Exxon Valdez Oil Spill Restoration Project Annual Report

Injury to Pink Salmon Embryos in Prince William Sound - Field monitoring

Restoration Project 97191A-1 Annual Report

This annual report has been prepared for peer review as part of the *Exxon Valdez* Oil Spill Trustee Council restoration program for the purpose of assessing project progress. Peer review comments have not been addressed in this annual report.

Andrew K. Craig¹ Brian G. Bue² T. Mark Willette¹

¹Alaska Department of Fish and Game Division of Commercial Fisheries 401 Railroad Avenue P.O. 669 Cordova, AK 99574

 ²Alaska Department of Fish and Game Division of Commercial Fisheries 333 Raspberry Road Anchorage, AK 99518-1599

April 1998

Injury to Pink Salmon Embryos in Prince William Sound - Field Monitoring

Restoration Project 97191A-1 Annual Report

Study History: This study originated in March 1989 and continued through February 1991 as Natural Resource Damage Assessment Fish/Shellfish Study Number 2. The project consisted of embryo sampling in the fall and preemergent fry sampling in the spring at oil-contaminated and unimpacted reference streams to determine if the *Exxon Valdez* oil spill affected incubating pink salmon. This work continued in 1992 as Restoration Study Number 60C. At that time the project was expanded to include (1) laboratory evaluation of field results through the controlled incubation of pink salmon embryos on oiled substrate (NOAA); (2) an experiment designed to determine if the results observed in the field were due to environmental factors (ADF&G); and (3) a search for evidence of genetic damage (ADF&G). This work was continued as Restoration Projects 93003, 94191, 95191, 96191, and this project, Restoration Study Number 60C, and Restoration Project 93003; annual reports have been printed for Restoration Projects 94191, 95191 and 96191.

Abstract: We examined pink salmon embryo mortality in intertidal and upstream areas of both oil-contaminated and reference streams in Prince William Sound. Embryo mortality was elevated in oil-affected streams during the falls of 1989 through 1993 (P<0.028 for all years). However; no statistical difference was observed in the fall of 1994, 1995 or 1996 (P>0.473). We also tested the hypothesis that differences in embryo mortality observed in the field were due to naturally occurring environmental variables that differed systematically between the oil-contaminated and reference streams. Gametes were collected from adults in spawning condition from eight oil-contaminated and eight reference streams, and matings were conducted at a hatchery. The resulting embryos were incubated in controlled environmental conditions. Embryos originating from oil-contaminated streams showed elevated mortalities when compared to the embryos from reference streams in 1993 (P=0.012), but not in 1994 (P=0.343). Results from the controlled incubation study support the results from the field study.

Key Words: Crude oil, embryo mortality, embryos, *Exxon Valdez* oil spill, flow cytometry, genetic damage, *Oncorhynchus gorbuscha*, pink salmon, preemergent fry, Prince William Sound.

Project Data: (will be addressed in the final report)

<u>Citation</u>:

Craig, A.K., B.G. Bue, and T.M. Willette. 1998. Injury to pink salmon embryos in Prince William Sound - field monitoring, *Exxon Valdez* Oil Spill Restoration Project Annual Report (Restoration Project 97191A-1), Alaska Department of Fish and Game, Division of Commercial Fisheries, Cordova, Alaska.

TABLE OF CONTENTS

Page

LIST OF FIGURES 4

LIST OF APPENDICES 4

EXECUTIVE SUMMARY 5

INTRODUCTION 7

OBJECTIVES 11

METHODS 11

Study Sites 11 Sample Design 13 Data Analysis 14

DISCUSSION 17

CONCLUSIONS 18

LITERATURE CITED 19

LIST OF FIGURES

Figure 1.	Pink salmon embryo mortality observed during past field sampling
Figure 2.	Streams examined during the 1989-1996 pink salmon preemergent fry and egg deposition surveys 12
Figure 3.	Mean pink salmon embryo mortality and corresponding 90% confidence bounds by tide zone for oil-contaminated and reference streams in Prince William Sound, 1996 16

LIST OF APPENDICES

Page 1

Page

Appendix A.	Summary of pink and chum salmon egg dig data from Prince William Sound,	
	1996	

EXECUTIVE SUMMARY

This study was designed to monitor recovery of pink salmon *Oncorhynchus gorbuscha* populations in Prince William Sound that were impacted by the *Exxon Valdez* oil spill. Embryo mortality and embryo to preemergent fry survival have been examined in intertidal and upstream areas of oil-contaminated and unaffected (reference) streams since the spring of 1989, and the potential of crude oil to induce genetic damage has been examined since the fall of 1992. This report focuses upon work performed between October 1, 1996 and September 30, 1997.

Embryo mortality was significantly greater in oiled streams in 1989 and 1990 with the differences observed in all intertidal areas in 1989 and in the highest intertidal area in 1990. These results were consistent with other studies regarding observations of intertidal oiling. Among oiled streams, all intertidal areas were contaminated in 1989 whereas in 1990 visible oil remained only in the upper intertidal zone.

The 1991 evaluation demonstrated a significant difference in embryo mortality between oilcontaminated and reference streams in both the intertidal and upstream zones. This finding was unexpected, as the presence of oil was dramatically reduced in all areas. The result led investigators to hypothesize that one or more of the following scenarios were at work:

(1) oil-induced damage to the 1989 and 1990 broods included deleterious mutations in the germline;

(2) incubating embryos continued to be damaged in a physiological manner by an oiled environment ev
(3) the difference in embryo mortality was due to naturally-occurring environmental factors that differed uniformly between oiled and non-oiled streams.

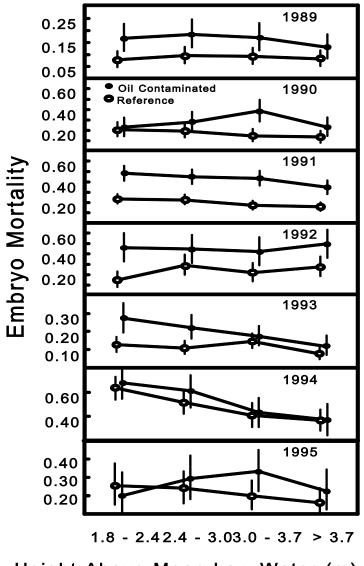
The genetic-damage and physiological-damage hypothesis seemed credible because oil is a known clastogenic substance (breaks chromosomes), and it also influences endocrine function. Pink salmon have an obligate two-year life cycle, and those fish that spawned during the fall of 1991 incubated in oiled gravels during the fall of 1989 and spring of 1990. Also, a pattern of embryo mortality similar to, but not as extreme as that found in 1991, was observed in 1992 and 1993. No statistical difference in embryo mortality was detected in 1994 and 1995.

The 1993 embryos were two generations removed from oil exposure in 1989. The environmental-difference hypothesis seemed credible because, in fact, it was environmental factors (wind and currents) that determined the fate of the oil. Such environmental factors might also influence the survivability of salmon embryos incubating intertidally.

We tested the hypothesis that differences in pink salmon embryo mortality observed in recent years were due to environmental differences between oiled and reference streams. Gametes were collected from adults in spawning condition as they amassed on or near the spawning grounds from eight oil-contaminated and eight reference streams during the 1993 spawning season. The gametes were flown to the Armin F. Koernig hatchery in southwest Prince William Sound where intrastream crosses were made. The resulting embryos from each stream were placed in a common incubator. The pink salmon embryos from oil-contaminated streams showed elevated mortalities when compared to the embryos from reference streams. This finding clearly indicated that the elevated embryo mortalities observed in the field monitoring portion of the study were not due to systematic differences between the incubating environments of oiled and reference streams. This embryo incubation experiment was repeated in 1994, but no significant difference in embryo mortality between oil-contaminated and reference streams was detected. This result is consistent with results obtained from the field monitoring portion of the project in 1994. This study was attempted in 1995 but was incomplete due to lack of spawners in some study streams.

