 22/07 | 10:03 | 35       | C07-07A           | 1.5-7.6     | ROCKFISH JUVENILES    |
| 22/07 | 11:10 | 36       | C07-04B           | 7.6-9.1     | NONE                  |
| 22/07 | 11:45 | 37       | C07-03B           | 3.0-6.1     | GADID - JUVENILE      |
| 22/07 | 16:15 | 39       | C07-06A           | 18.3        | ·NONE                 |
| 22/07 | 17:05 | 40       | C06-03B           | 30.5        | NONE                  |
| 00/07 | 10.00 |          | NORTH STUDY AREA  |             |                       |
| 23/07 | 10:00 | 42       | N10.000           | 3.0-6.1     |                       |
| 23/07 | 11:30 | 43       | N 19-02B          | 3.0-9.1     |                       |
| 23/07 | 10:48 | 44       | N 19-UTA          | 15.2        | UNIDENTIFIED SCHOOL   |
| 23/07 | 14.00 | 44       | NIT OF            | 15.2        |                       |
| 23/07 | 14:20 | 40<br>46 | N17 04P           | 12.2        |                       |
| 23/07 | 10.10 | 40       |                   | 13.7-15.2   |                       |
| 24/07 | 11.15 | 48       |                   | 9.1-12.2    |                       |
| 24101 | 11.15 | 49       | IN 13-UOA         | 0.1-9.1     | UNIDENTIFIED SCHOOL   |

Table 16. Continued

.

| DATE  | TIME  | STN # | LOCATION         | SAMPLE D (m) | IDENTIFICATION      |
|-------|-------|-------|------------------|--------------|---------------------|
| 24/07 | 12:12 | 50    | N15-02A          | 12.2-18.3    | UNIDENTIFIED SCHOOL |
| 24/07 | 13:00 | 51    |                  | 12.2-15.2    | HERRING > 100 MM    |
| 24/07 | 14:37 | 52    | N13-07B          | 12.2         | HERRING > 100 MM    |
| 24/07 | 15:45 | 53    | N13-05B          | 18.3-21.3    | HERRING > 100 MM    |
| 24/07 | 16:00 | 54    | N13-04B          | 21.3         | HERRING > 100 MM    |
| 24/07 | 16:13 | 54    | N13-04B          | 22.9         | HERRING > 100 MM    |
| 24/07 | 17:15 | 56    | N13-03A          | 21.3-24.4    | NONE                |
| 25/07 | 10:07 | 57    | N09-07B          | 1.5-4.6      | NONE                |
| 25/07 | 13:08 | 58    | N09-01A          | 10.7-13.7    | HERRING > 100 MM    |
| 25/07 | 13:15 | 59    | N07-05B          | 9.1-13.7     | HERRING > 100 MM    |
| 25/07 | 16:35 | 60    |                  | 10.7         | NONE                |
| 25/07 | 17:43 | 61    |                  | 7.6-10.7     | SANDLANCE           |
| 26/07 | 9:03  | 62    | St. Matthews Bay | 10.7-15.2    | HERRING - YOY       |
| 26/07 | 11:04 | 63    | St. Matthews Bay | 24.4-30.5    | NONE                |
| 26/07 | 14:00 | 64    | N05-10A          | 12.2         | NONE                |
| 26/07 | 14:18 | 65    | N05-09B          | 4.6-6.1      | NONE                |
| 26/07 | 16:00 | 66    | N05-06A          | 6.1          | NONE                |
| 26/07 | 16:20 | 66    | N05-06A          | 4.6          | NONE                |
| 26/07 | 17:05 | 67    | N05-03A          | 7.6-9.1      | NONE                |
| 26/07 | 18:51 | 68    | N07-02B          | 6.1-9.1      | HERRING > 100 MM    |
| 27/07 | 9:54  | 70    | N03-05B          | 42.7         | NONE                |
| 27/07 | 12:00 | 71    | N03-08B          | 36.6         | NONE                |
| 27/07 | 12:21 | 72    | N03-09A          | 30.5         | NONE                |
| 27/07 | 13:17 | 73    | N01-10A          | 15.2-18.3    | HERRING - YOY       |
| 27/07 | 13:44 | 74    | N01-09A          | 15.2-18.3    | POLLOCK - YOY       |
| 27/07 | 14:23 | 75    | N01-07B          | 15.2-30.5    | NONE                |