Lack of a significant difference in pink salmon embryo mortality in 1994, 1995 and 1996 between oiled and reference streams demonstrates a possible recovery of the populations that have been monitored since 1989.

INTRODUCTION


Wild salmon play a major role in the Prince William Sound (PWS) ecosystem while also contributing to the region's commercial fisheries. Migrating salmon fry are an important food source in the spring for various mammals, birds, and fishes. Marine mammals prey on the ocean life stages of Pacific salmon while terrestrial mammals and birds, such as bears, river otters, eagles, and gulls depend on salmon for a large portion of their summer diet. Salmon also provide a pathway for transferring nutrients from marine ecosystems to near-shore and terrestrial ecosystems. In recent years, commercial catches of wild salmon in Prince William Sound have ranged from 10 to 15 million pink salmon and from 0.8 to 1.5 million chum salmon.

Up to 75% of spawning pink *Oncorhynchus gorbuscha* and chum *O. keta* salmon in PWS use intertidal areas (Helle et al. 1964). These areas are highly susceptible to contamination from marine oil spills. Moles et al. (1987) and Rice et al. (1975) found that pink salmon embryos and preemergent fry were adversely affected by exposure to crude oil and that the affect was most acute in intertidal environments. The March 24, 1989 oil spill from the $T \setminus V Exxon Valdez$ contaminated many intertidal spawning areas in central and southwest PWS just prior to the spring migration of salmon fry.

Embryo mortality was significantly greater in all intertidal areas of oiled streams in 1989 and in the highest intertidal area of oiled streams in 1990 (Figure 1) (Sharr et al. 1994a, Bue et al. 1996). These results were consistent with observations of intertidal oil-contamination (Wolfe et al. 1996). Among oiled streams, all intertidal areas were contaminated in 1989 whereas in 1990 oil remained only in the upper intertidal zone.

The 1991 evaluation demonstrated a very significant and large difference in embryo mortality between oil-contaminated and reference streams (Figure 1; Sharr et al. 1994a). This finding was unexpected and raised several questions about the source of the elevated mortality in oiled streams, including the possibility that oil-induced damage was transmitted genetically. Petrochemicals have been shown to damage chromosomes (Longwell 1977; McBee and Bickham 1988; Hose et al. *in press*). The pink salmon which spawned during the fall of 1991 were from the 1989 brood year. These fish incubated in oiled gravels during the fall of 1989 and spring of 1990. A pattern of embryo mortality similar to but not as extreme as 1991 was observed in 1992 and 1993 (Figure 1; Sharr et al. 1994b and Sharr et al. 1994c). Field sampling in 1994 and 1995 however, showed no statistical difference between oiled and reference streams (Figure 1; Craig et al. 1996).

Three hypotheses have been proposed to explain differences in embryo mortality between oilcontaminated and reference streams: (1) environmental differences between oiled and reference streams are responsible, (2) transmission of genetic damage is responsible, and (3) incubating embryos continued to be damaged in a physiological manner by an oiled environment that affected later reproduction.

Height Above Mean Low Water (m)

Figure 1. Pink salmon embryo mortality observed during field sampling. Solid circles indicate the means for oil-contaminated streams (n=10) while open circles identify reference streams (n=15). Note: Y-axes differ among years.

Observed differences in embryo mortality may have been due to differences in environmental conditions between oil-contaminated and reference streams. This embryo mortality study is based on observational data, and as such, we were unable to randomize stream oiling to account for environmental differences between streams. We attempted to address this concern in our original experimental design by selecting reference streams in close proximity to oil-contaminated streams; however, there is a definite oiling pattern in southwest PWS where streams on points which faced northeastward were heavily oiled. Likewise, streams which faced west and southwest were most likely not oiled. Environmental differences between oil-contaminated and reference streams do not seem to be a confounding factor because results from the controlled incubation experiment in 1993 and 1994 mirrored the results of the field study (Bue et al. 1996).

Both hypotheses of genetic damage and physiological damage are consistent with previous field observations and laboratory experiments on the effects of crude oil on early life stages of fish. Long term intra-gravel oil exposures (7-8 months) to freshly fertilized eggs provide embryos sufficient time to accumulate polycyclic aromatic hydrocarbons (PAH's) from very low aqueous concentrations of crude oil. Moles et al. (1987) confirmed that pink salmon embryos take up PAH's and demonstrated that the uptake was much greater in an intertidal environment than in strictly freshwater conditions. PAH's are abundant in crude oil and are capable of inducing chromosomal lesions (McBee and Bickham 1988) and influencing endocrine function (Thomas and Budiantara 1995) and later reproduction (Trustcott et al. 1983). Mironov (1969) observed reduced survival of fish embryos and larvae exposed to very low aqueous doses (1 ul oil/l seawater) of oil. Longwell (1977) reported genetic damage in pelagic embryos affected by the Argo Merchant oil spill. It is logical that the same type of damage may have occurred in pink salmon, and this damage could have affected the germline of exposed individuals (cf., Malkin 1994). Pink salmon have an obligate two-year life cycle which results in two genetically isolated lineages, one produced during odd years and one in even years. Therefore, genetic or physiological damage induced in one brood year would be expressed in that lineage two years later.

This study was initially designed to monitor the effect of intertidal oiling on pink salmon embryo mortality and embryo to preemergent fry survival. The project was amended during the summer of 1992 to evaluate the systematic environmental difference and genetic damage hypotheses. At that time, experiments were initiated to: (1) incubate embryos from oiled and reference streams in a common environment to evaluate the environmental difference hypothesis (administered by Alaska Department of Fish and Game); (2) verify the field findings that oil affected embryo survival through controlled oiling (administered by National Marine Fisheries Service); and (3) test for genetic damage using flow cytometry and androgenesis screens (administered by Alaska Department of Fish and Game).

Finally, after initiation of these studies, an additional hypothesis was proposed by project reviewers that suggested that the differential mortalities we observed in the field studies were caused by the genetic effects of outbreeding depression. Under this hypothesis, elevated rates of straying of non-locally-adapted adults into oiled streams would result in reduced embryo survival through the introgression of the non-locally-adapted genes. This hypothesis grew in

part from inferences drawn from NRDA Fish/Shellfish Study 1 and Study 3 (F/S 1 and F/S 3) which suggested that large numbers of pink salmon were straying into streams in or near our study area. We agreed to investigate this hypothesis by (1) further examining the validity of using extrapolations of coded-wire-tag recoveries to infer rates of straying, and (2) testing for the effects of population mixing through analysis of genotype data.

No difference in embryo to preemergent fry survival between oil-contaminated and reference streams has been observed since the initiation of the study in 1989 (Figure 2; Sharr et al. 1994a, 1994b, and 1994c). We expected embryo to preemergent fry survival to be reduced in oiled streams given that an increase in embryo mortality had been detected. This result can potentially be explained by (1) compensation in the environment, or (2) problems in the experimental design. Geiger et al. (1996) found no evidence to suggest that compensation in the intragravel life stages played a role in determining the number of emerging fry for the years in the study. We believe that the experimental design is inadequate for detecting differences in embryo to preemergent fry survival. The power analysis for the test of differences in survival from embryo to preemergent fry indicated statistical power was adequate to detect a biologically meaningful difference. However, unexpected changes in stream characteristics may have prevented sampling the same areas for embryos in the fall and fry in the spring. Also, stream channels in PWS are not well defined in intertidal areas. Some intertidal stream segments were found to migrate along the beach, especially if the beach is usually exposed to winter storms. The magnitude of these changes was unexpected when this study was designed and initiated.

OBJECTIVES

Recovery Monitoring of Injury to Pink Salmon Embryos in Prince William Sound

- 1. Estimate the density by tide zone of embryos in 30 streams using numbers of live and dead embryos and fry.
- 2. Estimate embryo mortality of pink salmon embryos in ten oiled and 15 reference streams.

METHODS

Recovery Monitoring of Injury to Pink Salmon Embryos in Prince William Sound

Study Sites

This project concentrated on populations inhabiting the southwestern portions of PWS; although, streams from Montague Island and eastern PWS were sampled to provide a sound-wide perspective (Figure 2).

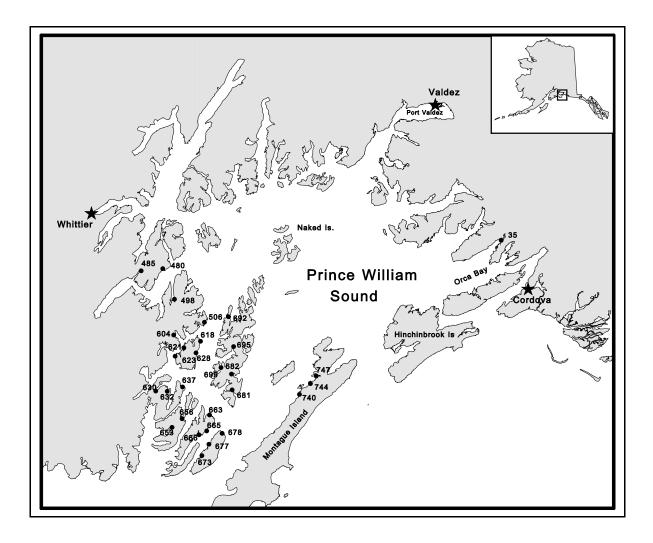


Figure 2. Streams examined during the 1989-1996 pink salmon preemergent fry and egg deposition surveys.

These streams were selected for the following reasons:

- 1. They have significant spawning populations in both odd and even years.
- 2. They are accessible for sampling in most years.
- 3. They are representative of oiled or reference sites in the oil-impacted area.

Sample Design

The methods used for embryo sampling are described by Craig et al. (1995) and Sharr et al. (1994a and 1994b). Sampling was stratified by tide zone to control for possible differences in salinity, temperature, predation, or a combination of these factors. Zone boundaries were established with a surveyor's level and stadia rod and staked prior to sampling. Four zones were sampled in each stream whenever possible: 1.8 - 2.4 m, 2.4 - 3.0 m, 3.0 - 3.7 m above mean low water, and upstream of mean high tide (3.7 m). No sampling was done below the 1.8 - 2.4 m zone because mortality was expected to be high (Helle et al. 1964).

Separate linear transects were established for each zone on the embryo surveys. Although most transects were 30.5 m long, some were shorter due to steep stream gradients. Transects were placed in riffle areas where spawning was observed during escapement surveys conducted for F/S 1. Transects ran diagonally across the river starting downstream against the left bank and moved upstream to the right bank. A map drawn for each stream indicated the tide zones and transect locations in relation to major landmarks. Each embryo transect was photographed and marked with surveyor's flagging to insure that future transects could be located in the same area of the stream.

Fourteen circular areas (0.186 m^2) were systematically sampled along each transect. The number of digs was a compromise between reducing variance and the practicality of conducting the study. Fewer digs were completed on narrow stream channels to avoid excessive sampling of the stream. Streams that split into two or more channels within a zone were sampled either by allocating digs among channels based on spawner distribution observed during F/S 1 or, where spawner distribution was unknown, by an equal allocation.

The following data were collected for each tide zone transect during both embryo and fry sampling:

- 1. Sample date.
- 2. Sample tide zone.
- 3. Start and stop time for the tide zone transect.
- 4. Numbers of live and dead fry and embryos for each species in each dig.

Pink salmon embryos were separated from chum *O. keta* and coho *O. kisutch* salmon embryos by their smaller size. Chum salmon embryos were separated from coho salmon embryos by their greater development and different coloration. An embryo was considered dead if it was opaque

or discolored with coagulated lipids. Fry were considered dead only if decomposition was evident, because sampling often killed fry.

Data Analysis

Numbers of live and dead embryos and fry were summarized by date, stream, level of hydrocarbon impact, and stream zone. The density of live embryos for each stream zone in m²

$$\hat{\mathbf{E}}_{ij} = \frac{\Sigma \, \mathbf{L} \mathbf{E}_{ijk}}{0.3 \, \mathbf{n}_{ij}}$$

 (E_{ij}) was estimated by:

where LE_{ijk} is the number of live embryos found in the kth dig, in stream i, zone j, and n_{ij} is the number of digs from stream i, zone j. Densities of dead embryos were calculated using the same estimator with appropriate substitutions.

$$\hat{\mathbf{M}}_{ij} = \frac{\Sigma(\mathbf{D}\mathbf{E}_{eijk} + \mathbf{D}\mathbf{F}_{eijk})}{\Sigma(\mathbf{L}\mathbf{E}_{eijk} + \mathbf{D}\mathbf{E}_{eijk} + \mathbf{L}\mathbf{F}_{eijk} + \mathbf{D}\mathbf{F}_{eijk})}$$

Pink salmon embryo mortality was estimated for each stream using the following relationship:

where DE_{eijk} , DF_{eijk} , LE_{eijk} , and LF_{eijk} are the number of dead embryos, dead fry, live embryos, and live fry for the kth dig from stream i, zone j, collected during embryo dig e, respectively.

The Arcsin square root transformation was examined as well as the Logit transform of embryo

$$\text{Logit}_{ij} = \ln \left[\frac{\Sigma(\text{DE}_{eijk} + \text{DF}_{eijk})}{\Sigma(\text{LE}_{eijk} + \text{LF}_{eijk})} \right]$$

mortality [ln (odds)], i.e.

Differences in embryo mortality were examined using a mixed effects two-factor experiment with repeated measures on one factor (Neter et al. 1990):

$$Y_{ijk} = \mu_{...} + O_i + Z_j + (OZ)_{ij} + S_{k(i)} + e_{(ijk)}$$

The two treatments were level of oiling, (O_i , 2 levels; oiled and reference), and height in the intertidal zone (Z_j , 4 levels; 2.1, 2.7, and 3.4 m above mean low water, and upstream) both fixed effects. The data were blocked by stream ($S_{k(i)}$), a random effect nested within level of oiling. The interaction of level of oiling and height in the intertidal zone was also examined. Equality of variances was tested using the F_{max} -test (Sokal and Rohlf, 1969), while normality of error terms was visually assessed using normal quantile-quantile and box plots (Chambers et al. 1983). Arcsin square root, logit, log, and square root transforms were examined if the data indicated non-constant variances or non-normal error terms. Tests of homogeneity of-between treatment covariance matrices and the degree of sphericity of the pooled covariance matrix were effected.

Four contrasts (oil vs. reference for the four stream zones) and corresponding Bonferroni family confidence intervals ($\alpha = 0.10$ overall) were estimated if a significant difference due to oiling was detected. The SAS (SAS Institute Inc. 1988) General Linear Models Procedure was used to analyze the data.

Stream oiling was assessed through visual observations of the stream and the adjacent area. The observations were supported by photographs, observation maps, and hydrocarbon analysis of mussels *Mytilus sp.* collected near stream mouths. These data were collected as part of another Natural Resource Damage Assessment study (Sharr et al. 1994a).

RESULTS

Recovery Monitoring of Injury to Pink Salmon Embryos in Prince William Sound

Thirty streams were sampled between October 3 and October 22, 1996 for embryos. Mean embryo densities were 985 eggs per m^2 in the intertidal zones and 1090 eggs per m^2 in the upstream zones (Appendix A). Analysis the 1996 embryo mortality data indicated no significant difference between the oil-contaminated and reference streams (P=0.473; Figure 3). No significant zone effect (P=0.352) or oil-by-zone interaction was found (P=0.274). The overall mean embryo mortalities for the oil contaminated and reference streams were 0.254 and 0.189.