54

•

Table17. Mean lengths of dominant species (n >10) in net samples collected by the inshore survey of cruise 96-1. P - Purse Seine, D - Dip Net, C - Cast Net

| DATE  | STN # | GEAR | LOCATION         | DEPTH (m) | SPECIES     | FORK<br>LENGTH (mm) | STAND.<br>DEV. | N   |
|-------|-------|------|------------------|-----------|-------------|---------------------|----------------|-----|
|       |       |      | SOUTH AREA       |           |             |                     |                |     |
| 15/07 | 1     | Р    |                  | 47.2      | Pink Salmon | 92.6                | 6.2            | 279 |
| 15/07 | 2     | Р    | N. end La touche | 36.0      | Pink Salmon | 99.1                | 12.6           | 234 |
| 16/07 | 3     | P    |                  | 35.7      | Herring     | 192                 | 12.2           | 204 |
|       |       |      |                  |           | Pink Salmon | 115.3               | 14.6           | 78  |
|       |       |      | CENTRAL AREA     |           |             |                     |                |     |
| 19/07 | 18    | Р    | C01-05B          | 18.3      | Herring     | 125.8               | 12.1           | 270 |
|       |       |      |                  |           | Sand lance  | 101.2               | 2.5            | 11  |
| 20/07 | 24    | Ρ    | C02-10A          | 76.2      | Juv. Salmon | 111.8               | 13.4           | 200 |
|       |       |      |                  |           |             |                     |                |     |
|       |       |      | NORTH AREA       |           |             |                     |                |     |
| 23/07 | 47    | С    | N17-03A          | 12.2      | Herring     | 118.3               | 6.0            | 177 |
| 23/07 | 47    | Р    | N17-03A          | 7.6       | Herring     | 54.1                | 2.8            | 414 |
| 25/07 | 58    | P    | N09-01A          | 18.3-24.4 | Juv. Salmon | 98.7                | 9.2            | 61  |
| 26/07 | 62    | Р    | St. Matthews Bay | 33.5-35.1 | Herring     | 55.6                | 2.5            | 247 |
| 26/07 | 68    | Р    | N07-01B          | 24.4-27.4 | Herring     | 135.2               | 9.4            | 234 |
| 27/07 | 69    | D    | N03-06B          | 35.1      | Herring     | 54.8                | 3.0            | 220 |

| Table 18 . Compos | sition of beach | n seine samp | les collected | in the North | study area o | f Prince Willi | am Sound in | APEX cruise | 96-1. | 1     |
|-------------------|-----------------|--------------|---------------|--------------|--------------|----------------|-------------|-------------|-------|-------|
|                   |                 |              |               | 1            |              |                | 1           |             | 1     | TOTAL |
|                   |                 |              |               |              |              |                |             |             |       |       |
| SITE              | N 01            | N03          | N05           | N07          | N09          | N13            | N15         | N17         | N19   |       |
| DATE              |                 |              |               |              |              |                |             |             |       |       |
| TOTAL HAULS       | 3               | 3            | 3             | 3            | 3            | 3              | 3           | 3           | 3     | 27    |
| HERRING           | 1109            | +            | 597           | 10           | 127          | 1              | 32006       | 16          | 17    | 33883 |
| SANDLANCE         |                 |              | 13500         | 0            | 706          | 52             | 600         |             |       | 14858 |
| EULACHON          |                 |              | 6             | 1            |              |                |             |             |       | 7     |
| PINK SALMON       |                 |              |               |              | i            |                | 4           | 1           | 67    | 72    |
| COHO SALMON       |                 |              |               |              |              |                |             |             |       | 1     |
| RED SALMON        |                 |              |               |              |              |                |             | 3           |       | 3     |
| POLLOCK           |                 |              | +             |              |              |                |             |             |       |       |
| TOM COD           |                 |              |               |              |              |                |             | 17          |       | 17    |
| PAC COD           |                 |              |               |              |              |                |             |             |       | 1     |
| GREENLING         |                 |              |               |              |              | 4              |             | 1           |       | 5     |
| GREEN WH SP       |                 |              | 1             |              |              |                |             |             |       | 1     |
| GREEN MASK        |                 |              | 1             |              |              |                |             | 1           |       | 2     |
| LINGCOD           |                 |              | 2             |              |              |                |             | 1           |       | 3     |
| SCULPIN           |                 |              |               |              |              | 1              |             |             | 1     | 2     |
| GREAT SCULPIN     |                 | 1            |               |              |              |                |             |             | 1     | 2     |
| STICKLEBACK       |                 |              |               |              |              |                |             |             | 3     | 3     |
| SANDFISH          |                 | -            | 1             |              |              |                | 20          |             |       | 20    |
| PIPEFISH          |                 |              |               |              |              | 1              |             | 2           |       | 3     |
| CREST GUNN        |                 |              |               |              |              | 1              |             | 2           | 1     | 4     |
| GUNNEL            |                 |              | ]             |              |              |                |             |             |       |       |
| TUBESNOUT         |                 |              |               |              |              |                |             | 13          |       | 13    |
| OTHER             |                 |              | 2             |              |              |                |             |             |       | 2     |
| ALL FISH          | 1109            | 1            | 14109         | 11           | 833          | 60             | 32630       | 57          | 90    | 48900 |
|                   |                 | L            | 1             |              |              |                |             |             |       |       |