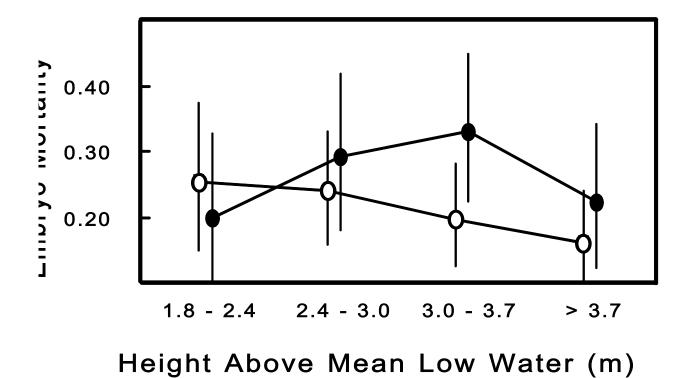


Figure 3. Mean pink salmon embryo mortality and corresponding 90% confidence bounds by tide zone for oil-contaminated and reference streams in Prince William Sound, 1996. Solid circles represent data from ten oil-contaminated streams, and open circles represent data from 15 reference streams.

DISCUSSION

Pink salmon embryos that incubated in oil-contaminated spawning areas in PWS appeared to have been adversely affected by the *Exxon Valdez* oil spill up until 1994 (Sharr et al. 1994a, 1994b and 1994c; Figure 1). However, embryo mortality was not significantly different between oil-contaminated and reference stream in 1994-1995 (Figure 1) and 1996 (Figure 3). We believe that the elevated mortalities observed in 1989 and 1990 were due to direct exposure to oil; elevated mortalities observed in 1991, 1992 and 1993 may have been due to genetic or physiological damage sustained in the parental lines during embryonic development in 1989 and 1990. Lack of a significant difference in 1994, 1995 and 1996 between oiled and reference streams demonstrates a possible recovery of the populations that have been monitored since 1989.

The pink salmon that spawned during the fall of 1991 incubated in oil-contaminated streams during winter of 1989-1990, the first winter after the spill. Likewise, pink salmon that spawned during the fall of 1992 incubated in oiled stream gravel during the fall of 1990 and spring of 1991. Sharr et al. (1994a) found significantly elevated embryo mortalities in oil-contaminated streams during the fall of 1989 and 1990, and the surviving embryos may have sustained sublethal genetic or physiological damages which could have been manifested in the form of functional sterility in 1991, 1992 and 1993. Chromosome damage was observed in other taxa exposed to petrochemicals (Longwell 1977, McBee and Bickham 1988, Hose et al. 1995), although documentation of germline damage is yet to be reported. Likewise, Thomas and Budiantara (1995) showed hydrocabon exposure affected reproductive success by influencing endocrine function and later reproduction in mature fish. In 1994 the returning adults were two generations removed from the 1990 brood and no statistical mortality difference was found in the field or the controlled incubation experiments. Similarly, no statistical difference was found in the field studies of 1995 and 1996. Mortality differences in oiled and reference streams seem to be returning to normal levels, lending credit to a post-spill damage hypothesis with later recovery.

An alternative to the genetic or physiological damage hypothesis is that observed differences in embryo mortality were due to differences in environmental conditions between oil-contaminated and reference streams. This embryo mortality study is based on observational data, and as such, we were unable to randomize stream oiling to account for environmental differences between streams. We attempted to address this concern in our original experimental design by selecting reference streams in close proximity to oil-contaminated streams; however, there is a definite oiling pattern in southwest PWS where streams on points which faced northeastward were heavily oiled. Likewise, streams which faced west and southwest were most likely not oiled.

Environmental differences between oil-contaminated and reference streams does not seem to be a confounding factor because results from the controlled incubation experiment in 1993 and 1994 mirrored the results of the field study (Bue et al. 1996). In 1995, although oiled and reference stream mortalities again look similar (Figure 1), the controlled oiling experiment was incomplete due to few spawners in some study streams. The gametes used in these studies were

never in direct contact with a stream; although, the adults which produced them had incubated in the natal streams.

These data do not prove that the observed differences in embryo mortality between oilcontaminated and reference streams were caused by exposure to hydrocarbons. Some have suggested that the streams which were oiled also historically had lower embryo survival. We believe this to be unlikely because mortality between oil-contaminated and reference streams was not significantly different in 1994, 1995 or 1996. The controlled oiling experiment conducted by the National Marine Fisheries Service will provide laboratory evidence to further clarify interpretation of these field data.

Finally, another alternative suggested to explain the differential mortality observed in the field was that elevated straying following the oil spill resulted in outbreeding depression that affected embryo survival in the oil-contaminated streams. The controlled incubation study does not address this hypothesis. Analyzing outbreeding depression and obtaining straying rates of hatchery salmon into all study streams was outside the scope of this project. A proposed project to collect thermal marked otoliths from pink salmon in wild streams should provide further insight into this hypothesis.

CONCLUSIONS

Embryo mortalities were elevated in oil contaminated streams from 1989-1993, but no statistical difference between oil-contaminated and reference streams was observed in 1994 through 1996.

Mortalities in an incubation experiment were elevated for embryos from oiled streams in 1993, but no statistical difference between embryos from oil-contaminated and reference streams was detected in 1994.

ACKNOWLEDGEMENTS

We would like to thank the staff of the Alaska Department of Fish and Game who endured difficult field conditions to obtain the samples needed for this study. This project would not have been possible without the assistance, and expertise of the captain and crew of the R/V Montague.

LITERATURE CITED

- Bue, B. G., S. Sharr, S. D. Moffitt and A. K. Craig. 1996. Effects of the *Exxon Valdez* oil spill on pink salmon embryos and preemergent fry. American Fisheries Society Symposium 18:000-000.
- Chambers, J. M., W. S. Cleveland, B. Kleiner and P. A. Tukey. 1983. Graphical methods for data analysis. Duxbury Press, Boston, MA.
- Craig, A.K., B.G. Bue, T.M. Willette. 1996. Injury to salmon embryos and preemergent fry in Prince William Sound, *Exxon Valdez* Oil Spill. Restoration Project Annual Report (Restoration Project 95191), Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Anchorage, Alaska.
- Craig, A.K., S. Sharr, S. D. Moffitt. 1995. A compilation of historical preemergent fry and egg deposition survey data from Prince William Sound, 1961-1995. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Regional Information Report No. 2A95-49. Juneau, Ak.
- Geiger, H.J., B.G. Bue, S.Sharr, A.C.Wertheimer, and T.M.Willette. 1996. A life history approach to estimating damage to Prince William Sound Pink Salmon from the *Exxon Valdez* oil spill. American Fisheries Society Symposium 18:000-000.
- Helle, J. H., R. S. Williamson, and J. E. Bailey. 1964. Intertidal ecology and life history of pink salmon at Olsen Creek, Prince William Sound, Alaska. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 483. Washington, D.C..
- Hose, J.E., M.D. McGurk, G.D. Marty, D.E. Hinton, E.D. Biggs, and T.T. Baker. *in press*. Sublethal effects of the *Exxon Valdez* oil spill on herring embryos and larvae: morphologic, cytogenetic, and histopathological assessments, 1989-1991. Canadian Journal of Fisheries and Aquatic Sciences.
- Longwell, A.C. 1977. A genetic look at fish eggs and oil. Oceanus 20(4):46-58.
- Malkin, D. 1994. Germline p53 mutations and heritable cancer. Annual Reviews in Genetics 28:443-465.
- McBee, K., and J.W. Bickham. 1988. Petrochemical-related DNA damage in wild rodents detected by flow cytometry. Bull Environ Contam Toxicol 40:343-349
- Mironov, O. G. 1969. The development of some Black Sea fishes in seawater polluted by petroleum products. Probl. Ichthyol. 9(6):1136-1139

- Moles, A., M.M. Babcock, and S.D. Rice. 1987. Effects of oil exposure on pink salmon, *O. gorbuscha*, alevins in a simulated Intertidal Environment. Marine Environmental Research 21:49-58.
- Neter, J., W. Wasserman, and M. H. Kutner. 1990. Applied Linear Statistical Models Third Edition. Irwin. H
- Rice, S.D., D.A. Moles, and J.W. Short. 1975. The effect of Prudhoe Bay crude oil on survival and growth of eggs, alevins, and fry of pink salmon, *Oncorhynchus gorbuscha*. Pages 503-507 *in* Proceedings of the 1975 Conference on Prevention and Control of Oil Pollution, San Francisco, Ca. American Petroleum Institute. Washington, D.C.
- SAS Institute Inc. 1988. SAS/STATTM User's Guide, Release 6.03 Edition. SAS Institute Inc. Cary, N.C.
- Sharr, S., B.G. Bue, S. D. Moffitt, and A.K. Craig. 1994a. Injury to salmon eggs and preemergent fry in Prince William Sound - Fish/Shellfish study 2. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Regional Information Report No. 2A94-52, Anchorage.
- Sharr, S., J.E. Seeb, B.G. Bue, S. D. Moffitt, A.K. Craig, and G.D. Miller. 1994b. Injury to salmon eggs and preemergent fry in Prince William Sound - Restoration study Number R60C. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Regional Information Report No. 2A94-50, Anchorage.
- Sharr, S., J.E. Seeb, B.G. Bue, S. D. Moffitt, A.K. Craig, and G.D. Miller. 1994c. Injury to salmon eggs and preemergent fry in Prince William Sound Restoration study Number 93003. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Regional Information Report No. 2A94-51, Anchorage.
- Sokal, R.R., and F.J. Rohlf. 1969. Biometry. W.H. Freeman and Company. San Francisco, Ca.
- Thomas, P., and L. Budiantara. 1995. Reproductive life history stages sensitive to oil and naphtalene in Atlantic croaker. Marine Environmental Research 39:147-150
- Trustcott, B., J.M. Walsh, M.P. Burton, J.F. Payne, D.R. Idler. 1983. Effect of acute exposure to crude petroleum on some reproductive hormones in salmon and flounder. Comparitive Biochemistry Physiology 75C(1):121-130.
- Wolfe, D.A., M.J. Hameedi, J.A. Galt, G. Watabayashi, J. Short, C. O'Clair, S. Rice, J. Michel, J.R. Payne, J. Braddock, S. Hanna, and D. Sale. 1996. Fate of the oil spilled from the *T/V Exxon Valdez* in Prince William Sound, Alaska. American Fisheries Society Symposium 18:000-000.

						-			Pin	c Salmon						Chum	n Salmo	on
F	ry						Emb	ryos	Liv	e Embryo	s/m²	Fry		Embryc	s	Live	Embryo	s/m²
#	Stream No. Name ad Liv		nples	Date	Tidal	Height in Zone(ft) Loc	De	ead L	ive	Mean	SE	Dead	Live	Dead	Live	e M	lean	SE
35 166.19	Koppen 0	Creek	14	10	4 96	9.0	30	6537	9366	3595.88	3 709	.59	0	0	56	614	235.7	73
4.66	0	0	14			11.0	40	13327	10531	4043.15	5 845	.32	0	0	13	15	5.7	76
63.93	0	0	14			Upstream	60	13928	6676	2563.11	L 566	.63	0	0	93	273	104.8	31
84.52	0	0	28			Intertidal		19864 13928		3819.51 2563.11			0 0	0 0	69 93	629 273	120.7 104.8	
63.93	0	0	14		IOLAI	Upstream		13928	00/0	2503.11	L 566	.03	U	0	93	213	104.8	51
480	Mink C 0	reek 0	14	10	7 96	7.0	20	658	4804	1844.39	9 438	.59	0	74	23	0	.0	00
16.51	0	83	14			9.0	30	706	3579	1374.08	3 3 2 8	.83	0	120	66	43	16.5	51
.00	0	22	14			11.0	40	661	2676	1027.39	9 275	.63	0	51	30	0	.0	00
3.84	0	0	14			Upstream	60	623	4921	1889.31	L 443	.94	0	5	1	10	3.8	34
5.50	0	105	42		Total	Intertidal		2025	11059	1415.29	9 206	.21	0	245	119	43	5.5	50
3.84	0	0	14		Total	Upstream		623	4921	1889.31	L 443	.94	0	5	1	10	3.8	34

									Pinł	Salmon							Chun	n Salmo	n
F	ry						Emk	oryos	Liv	e Embryo	s/m²	Fry		I	Embryos		Live	Embryos	s/m²
Stream	Strea					Height in													
# De	No Name ad Liv	2	amples	Date	Tidal	Zone(ft) L	oc D	ead L	ive	Mean	SE	Dead	Liv	e	Dead	Live	, N	lean	SE
485 12.25	W. Fin O	nger Cr O	reek 14	10	696	7.0	20	197	3855	1480.04	392	.66	0	65		5	34	13.0	5
.00	0	40	14			9.0	30	1044	6198	2379.59	550	.83	1	101		71	0	.0	0
						11.0	40	1152	11220	4307.68	8 728	.62	4	1046	:	321	162	62.2	0
59.34	15	206	14			Upstream	60	580	4331	1662.79	320	.82	0	1145		86	41	15.7	4
11.77 20.14	0 15	0 246	14 42		Total	Intertidal		2393	21273	2722.44	372	.03	5	1212		397	196	25.0	8
11.77	0	0	14		Total	Upstream		580	4331	1662.79	320	.82	0	1145		86	41	15.7	4
498	McClui 0	re Cree 0	ek 14	10	696	7.0	20	434	1975	758.26	5 242	.90	0	0		0	0	.0	0
						9.0	30	1330	4927	1891.62	483	.65	0	0		0	0	.0	0
.00	0	0	14			11.0	40	1881	6176	2371.14	L 589	.87	0	146		0	0	.0	0
.00	0	0	14 14			Upstream	60	147	842	323.27	159	.60	0	3		0	0	.0	0
.00	0	0	14 42		Total	Intertidal		3645	13078	1673.67	280	.87	0	146		0	0	.0	0

				Pink Salmon			Chum Salmon
Fry			Embryos	Live Embryos/ m^2	Fry	Embryos	Live Embryos/ m^2
Stream Stream No. # Name Dead Live	Date Samples	Height in Tidal Zone(ft) Loo	c Dead Li	ve Mean SE	Dead Live	Dead Liv	ze Mean SE
.00 0	0 14	Total Upstream	147	842 323.27 159	9.60 0	3 0	0.00

Fry Stream S # Dead			ples	Date		Height in	Emk	oryos	Live	e Embryos	/m ² Fry		Embryo	s Li	ve Embr	wog/m ²
#	No. Name		ples			Height in					_					y007 m
			·		Tidal	Zone(ft) Lo	C De	ead Li	ve I	Mean S	SE Dead	Live	Dead	Live	Mean	SE
506 L .00	oomis 0	Creek 0	14	10	8 96	7.0	20	948	776	297.93	146.68	0	0	0	0	.00
.00	0	0	14			9.0	30	3623	2790	1071.16	223.18	0	0	4	0	.00
.00	0	0	14			11.0	40	6225	2267	870.37	245.94	0	0	0	0	.00
.00	0	0	14			Upstream	60	2491	4427	1699.65	431.74	0	0	0	0	.00
.00	0	0	42			Intertidal		10796		746.49		0	0	4	0	.00
.00	0	0	14		Total	Upstream		2491	4427	1699.65	431.74	0	0	0	0	.00
604 E	rb Cre 0	ek 0	7	10 1	.2 96	7.0	20	25	584	448.43	356.18	0	2	0	0	.00
.00	0	0	7			7.0	23	282	882	677.25	647.85	0	0	0	0	.00
.00	0	0	14			9.0	30	78	1530	587.41	285.89	0	5	0	0	.00
						11.0	40	47	89	34.17	31.71	0	1	0	0	.00
.00	0	0	14			Upstream	60	15	0	.00	.00	0	0	0	0	.00
.00	0	0	14 42		Total	Intertidal		432	3085	394.81	154.18	0	8	0	0	.00