| Table 19. Composi | tion of beach | seine samo | les collected | in the Centr | al study area | of Prince W | illiam Sound | 1     |
|-------------------|---------------|------------|---------------|--------------|---------------|-------------|--------------|-------|
| on                | APEX cruise   | 96-1       |               |              | al study area |             | Inani Sound  |       |
|                   | 1             |            |               |              |               |             | 1            |       |
| SITE              | C01           | C02        | C03           | C04          | C05           | C06         | C07          | TOTAL |
| DATE              |               |            |               |              |               |             |              |       |
| TOTAL HAULS       | 3             | 3          | 3             | 3            | 4             | 3           | 3            | 22    |
|                   |               |            |               |              |               |             |              |       |
| HERRING           | 1             |            | -             | 1            | 1             | 1           |              | 2     |
| SANDLANCE         | 1             |            |               | 1            | 1             |             | 262          | 264   |
|                   | 1             |            |               | 1            |               | 1           |              |       |
| PINK SALMON       | 6             | 1          | 114           | 500          | 1             | 137         | 65           | 824   |
| COHO SALMON       |               |            | 2             |              |               |             |              | 2     |
| RED SALMON        |               |            |               |              | 2             | 2           |              | 4     |
|                   |               |            |               |              |               |             |              |       |
| POLLOCK           |               |            | 10            | 1            | 20            |             |              | 31    |
| TOM COD           | 140           |            | 325           |              | 29            |             | 1            | 495   |
| PAC COD           |               |            | 33            |              | 2             |             |              | 35    |
|                   |               |            |               |              |               |             |              |       |
| GREENLING         | l             |            | 1             |              |               |             |              | 1     |
| GREEN WH SP       | 1             |            | 1             |              |               |             |              | 2     |
| GREEN MASK        | 1             |            | 2             |              |               |             |              | 3     |
| LINGCOD           | 1             |            | 20            |              |               |             |              | 21    |
|                   |               |            | <u> </u>      |              |               |             |              |       |
| SCULPIN           | 1             |            | 1             | 1            | 1             |             |              | 4     |
| GREAT SCULPIN     | 3             |            |               |              |               |             |              | 3     |
|                   |               |            |               |              |               |             |              |       |
| SANDFISH          |               |            | 1             | 4            | 2             |             |              | 7     |
| TUBESNOUT         | 1             |            |               |              |               |             |              | 1     |
|                   |               |            |               |              |               |             |              |       |
| OTHER             | 1             |            | 1             |              |               |             |              | 1     |
|                   |               |            |               |              |               |             |              |       |
| ALL FISH          | 156           | 1          | 510           | 507          | 58            | 140         | 328          | 1700  |
|                   |               |            |               |              | 1             |             |              |       |

| Table 20. Composit | ion of beach | seine sample | s collected in | the South s | tudy area of | Prince William | TI Sound in A | PEX cruise | 96-1. |       |
|--------------------|--------------|--------------|----------------|-------------|--------------|----------------|---------------|------------|-------|-------|
|                    |              |              |                |             |              |                |               |            |       | TOTAL |
| SITE               | S 02         | S 04         | S 06           | S08         | S 10         | S14            | S16           | S18        | S20   |       |
| DATE               |              |              |                |             |              |                |               |            |       | 1     |
| TOTAL HAULS        | 3            | 3            | 3              | 1           | 3            | 3              | 3             | 2          | 3     | 24    |
| HERRING            |              | 6            |                |             | 36           | 8001           | 56            | 1          | 48    | 8148  |
| SANDLANCE          |              |              | 6              | 33          | 1            |                |               |            | 1     | 41    |
| PINK SALMON        | 13           |              | 2              |             | 6            | 3              | 48            | 6          | 25    | 103   |
| POLLOCK            | 1            |              |                |             |              |                | 1             |            |       | 2     |
| TOM COD            | 98           | 7            |                |             | 190          | 904            | 222           | 1          | 31    | 1453  |
| GREENLING          |              |              |                |             |              |                |               |            |       |       |
| GREEN WH SP        |              |              |                | 2           |              |                |               |            |       | 2     |
| GREEN KELP         |              |              |                |             |              |                |               | 10         |       | 10    |
| GREEN MASK         | 1            |              |                |             |              |                |               |            |       | 1     |
| LINGCOD            | 3            | 1            |                |             |              |                |               |            | 1     | 5     |
| SNAKE PRICKL       | 1            |              |                |             |              |                |               |            |       | 1     |
| SCULPIN            | 2            |              |                |             | 1            |                |               |            | 1     | 4     |
| GREAT SCULPIN      |              |              |                |             |              |                | 7             |            |       | 7     |
| STICKLEBACK        |              |              |                |             |              |                | 1             |            |       | 1     |
| TUBESNOUT          |              |              |                |             | 3            | 11             |               | 2          |       | 16    |
| other              |              |              |                |             |              |                |               |            |       |       |
| ALL FISH           | 119          | 14           | 8              | 35          | 237          | 8919           | 335           | 20         | 107   | 0     |