										Pink	Salmon						Chum Sa	lmon
F								Embryo	os	Live	e Embryo	s/m²	Fry		Embryo	S	Live Emb	ryos/m²
#	Stream No. Name ad Live	San	nples	Date	Tidal	Height i Zone(ft)		2 Dead	Liv	re I	lean	SE	Dead	Live	Dead	Live	e Mean	. SE
.00	0	0	14		Total	Upstream			15	0	.00)	.00	0	0	0	0	.00
618 .00	Junction 0	Cree 0	ek 12	10	9 96	7.0		20	10	0	.00		.00	0	0	0	0	.00
.00	0	0	12			9.0		30 40		1581 1810	708.10			0	0	0	0	.00
.00	0 0	0 0	12 12			Upstream				1301				0	0	0	0	.00
.00	0 0	0 0	36 12			Intertida] Upstream	L			3391 1301	506.30 582.74			0 0	0 0	0 0	0 0	.00 .00
621 .00	Totemoff 0	Cree 0	ek 14	10	12 96	7.0			148		277.58			0	1	0	0	.00
.00	0	0	14			9.(1530				0	62	0	0	.00
.00	0 0	0 0	14 14			11.(Upstream		40 60	723 90	3842 238	1475.05 91.38		5.64 9.77	0	209 0	0	0 0	.00 .00

							Pink	Salmon						Chum	Salmon
Fr	.У					Embryos	Live	e Embryo	s/m²	Fry		Emb:	ryos	Live 1	Embryos/m ²
#	Stream No. Name Id Live	San	Date nples	Tidal	Height in Zone(ft) Loc	: Dead Li	ve 1	Mean	SE	Dead	Live	De	ad Liv	ve M	ean SE
.00	0	0	42		Intertidal Upstream	1286 90	6095 238			.58 .77	0 0	272 0	0	0 0	.00

								Pink	Salmon					Chum Sa	lmon
F						Emb	ryos	Live	e Embryos	s/m² Fry		Embryo	s L	ive Emb	cyos/m²
#	Stream No. Name ad Live	Sa	amples	Date Tidal	Height in Zone(ft) Lo	oc De	ad Li	_ve	Mean	SE Dead	Live	Dead	Live	Mean	SE
623	Brizgalo 0	off (0	Creek 14	10 12 96	7.0	20	183	549	210.78	154.77	0	0	0	0	.00
.00	0	0	14		9.0	30	111	1736	666.50	337.08	0	0	3	0	.00
					11.0	40	67	459	176.22	155.66	0	0	0	0	.00
.00	0	0	14		Upstream	60	295	1333	511.78	267.69	0	0	0	0	.00
.00	0	0	14												
.00	0	0	42	Total	Intertidal		361	2744	351.17	135.35	0	0	3	0	.00
.00	0	0	14	Total	Upstream		295	1333	511.78	267.69	0	0	0	0	.00
628 .00	Chenega 0	Cree 0	ek 14	10 9 96	7.0	20	14	436	167.39	165.74	0	0	0	0	.00
.00	0	0	14		9.0	30	374	1133	434.99	215.77	0	0	0	0	.00
					11.0	40	2089	2821	1083.06	486.68	0	0	0	0	.00
.00	0	0	14		Upstream	60	983	5532	2123.89	356.09	0	0	0	0	.00
.00	0	0	14												
.00	0	0	42	Total	Intertidal		2477	4390	561.82	190.95	0	0	0	0	.00
.00	0	0	14	Total	Upstream		983	5532	2123.89	356.09	0	0	0	0	.00

						-			Pink	Salmon							Chum S	Salmon
F	ry						Emb	ryos	Live	e Embryo:	s/m²	Fry		E	Embryos	I	Live En	bryos/m²
#	Stream No. Name ad Live	Sa	amples	Date	Tidal	Height in Zone(ft) Loc	De	ad Li	ive	Mean	SE	Dead	Liv	e	Dead	Live	Меа	an SE
630 .00	Bainbric 0	lge (0	Creek 14	10 11	96	7.0	20	867	3812	1463.54	438.	.96	0	0		0	0	.00
.00	0	0	14			9.0	30	941	6134	2355.02	493	. 27	0	203		0	0	.00
.00	0	1	14			11.0	40	443	7203	2765.44	523	50	10	1349		6	0	.00
.00	0	0	14			Upstream	60	1550	4471	1716.54	316	. 20	0	325		2	0	.00
.00	0	1	42		Total	Intertidal		2251	17149	2194.66	286	.79	10	1552		6	0	.00
.00	0	0	14		Total	Upstream		1550	4471	1716.54	316.	.20	0	325		2	0	.00
632 .00	Claw Cre 0	eek 0	14	10 11	96	7.0	20	0	0	.00	· .	.00	0	0		0	0	.00
.00	0	0	14			9.0	30	10	0	.00		.00	0	0		0	0	.00
.00	1	0	14			11.0	40	249	1782	684.16	270	.01	0	0		0	0	.00
						Upstream	60	3	45	34.55	33	.67	0	0		0	0	.00
.00	0	0	7 42		Total	Intertidal		259	1782	228.05	101.	. 20	0	0		0	0	.00

Appendix A. (cont. page 9 of 9)

							I	Pink :	Salmon	L					Chum Sal	Lmon
Fr						Embryo	s i	Live	Embryc	os/m²	Fry		Embryo	s L	ive Embr	yos/m²
#	Stream No. Name d Live	Sam	Date ples	Tidal	Height Zone(ft)	Dead	Live	e Me	ean	SE	Dead	Live	Dead	Live	Mean	SE
.00	0	0	7	Total	Upstream		3	45	34.5	5	33.67	0	0	0	0	.00

								Pink	Salmon						Chum	Salmon
F	ry					Emb	ryos	Live	e Embryo	s/m²	Fry		Emb	ryos	Live E	mbryos/m ²
#	Stream No. Name ad Live		nples		Height in al Zone(ft) Lo	DC De	ead Li	ive 1	Mean	SE I	Dead	Liv	e De	ead Liv	re Me	ean SE
537 .00	Pt. Cou	ntess 0	14	10 10 96	7.0	20	1634	1892	726.39	208.2	18	0	0	0	0	.00
.00	0	0	14		9.0	30	844	2039	782.83	245.9	90	0	0	0	0	.00
					11.0	41	803	1385	1063.48	577.2	20	0	0	0	0	.00
.00	0	0	7		11.0	42	1072	1306	1002.82	469.7	78	0	0	0	0	.00
.00	0	0	7		Upstream	61	2269	82	62.96	5 57.6	67	0	0	0	0	.00
.00	0	0	7		Upstream	62	348	1581	1213.98	445.2	13	0	0	0	0	.00
.00	0	0	7		-											
.00	0	0	42	Tota	al Intertidal		4353	6622	847.46	157.8	86	0	0	0	0	.00
.00	0	0	14	Tota	al Upstream		2617	1663	638.47	268.2	27	0	0	0	0	.00
.00	0	0	14													
553	Hogg Ci			10 20 96	7.0	20	35	103	39.54	19.9	97	0	15	1	0	.00
.00	0	0	14		9.0	31	6	5	3.84	1.9	93	0	1	0	0	.00
.00	0	0	7		9.0	32	7	3	2.30	1.6	50	0	0	1	0	.00
.00	0	0	7		11.0	40	38	758	291.02	208.0	67	0	1230	0	0	.00
.00	0	0	14		***0	10	50	, 50	271.02	. 200.0		U	1200	0	0	.00

Appendix A. (cont. page 11 of 9)