Figure 2. Offshore hydroacoustic transect locations in the North study area of Prince William Sound.



Figure 3. Offshore hydroacoustic transect locations in the Central study of Prince William Sound.



Figure 4. Offshore hydroacoustic transect locations in the South study area of Prince William Sound.



Figure 5. Layout of shoreline segments 12 km in length in the South study area



Figure 6. Layout of shoreline segments 12 km in length in the Central study



Figure 7. Layout of shoreline sements 12 km in length in the North study, area



Figure 8. Typical layout of beach sections within a 12 km shoreline segment, with set of zig-zag acoustic transects. Example is segment N09, located on the south side of Port Fidalgo

66



147<sup>°</sup> 30'

147° 30'



Figure 9. Area plot of acoustic backscatter in offshore surveys of the Central study area in 1995 and 1996.



Figure 10. Vertical distribution of acoustic backscatter on transect C01A in the Central study area in 1995 and 1996



Figure 11. Vertical profiles of temperature, salinity and density at representative stations located in the: A. North. B. Central. C. South.



Figure 12. Locations of CTD stations used to examine horizontal variation in the water column in the North study area.


Figure 13. Isothermal and isohaline profiles at CTD stations in the North study area.



Figure 14. Locations of CTD stations used to examine horizontal variation in the water column in the Central study area.





Figure 15. Isothermal and isohaline profiles at CTD stations in the Central study area.

73



Figure 16. Locations of CTD stations used to examine horizontal variation in the water column in the South study area.



Figure 17. Isothermal and isohaline profiles at CTD stations in the South study area.



Figure 18. Distribution of biomass on individual transects in the: A. North, B. Central, and C. South study areas.

76



Figure 19. Geographic distribution of biomass on nearshore transects in the North study area.



Figure 20. Geographic distribution of biomass along nearshore transects in the Central study area.



Figure 21. Geographic distribution of biomass along nearshore transects in the South study area.



Figure 22. Example of a herring school on an individual nearshore transect (S06-04B) in the South study area.



Figure 23. Example of sand lance schools on two nearshore transects (N05-08B, N05-10A) in the North study area.



Figure 24. Example of YOY pollock schools on an individual nearshore transect (N10-03A) in the North study area.



Figure 25. Locations of CTD stations examined for evidence of tidal fronts in nearshore areas of the North study area.



Figure 26. Isotherm and Isohaline profiles along the CTD transect in Port Fidalgo in the Northern study area.



Figure 27. Locations of CTD stations examined for evidence of tidal fronts in nearshore areas of the Central study area.

## Temperatures



Figure 28. Isotherm and Isohaline profiles along the CTD transect at McPherson Passage in the Central study area.



Figure 29. Locations of CTD stations examined for evidence of tidal fronts in nearshore areas of the South study area.



Figure 30. Isotherm and Isohaline profiles along the CTD transect in Bainbridge Passage in the South study area.



Figure 31. Locations of CTD stations where 24 hour series of temperature and salinity profiles were sampled.



Figure 32. Isotherm and isohaline profiles over 24 hours at station DS 2 in Bainbridge Passage



Figure 33. Isotherm and isohaline profiles over 24 hours at station DS 8 in Bainbridge Passage.





## CUMULATIVE PROPORTION OF TOTAL CATCH



Figure 35. Frequency of occurrence (proportion of samples where a species was present) of most abundant species in beach seine samples from the North, Central and Southern study areas.