					-			Pink	Salmon					Chum	Salmon
Fi	ry					Embr	yos	Live	e Embryo:	s/m² Fry		E	mbryos	Live 1	Embryos/m
#	Stream No. Name ad Live	Sar	nples	Date Tidal	Height in Zone(ft) Loc	Dea	ad Li	ve	Mean	SE Dead			Dead Liv	e M	ean SE
.00	0	0	14		Upstream	60	162	1175	451.12	198.92	0	87	0	0	.00
.00	0	0	42	Total	Intertidal		86	869	111.21	71.02	0	1246	2	0	.00
.00	0	0	14	Total	Upstream		162	1175	451.12	198.92	0	87	0	0	.00
56 .00	Halversc 0	on Cre 0	eek 14	10 21 96	7.0	20	693			180.87	0	0	0	0	.00
.00	0	0	14		9.0	30	12			112.78	0	0	0	0	.00
.00	0	0	14		11.0	40	630			262.26	0	0	0	0	.00
.00	0	0	14		Upstream	60	576	5558	2133.88	569.99	0	12	0	0	.00
0.0	0	0	42	Total	Intertidal		1335	4755	608.53	134.10	0	0	0	0	.00
.00	0 0	0 0	42 14	Total	Upstream		576	5558	2133.88	569.99	0	12	0	0	.00
563 .00	Shelter 0	Bay 0	12	10 18 96	7.0	20	60	857		170.19	0	0	0	0	.00
.00	0	0	12		9.0	30	73	1386	620.81	287.64	0	0	0	0	.00

								Pink	Salmon	L					Chum S	Salmon
Fr	У					Emb	ryos	Live	e Embryo	os/m²	Fry		Embryo	s L:	lve Em	$bryos/m^2$
Stream # Dea	Stream No. Name d Live	Sa	T amples	Date Tidal	Height in Zone(ft) Loc	c De	ad Li	ve 1	Mean	SE	Dead	Live	Dead	Live	Меа	in SE
.00	0	0	12		11.0	40	651	1405	629.3	2 18	0.62	0	0	0	0	.00
.00	0	0	12		Upstream	60	1464	6609	2960.2	8 84'	7.07	0	0	0	0	.00
.00	0	0	36		. Intertidal . Upstream		784 1464	3648 6609	544.6 2960.2		1.46 7.07	0 0	0 0	0 0	0 0	.00
.00	0	0	12	10041	oppercuit		± 10 1	0000	2,00.2	0 01	•••	0	Ŭ	0	0	

Appendix A. (cont. page 13 of 9)

									Pink	Salmon					Chum Sa	lmon
F							Emb	ryos	Live	e Embryos	s/m ² Fry		Embryo	s L	ive Embr	ryos/m²
#	Stream No. Name ad Live		ples		Tidal	Height in Zone(ft) Lo	c De	ad Li	ve 1	Mean	SE Dead	Live	Dead	Live	Mean	SE
665 .00	Bjorne 0	Creek 0	14	10 18	96	7.0	20	3608	3328	1277.71	333.43	0	0	0	0	.00
.00	0	0	14			9.0 11.0	30 40	2766 1602	2707 613	1039.29 235.35		0	0	0	0	.00
.00	0 0	0 0	14 14			Upstream	40 60	836			464.82	0	0	0	0	.00
.00	0	0	42			Intertidal		7976	6648		168.83	0	0	0	0	.00
.00	0	0	14	.1	otal	Upstream		836	5231	2008.33	464.82	0	0	0	0	.00
666 .00	O'Brien 0	Creek 0	14	10 19	96	7.0	20	88	5	1.92		0	0	0	0	.00
.00	0	0	14			9.0	30	719	1615	620.04	146.25	0	0	0	0	.00
.00	0	0	14			11.0	40	253	3224	1237.79	423.74	0	0	0	0	.00
.00	0	0	14			Upstream	60	506	2412	926.04	356.39	0	0	0	0	.00
.00	0	0	42	T	Cotal	Intertidal		1060	4844	619.92	165.67	0	0	0	0	.00

Appendix A. (cont. page 14 of 9)

										Pink	Salmon				(Chum Sa	lmon
F								Embi	ryos	Live	Embryos	/m² Fry		Embryo	s Li	ve Embi	ryos/m²
Stream # Dea	Strea No Name ad Li	e	Sar	nples	Date	Tidal	Height in Zone(ft) Loo	c De	ad Li	ve M	lean S	E Dead	Live	Dead	Live	Mean	SE
.00	0		0	14		Total	Upstream		506	2412	926.04	356.39	0	0	0	0	.00
673 .00	Falls 0	Cre	eek 0	14	10 2	20 96	7.0	20	76	1039	398.90	210.51	0	0	0	0	.00
.00	0		0	14			9.0	30	13	853	327.49	155.87	0	0	0	0	.00
.00	0		0	14			11.0	40	41	251	96.37	46.17	0	0	0	0	.00
.00	0		0	14			Upstream	60	69	536	205.79	102.09	0	0	0	0	.00
.00	0		0	42			Intertidal		130	2143	274.25	88.79	0	0	0	0	.00
.00	0		0	14		Total	Upstream		69	536	205.79	102.09	0	0	0	0	.00

								Pink	Salmon					Chum Sa	lmon
F	ry					Embr	yos	Live	e Embryos	s/m² Fry		Embryo	s I	Live Embr	ryos/m²
#	Stream No. Name ad Live	San	nples		Height in L Zone(ft) Loc	c Dea	ld Li	ve 1	Mean	SE Dead	Live	Dead	Live	Mean	SE
577	Hayden (0	Creek 0	7	10 19 96	7.0	21	41	2080	1597.14	692.07	0	0	0	0	.00
.00	0	0	, 7		7.0	22	173	817	627.34	407.11	0	0	0	0	.00
					9.0	31	310	1904	1462.00	398.75	0	0	0	0	.00
.00	0	0	7		9.0	32	67	1326	1018.18	425.83	0	0	0	0	.00
.00	0	0	7		11.0	41	338	1499	1151.02	802.78	0	1	0	0	.00
.00	0	0	7		11.0	42	90			458.45	0	0	0	0	.00
.00	0	0	7					911		231.63	0	0	0	0	.00
.00	0	0	7		Upstream	61	145						-	-	
.00	0	0	7		Upstream	62	29	651	499.88	330.48	0	0	0	0	.00
				Tota	l Intertidal		1019	8657	1107.89	218.49	0	1	0	0	.00
.00	0	0	42	Tota	l Upstream		174	1562	599.70	195.83	0	0	0	0	.00
.00	0	0	14												
578	Sleepy H			10 19 96	7.0	20	0	4	1.79	.76	0	0	0	0	.00
.00	0	0	12		9.0	30	2	169	75.70	74.24	0	0	0	0	.00
.00	0	0	12												

								Pink	Salmon						Chum Sa	lmon
F						Embr	yos	Live	e Embryo	s/m²	Fry		Embryo	s I	ive Embr	ryos/m²
#	Stream No. Name ad Live	Sa	amples	Hei Date Tidal Zone	.ght in (ft) Loc	e Dea	ad Li	.ve	Mean	SE :	Dead I	Live	Dead	Live	Mean	SE
.00	0	0	12		11.0	40	168	423	189.47	156.	47	0	0	0	0	.00
.00	0	0	12	Up:	stream	60	23	163	73.01	48.	83	0	0	0	0	.00
.00	0	0	36 12	Total Inte: Total Upst:			170 23	596 163				0 0	0 0	0 0	0 0	.00
681	Hogan B	ay		10 17 96	7.0	20	54	2483	953.29	9 567.	89	0	0	0	0	.00
.00	0	0	14 14		9.0	30	446	6600	2533.93	649.	00	0	7	0	0	.00
.00	0	0	14		11.0	40	828	6053	2323.92	646.	69	0	1	0	0	.00
.00	0	0	14	Up:	stream	60	594	4130	1585.63	345.	20	0	0	0	0	.00
.00	0	0	42 14	Total Inte: Total Upst:					1937.05 1585.63			0 0	8 0	0 0	0 0	.00 .00

								Pin	k Salmon						Chı	um Sal	Lmon
F						Emb	ryos	Liv	e Embryc	s/m²	Fry		E	Imbryos	Live	e Embr	ryos/m²
#	Stream No. Name ad Liv		amples	Date Tida	Height in l Zone(ft) L		ead Li	ive	Mean	SE	Dead	Liv	e	Dead Li	ve	Mean	SE
682	Snug H 0	arbor 0	14	10 17 96	7.0	20	1458	4138	3 1588.70	9 400.	54	0	295	0	(C	.00
.00	0	0	14		9.0	30	1033	5872	2 2254.43	3 578.	32	14	1450	0	(C	.00
.00	0	0	14		11.0	40	1111	5566	5 2136.95	5 257.	88	1	603	0	(C	.00
	0	0	14		Upstream	60	1463	3947	7 1515.37	7 369.	78	0	745	0	(D	.00
.00	U	0	14													-	
.00	0	0	42		l Intertidal				5 1993.30			15	2348	0		C	.00
.00	0	0	14	Tota	l Upstream		1463	3947	7 1515.35	369.	78	0	745	0	(C	.00
692	Herrin			10 8 96	7.0	20	831	3056	5 1173.29	9 431.	06	0	0	0	(D	.00
.00	0	0	14		9.0	30	484	4370) 1677.77	7 456.	20	0	0	0	(C	.00
.00	0	0	14		11.0	40	520	2681	L 1029.31	L 263.	56	0	0	0	(C	.00
.00	0	0	14		Upstream	60	340	5160) 1981.07	7 421.	57	0	0	0	(C	.00
.00	0	0	14		-1							-	-	-			
.00	0	0	42	Tota	l Intertidal		1835	10107	7 1293.40	5 225.	53	0	0	0	(C	.00
.00	0	0	14	Tota	l Upstream		340	5160) 1981.07	421.	57	0	0	0	(C	.00

									Pink	Salmon						Chum Sa	lmon
F	ry						Embry	os	Live	e Embryo:	s/m²	Fry		Embry	yos	Live Emb	ryos/m
#	Stream No. Name ad Live	Sa	mples	Date	Tidal	Height in Zone(ft) Lo	c Deac	ł Li	ve	Mean	SE	Dead	Live	Dea	d Live	e Mean	I SE
.00	Port Au 0	drey 0	7	10	10 96	7.0	21	12	180			85	0	0	0	0	.00
.00	0	0	7			7.0 9.0	22 30	49 566	847 2548				0	17 19	0	0 0	.00
.00	0	0	14			11.0	40	363	1134				0	18	3	0	.00
.00	0	0 0	14 14			Upstream	60	114	958	367.80	196.	92	0	128	0	0	.00
.00	0 0	0 0	42 14			Intertidal Upstream		990 114	4709 958				0 0	54 128	3 0	0 0	.00 .00
.00	Cathead 0	Bay 0	14	10	9 96	7.0	20	31	100	38.39	38.	39	0	0	0	0	.00
.00	0	0	14			9.0	30	4	0			00	0	0	0	0	.00
.00	0 0	0 0	14 14			11.0 Upstream	40 60	13 173	24 0			21	0 0	0 0	0 0	0 0	.00 .00

]	Pink	Salmon					Chum Sa	almon
Fry						Embryos	S	Live	Embryos/	m² Fry		Embryc	os i	Live Emb	pryos/m ²
Stream Strea No # Nam Dead Li	o. Ne	Sample	Date s	Tidal	Height in Zone(ft) Loo	c Dead	Live	e Me	ean SI	E Dead	Live	Dead	Live	e Mear	n SE
.00 0		0 42			Intertidal Upstream		48 73	124 0	15.87 .00	13.09 .00	0 0	0 0	0 0	0 0	.00

								Pinł	s Salmon					Chum Sa	lmon
F	ry					Em	bryos	Liv	e Embryos	s/m² Fry		Embryo	s Li	ive Emb	ryos/m²
#	Stream No. Name ad Liv		amples	Date Tidal	Height in Zone(ft) 1		ead L:	ive	Mean	SE Dead	Live	Dead	Live	Mean	. SE
740	Kelez 0	Creek 0	14	10 21 96	7.0			1043		189.83	0	0	0	0	.00
.00	0	0	14		9.0	30			1303.44		0	0	0	0	.00
.00	0	0	14		11.0			1171		187.97	0	5	0	0	.00
.00	0	0	14		Upstream	60	196	481	184.67	160.07	0	0	0	0	.00
.00	0	0	42		Intertidal		1483	5609		160.99	0	5	0	0	.00
.00	0	0	14	Total	Upstream		196	481	184.67	160.07	0	0	0	0	.00
744	Wilby 0	Creek 0	14	10 22 96	7.0	20	412	1266	486.05	176.95	0	0	0	0	.00
.00	0	0	14		9.0	31	16	303	116.33	95.83	0	0	0	0	.00
.00	0	0	0		11.0	40	0	0	.00	.00	0	0	0	0	.00
.00	0	0	0		Upstream	60	0	0	.00	.00	0	0	0	0	.00
.00	0	0	28		Intertidal		428	1569			0	0	0	0	.00
.00	0	0	0	Total	Upstream		0	0	.00	.00	0	0	0	0	.00

									Pink	Salmon					Chum	Salmon
F	ry						Emb	ryos	Live	e Embryos	s/m² Fr	ТY	Emb	ryos I	ive En	mbryos/m²
#	Stream No. Name ad Live		mples	Date	Tidal	Height in Zone(ft) Loc	De	ead Li	ve	Mean	SE De	ad Live	e De	ead Live	Ме	an SE
747	Cabin (10	22 96	7.0	20	239	997	382.78	147.74	0	1	0	0	.00
.00	0	0	14			9.0	30	350	3704	1422.07	358.37	0	813	0	0	.00
.00	0	0	14													
.00	0	0	14			11.0	40	1703	3250	1247.77	312.82	0	17	0	0	.00
	-					Upstream	60	821	1001	384.31	97.41	0	35	0	0	.00
.00	0	0	14													
					Total	Intertidal		2292	7951	1017.54	176.81	0	831	0	0	.00
0.0																
.00	0	0	42		Total	Upstream		821	1001	384.31	97.41	0	35	0	0	.00

Appendix A. (cont. page 22 of 9)

									Pin	k Salmon	n						Chum Sa	almon
F							Emb	oryos	Liv	e Embry	os/m²	Fry		Emk	oryos	L.	ive Emb	oryos/m
ream	Stream No. Name			Date	Tidal	Height in Zone(ft) Lo				Moon	SE	Dood			ead I		Maa	n SE
	ad Live	Sam	ples	Date		Zone(It) Lo	C De			Mean	58	Dead		e De		.ive	Mea	SE
51	Bernard	Creek		10	3 96	7.0	20	3003	1909	9 732.9	2 23	7.73	0	0		0	0	.00
.00	0	0	14			9.0	30	3544		5 1261.2			0	0		0	0	.00
.00	0	0	14			11.0	40	3416		5 3008.0		4.90	0	0		0	0	.00
.00	0	0	14															
.00	0	0	14			Upstream	60	1101	4978	3 1911.2	20 36	4.81	0	0		0	0	.00
.00	0	0	42		Total	Intertidal		9963	13029	9 1667.4	40 31	9.98	0	0		0	0	.00
.00	0	0	14		Total	Upstream		1101	4978	3 1911.2	20 36	4.81	0	0		0	0	.00
ince	William	Sound	Sumr	mary														
	1.6	250 1	014		Total	Intertidal	8	34846 2	222368	984.5	54 4	4.26	30	7928	60)3	868	3.84
.95			214		Total	Upstream	3	32052	79681	1089.7	8 7	5.95	0	2485	18	32	324	4.43
8.80	0	0	393															